ROBOT NAVIGATION

ROBOTICS

<=

POLITECNICO
MILANO 1863

OUR IMPLEMENTATION

/joy @ > /cmd_joy > /../velocity

! Y
ROBOT
joy_node /odom

ovPAD Cpoze >

OUR IMPLEMENTATION

/cmd_auto ROBOT
A - \L
joy_node @ K /goal N control Jodom

JOYPAD /plan /pose

OUR IMPLEMENTATION

Time consuming
Lack of modularity
Difficult to adapt to new

/cmd_joy

robots

Low quality implementation :
Lack of functionalities /cmd_auto | - ROBOT

f E !

JOYPAD /plan /pose

SOLUTION?

Exploit the greatest quality of ROS

already available and implemented components

SOLUTION?

Exploit the greatest quality of ROS

already available and implemented components

|

ROS navigation (stack)
http://wiki.ros.org/navigation

NAVIGATION

move_base

nav_core
amcl
robot_pose_ekf
base_local_planner
carrot_planner
dwa_local_planner
navfn

global_planner

move_slow_and_clear
rotate_recovery
clear_costmap_recovery
costmap_2d
map_server

voxel_grid
fake_localization

move_base_msgs

NAVIGATION

move_base

Central element of navigation —and_clear

nav_core and the definiltion of thebase I ery
class

amcl ap_recovery
robot_pose_ekf costmap_2d
base_local_planner map_server
carrot_planner voxel_grid
dwa_local_planner fake_localization

navfn move_base_msgs

global_planner

NAVIGATION

move_base

nav_core
amcl
robot_pose_ekf
base_local_planner
carrot_planner
dwa_local_planner
navfn

global_planner

move_slow_and_clear

Robot localization using various HCISERESSSAS S
methods 0 d

map_server
voxel_grid
fake localization

move_base_msgs

NAVIGATION

move_base

nav_core
amcl
robot_pose_ekf
base_local_planner
carrot_planner
dwa_local_planner
navfn

global_planner

move_slow_and_clear
rotate_recovery
clear_costmap_recovery

costmap_2d

Different algorithms to

implement local autonomous
movement

lon

move_base_msgs

NAVIGATION

move_base

nav_core
amcl
robot_pose_ekf
base_local_planner
carrot_planner
dwa_local_planner
navfn

global_planner

move_slow_and_clear
rotate_recovery
clear_costmap_recovery
costmap_2d
map_server

voxel_grid

fake localization

Global planner used to generate

the trajectory on a large scale

NAVIGATION

move_ba move_slow_and_clear
gE\VANdel(Sl Various recovery behavior for rotate_recovery

stuck robots or critical situations
amcl clear_costmap_recovery
robot_pose_ekf costmap_2d
base_local_planner map_server
carrot_planner voxel_grid
dwa_local_planner fake_localization
navfn move_base_msgs

global_planner

NAVIGATION

move_base move_slow_and_clear
nav_core rotate_recovery

amcl clear_costmap_recovery
robot_po costmap_2d

base loca Tools for 2D and .3D map map_server
representatlon

carrot_pl voxel_grid

dwa_local_planner fake_localization

navfn move_base_msgs

global_planner

NAVIGATION

move_base move_slow_and_clear
nav_core rotate_recovery

amcl clear_costmap_recovery
robot_pose_ekf costmap_2d
base_local_planner map_server

carrot_pla voxel_grid

dwa_loca Extra utilities for testing and fake_localization

communication

navfn move_base_msgs

global_planner

GENERAL ARCHITECTURE

amcl

H sensor transforms

ll/tfll

"move_base_simple/goal"
geometry_msgs/PoseStamped
|

odometry source

tf/tfMessage

llodomll

gy,
W iy,
S ",

% N
“m, \\\“\‘\
it

Navigation Stack Setup

u/mapn ‘

move_base l

Y

global_planner -<—— global_costmap

nav_msgs/GetMap ‘ map_server

/ A
internal _
nav_msgs/Path recovery_behaviors
Y N
> local_planner <—— local_costmap

nav_msgs/Odometry

"cmd_vel"|geometry_msgs/Twist

Y

base controller

sensor topics ‘

sensor_msgs/LaserScan ‘ S=lisUkSOURCES

sensor_msgs/PointCloud -

provided node
optional provided node
platform specific node |

Ay,
! 7
S “n,

&

N\
_—

MOVE_BASE

"move_base_simple/goal" . .
geometry_msgs/PoseStamped Navigation Stack Setup
move_base l "/map” | r
Y nav_msgs/GetMap ‘ R PESEINE

amcl — global_planner —~<—— global_costmap

/ A
H sensor topics ‘ :

sensor transforms [tf internal ‘ Sensor sources

tf/tfMessage nav_msgs/Path | (recovery_behaviors o o Cioan &
v N ¥
odometry source “odom" > local planner <— local_costmap

nav_msgs/Odomet

=

Yy

"cmd_vel"|geometry_msgs/Twist
v provided node
' ' optional provided node

base controller g
platform specific node

MOVE_BASE

Single node and core element of ROS navigation.
Implements all the main planning and control functionalities
based on plugins for dynamic configuration.

Easy to extend via ROS pluginlib.

Based on the nav_core class.

NAV_CORE

"move_base_simple/goal” nav core interfaces
geometry_msgs/PoseStamped -
|

move_base

nav_core::BaseGlobalPlanner ¢

nav_core::BaselocalPlanner

l

global planner -«—— global _costmap

internal

nav_msgs/Path refiover’y_behawors

nav_core::RecoveryBehavior

Y

local_planner - local_costmap

"cmd_vel" |geometry_msgs/Twist

nav_core plugin interface

g,
qa L7
S %,

NAV_CORE

"move_base_simple/goal” nav core interfaces
geometry_msgs/PoseStamped -
|

Goal as a single point

. . . move_base
Via tOpIC or actions

global planner -«—— global _costmap

nav_core::BaseGlobalPlanner ¢

internal

nav_msgs/Path refiovery_behawors

nav_core::RecoveryBehavior

Y

local_planner - local_costmap

nav_core::BaselocalPlanner

Velocity command

via topic

"cmd_vel" |geometry_msgs/Twist

nav_core plugin interface

g,
qa L7
S %,

NAV_CORE

"move_base_simple/goal” nav core interfaces
geometry_msgs/PoseStamped -
|

move_base l

global planner -«—— global _costmap

’

recovery behaviors

Plugins implement nav_coré::BaseGlobalPIanner

functionalities
nav core::RecoveryBéhavior
Exchangeable at i

execution time 3 —
ocal_planner - local_costmap

nav_core::BaselocalPlanner

"cmd_vel" |geometry_msgs/Twist

nav_core plugin interface

NAV_CORE

"move_base_simple/goal"
geometry_msgs/PoseStamped
|

« g, ”
W %,

“hy O
7y N\
Pitpagg

nav_core interfaces

move_base

l

global planner -«—— global _costmap

nav_core::BaseGlobalPlanner ¢

internal

nav_msgs/Path refiovery_behawors

Y

local_planner - local_costmap

nav_core::BaselocalPlanner

nav_core::RecoveryBehavior

Information about

the world provided
by the map server
and the sensors

"cmd_vel" |geometry_msgs/Twist

nav_core plugin interface

COST MAP

Takes in sensor data and builds a 2D or 3D occupancy grid of the data

-

]

COST MAP

Each cell can have one of 255 different cost values

Inflates costs

"lethal" or "W-space" obstacle
e.g. cost_lethal=254

"inscribed" or "C-space" obstacle
e.g. cost_inscribed=253

“circumscribed" obstacle
e.g. cost_possibly_circumscribed=128

lowest non-freespace
cost=1

freespace
cost=0

cell cost
[int]
I range of costs meaning
definitely in collision
o range of costs meaning
possibly in collision
(depends on orientation)
©q. 127

discretized cost decay function

range of costs meaning
definitely not in collision

also the range where (most) user
preferences should be expressed

=

center
cell

nominal cost decay function I
inscribed circumscribed inflation :
radius radius radius ;

—_—

buffer zone created by costmap_2d around

obstacles, in order to make the robot prefer
paths that keep some minimum clearance
(this is a sort of default user preference)

|- exact (non-pixelized) footprint

inseribed region

circumscribed regios

distance from
closest W-space
obstacle cell
[double]

COST MAP

ROS Navigation is based on two different costmaps:
Global: used for long-term plans over the entire environment

Local: used for local planning and obstacle avoidance

These costmaps have specific and common configurations

MAP_SERVER

amcl

H sensor transforms

ll/tfll

"move_base_simple/goal"
geometry_msgs/PoseStamped
|

odometry source

tf/tfMessage

llodomll

Ay,
! 7
S “n,

&

N\
_—

Navigation Stack Setup

u/mapn ‘

move_base l

Y

global_planner -<—— global_costmap

nav_msgs/GetMap ‘ map_server

/ A
internal _
nav_msgs/Path recovery_behaviors
Y N
> local_planner <—— local_costmap

nav_msgs/Odometry

"cmd_vel"|geometry_msgs/Twist

Y

base controller

sensor topics ‘

sensor_msgs/LaserScan ‘ S=lisUkSOURCES

sensor_msgs/PointCloud -

provided node
optional provided node
platform specific node |

MAP_SERVER

Tool provided by ROS navigation to publish and save maps.
Offers the map both via topic and via service.

Can save dynamically generated maps.

Combined with costmap_2d:
Manages multi-layered 2D maps.

Inflate obstacle according to sensor information.

MAP_SERVER

The map is composed by:

YAML file: describes the map meta-data

Image file: encodes the occupancy data

1— .
Il

File
+ | vyamL

File PGM o PNG

MAP_SERVER

Path to the image file containing
the occupancy data

resolution: 0.05 Resolution Of;:‘xee lmap, meters /

origin: [0.0, 0.0, 0.0 The 2-D pose of the lov;e;;l::‘)t pixel in the map, as (x,

negate: 0 The white/black free/occupied semantics should be
reversed

occupied_thresh: 0.6 Pixels with occupancy probability greater than this
B threshold are considered completely occupied

iImage: maze.pnd

free_thresh: 0.196 Pixels with occupancy probability less than this
threshold are considered completely free

A
o o Ill/,,”//

% N
“m, \\\“\‘\
it

"move_base_simple/goal" . .
geometri_msg_s/PogeStgamped Navigation Stack Setup

move_base l

Amap. | map_server
Y nav_msgs/GetMap ‘ ap_

amcl — global_planner —~<—— global_costmap

/ A
H sensor topics ‘ :

sensor transforms [tf internal ‘ Sensor sources

tf/tfMessage nav_msgs/Path recovery behaviors sensor_msgs/LaserScan

sensor_msgs/PointCloud -
Y Nt

— n n
odometry source odom > local planner <—— local_costmap
nav_msgs/Odometry -

"cmd_vel"|geometry_msgs/Twist
y 7 provided node
optional provided node
platform specific node

base controller

Probabilistic localization system based on a 2D map.

Provides the estimated position using future dated tf.

Requires a laser scan and provides better result when using odometry.

AMCL (TRANSFORMATION FRAMES)

amcl publishes this The robot provides this

Odometry Dead
Drift Reckoning

/map_frame ——— /fodom_frame /base_frame

Estimated by AMCL

AMCL (TRANSFORMATION FRAMES)

Transforms incoming laser scans to the odometry frame

~ It requires a path from /base_scan to /odom

Estimates the position of the robot in the global frame

~. Transformation between /map and /base_link

Publishes the transformation between the global frame and the odometry frame
~ Transformation between /odom and /map
— Correct the odometry drift
— Future dated

min_particles: 500 Minimum/Maximum allowed Acml parameters
max_particles: 2000 number of particles.

update_min_d: 0.25
update_min_a: 0.2

resample_interval: 1
initial_pose_x:
initial_pose _y:
initial_pose_a:
odom_model_type: "diff"
odom_frame_id: "odom"

base frame id: "base_footprint"
global_frame_id: "map"

Translational and rotational movement required
before performing a filter update

Number of filter updates required before
resampling

Initial pose mean (x, y, yaw), used to initialize filter
with Gaussian distribution.

Model to use, either "diff", "omni"

Frame to use for odometry, robot_base and for the

localization system

WHAT'S MISSING?

amcl —

ll/tfll

"move_base_simple/goal"
geometry_msgs/PoseStamped
|

H sensor transforms —«

odometry source

tf/tfMessage

llodomll

Ay,
! 7
S “n,

&

N\
_—

Navigation Stack Setup

u/mapn ‘

move_base l

Y

global_planner -<—— global_costmap

nav_msgs/GetMap ‘ map_server

/ A
internal _
nav_msgs/Path recovery_behaviors
Y N
> local_planner <—— local_costmap

nav_msgs/Odometry

"cmd_vel"|geometry_msgs/Twist

Y

base controller

sensor topics ‘

sensor_msgs/LaserScafp ‘ S=lisUkSOURCES

sensor_msgs/PointCloufl

provided node
optional provided node
platform specific node |

WHAT'S MISSING?

Everything platform specific need to be implemented by hand:
Low-level robot interaction
Sensor drivers
Sensor measurements processing
Odometry estimation

High-level task planning

Most of these are already available in ROS as existing packages (i.e., drivers,
robot_pose_ekf, ...)

gy,
W iy,
S ",

ROS NAV REQUIREMENTS

% N
“m, =
Uty

"move_base_simple/goal" . .
geometry_msgs/PoseStamped Navigation Stack Setup
move_base l "/map” | r
Y nav_msgs/GetMap ‘ R PESEINE

amcl — global_planner —~<—— global_costmap

| < | ‘*

el . sensor topics
sensor transforms [tf internal P ‘ Sensor sources

tf/tfMessage nav_msgs/Path | (recovery_behaviors o ramtcioan |
v N
odometry source | “odom" > local planner <— local_costmap
nav_msgs/Odometry -

"cmd_vel"|geometry_msgs/Twist
Y 7 provided node
optional provided node
platform specific node

base controller

ROS NAV REQUIREMENTS

ROS Navigation has a specific architecture and needs some specific
condition to work:

m Sensor source to localize and avoid obstacle, as sensor_msgs/LaserScan or
sensor_msgs/PointCloud

m A source of odometry, as nav_msgs/Odometry
m Conversion from geometry _msgs/Twist to motor control

m A well formed tf tree (sensors position, robot position and map)

ROS NAV REQUIREMENTS

The ROS Navigation is quite general and adaptable, but it has a few
hardware requirements:

m Works better with differential drive or holonomic robots
m Requires a planar laser for scanning and localization

m Best results with square or circular robots

ROSBAG

Is a set of tools for recording from and playing back to ROS topics
This is the current list of supported commands:

record: Record a bag file with the contents of specified topics.

info: Summarize the contents of a bag file.

play : Play back the contents of one or more bag files.

check: Determine whether a bag is playable in the current system, or if it can be
migrated.

fix: Repair the messages in a bag file so that it can be played in the current system.
filter: convert a bag file using Python expressions.

compress. compress one or more bag files.

decompress: decompress one or more bag files.

reindex: reindex one or more broken bag files

ROSBAG COMMAND

Record a bag:
rosbag record (-a | <topic name>)

Records all the Records only
topics specific topics

Use a simulated

time

Play a bag
rosbag play --clock <name_of the bag>

NAVIGATION MAIN ELEMENTS

LOCALIZATION PLANNERS

SENSORS

NAVIGATION MAIN ELEMENTS

LOCALIZATION PLANNERS

SENSORS

A
o o Illu,”//

GMAPPING

GMAPPING

ROS wrapper for openslam gmapping
Actually a SLAM algortithm
Can be used for real time map creation and localization

Based on lasers and odometry

REQUIREMENTS

m Odometry
m Horizontally-mounted, fixed, laser range-finder
m Full tf tree with:

m Base to laser transformation

m Base to odometry transformation

IMPORTANT PARAMETERS

base_frame (string, default: "base_link")
map_frame (string, default: "map")

odom_frame (string, default: "odom")

Also, topics to remap
scan (sensor_msgs/LaserScan)

map (nav_msgs/OccupancyGrid)

the frame attached to the mobile base
the frame attached to the map

the frame attached to the odometry system

laser scans to create the map from

get the map data from this topic

HOW TO USE IT

1.

v~ LN

Drive your robot around
1. Explore all the area you want to map
2. Try to collect as much data as possible

3. Try to make loops and give the algorithm references

Save everything in a bag You can skip this and run the

gmapping node in real time

Run the bag

Start gmapping and let it crunch the data

Save the generated map

BAG VS REAL TIME

Using a bag Processing in real time

Faster Early stop if something goes wrong
Can use data already collected Restart in case of problems

Can do different trials Can see directly the results

Tune parameters Assure full coverage

iy
S a Ill/,,”//

SOME EXAMPLES

% N
“m, =
Uty

Let's see it In practicel

-download from drive the folder called “stage”

-cd to the stage folder you downloaded

-to start the simulation simply use the command:

$ stage maze.world

This command start stage, like we started gazebo with

$ gazebo

if we want to control the robot we need to start it as a ROS node:

$ rosrun stage_ros stageros maze.world

-to control the robot we can use any node
publishing /cmd_ vel:

$ roslaunch turtlebot3 teleop
turtlebot3 teleop key.launch

-next we can use the view tab to visualize the
laser scanner of the robot, go to:

View->Data

turtlebotf (7,16 3,97

.90 16,04]

GMAPPING

Record a bag and than create a map

to record a bag we will use turtlebot3:

first we set the robot type:

$ export TURTLEBOT3_ _MODEL="burger"
then launch turtlebot

$ roslaunch turtlebot3 gazebo
turtlebot3 world.launch

GMAPPING

Now we want to control the robot, so we will
launch the teleop node:

$ roslaunch turtlebot3 teleop
turtlebot3 teleop key.launch

Last we want to record a bag:
$ rosbag record -O turtlebot_bag -a

Now move the robot in the turtlebot world to
get some data

GMAPPING

before starting gmapping we can take a look at
the bag (remember to start roscore):

but first we set ros to use simulated time:
$ rosparam set use_sim_time true

then:

$ rosbag play --clock turtlebot_bag.bag
to visualize the data we will open rviz:

$ rviz

GMAPPING

if we try to add the laser data we will get the
error:

“For frame [base_scan]: Frame [base scan]
does not exist”

this because we don’t have a transformation
between the position of the laser scanner and
the centre of the robot.

We then have to add manually the
transformation, run:

$ rosrun tf static_transform_publisher 0000 0
0 1 base_footprint base _scan 100

now we see the laser in rviz

GMAPPING

Now we can finally start gmapping; stop the bag and close rviz.

make sure the static transform is still published
then start gmapping:
$ rosrun gmapping slam_gmapping scan:=/scan _base frame:=base_footprint

we have to specify some parameters that are not at the default value like the scan topic and the
base frame

last start again the bag file
$ rosbag play --clock turtlebot_bag.bag

wait the bag to end

GMAPPING

To create the map, after the bag has finished playing run the command:

$ rosrun map_server map_saver -f map

to create the map file (both picture and yml)

GMAPPING

To run gmapping in real time:

start turtlebot:

$ export TURTLEBOT3 MODEL="burger"

$ roslaunch turtlebot3 gazebo turtlebot3 world.launch

start the static tf publisher

$ rosrun tf static_transform_publisher 00 0 0 0 0 1 base_footprint base scan 100
start gmapping

$ rosrun gmapping slam_gmapping scan:=/scan _base frame:=base_footprint

GMAPPING

As previously to control the robot use the teleop node:

$ roslaunch turtlebot3 teleop turtlebot3 teleop key.launch

We can visualize at runtime the map being created using rviz:

$ rviz

and adding the map topic

when the map is completed you can save it using the previous command:

rosrun map_server map_saver -f map

