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What are Genetic Algorithms?

Algorithms to learn (sub-optimal) models 

inspired by the biological genetic model

Each model can be considered as the solution of a 

problem
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Looking for solutions of a problem

Looking for solutions of a problem is different from looking for 
data in a database: the potential solutions might be so many that 
it could not possible even list all of them.

We would like to generate candidate solutions to be evaluated, 
by applying some criteria to riduce this generation to the ones 
that could be good enough to be considered.

Many algorithms to search for solutions exhist, each applicable in 
particular conditions, and showing different performances on 
different problems (hill climbing, A*, tabu search, simulated 
annealing, ...)
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Search space

We say that we search a solution in a search space.

The quality of the solution is called "fitness" in analogy with the 
biological terminology.

Genetic algorithms are an effective  tool to search in very large 
search spaces (e.g., 1070), also when these show irregularities.

GA recombine parts of solutions to generate better ones. There is 
no guarantee to get to the optimum, but it is proved that the 
solutions are improving with the iterations of the algorithm. 
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Fitness landscape

The fitness landscape is a spatial 
representation of the solutions with 
the respective quality

If we have two values to represent 
the solution, we can visualize the 
fitness landscape in a three-
dimensional space, where we could 
see mountains and valleys.

Genetic algorithms are quite good 
also when the fitness landscape 
has many local minima and 
maxima.
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Short history

Genetic Algorithms are a part of evolutionary computation, and they 
are inspired by Darwin's theory of evolution: Problems are solved by an 
evolutionary process that mimics natural evolution in looking for a best 
(fittest) solution (survivor).

We can trace a brief history of evolutionary computation:

1960: Ingo Rechenberg introduces the idea of evolutionary computing 
in his work "Evolution strategies"

1975: John Holland invents Genetic Algorithms and publishes his book 
"Adaption in Natural and Artificial Systems"

1992: John Koza uses genetic algorithm to evolve programs to perform 
certain tasks. He called his method Genetic Programming

1995: Stewart Wilson re-invents learning classifier systems with XCS: 
GA to learn rules...
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Applications of genetic algorithms

Optimization: circuit layout, job shop scheduling...

Automatic programming: evolving computer programs, inventions, …

Classification: classifying etities from theri features

Prediction: whether forecast, proteins ...

Economy: bidding strategies, market evolution, ...

Ecology: biological arm races, host-parasite coevolution, ...

...
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Terminology

In biology

Chromosome: information that characerizes an individual

Gene: elementary information contained in chromosomes (e.g.: 
eye color); each gene has a specific position in the chromosome

Allele: value for a gene (e.g.: brown, blue, ...)

Genome: the complete collection of the genetic material (all 
chromosomes)



Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)  
- 9 of 45

Terminology (2)

Genotype: the specific set of genes contained in the genome; 
two individuals with the same genome have the same genotype

Fenotype: specific set of genes for an individual (physical 
features)

Diploid: individual with paired chromosomes

Haploid: individual with non-paired chomosomes
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Terminology (3)

Crossover: in sexual reproduction, paired chromosomes 
exchange genetic material to generate a gamete that combines 
with that of the other parent to generate the diploides of the 
offsprings. In the haploid reproduction, the chromosomes of the 
parents mix with each other to obtain the offsprings' 
chomosome.

Mutation: a gene changes during reproduction

Fitness: probability of life and of reproduction, or, also, function 
of the generated offsping
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From biology to genetic algorithms

Chromosome:  candidate solution for a problem, usually 
represented by a bit string or a character string

Gene: single bit, or set of bits, that charaerize a solution

Allele: in a bit string is either 0 or 1; in generale: an elelment of 
the alphabet used to represent a chromosome

In general,  reproduction is haploid
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How does a genetic algorithm work?

1.  [Start] Generate random population of n chromosomes (suitable 
solutions)

2. [Fitness] Evaluate the fitness f(x) of each chromosome x in the 
population

3. [Test] If the end condition is satisfied, return the best solution in current 
population, otherwise

4.  [New population] Create a new population by repeating the following 
steps until the new population is complete

(a)  [Selection] Select two parent chromosomes from a population 
according to their fitness (the better fitness, the bigger chance to be 
selected)

(b)  [Crossover] With a crossover probability cross over the parents to 
form new offspring. If no crossover was performed, offspring is the 
exact copy of parents.

(c)  [Mutation] With a mutation probability mutate new offsprings at 
each locus

(d)  [Accepting] Place new offsprings in the new population

5.  [Replace] Use new generated population for a further run of the 
algorithm

6.  [Loop] Go to step 2
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Designing genetic algorithm applications

There are many parameters and settings that can be implemented 
differently in various problems:

•How to define a fitness function

•How to create chromosomes and what type of encoding do we 
have to choose

•How to select parents for crossover in the hope that the better 
parents will produce better offspring

•How to define crossover and mutation, the two basic operators of 
GA
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Fitness Function

f(x) is used to evaluate the quality (fitness) of an individual 
(solution). It defines the solution to be found and drives the 
search.

The evaluation is used to sort the individuals, fundamental 
operation for genetic evolution.
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Data model

Sets (populations) of chromosomes, each representing a candidate 
solution for the proposed problem.

The first step in developing a genetic algorithm is defining how to 
encode a solution:

• A chromosome should in some way contain information about the 
solution that it represents

• The encoding depends mainly on the problem to be solved (e.g., 
integer or real numbers, permutations, parsing trees, . . . )

E.g.:

0 1 1 0 1 1 0 0 1 1

Low High Medium Low Low

1.234 67.345 899.00 78.786
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Binary encoding

Binary encoding is the most common one, mainly because, 
when all

configurations are used, it guarantees the maximum 
exploitation of the information representation.

• In binary encoding, every chromosome is a string of bits (0 
or 1)

• Simple implementation of the genetic operators

• Not natural for many problems

E.g.:

0 1 1 0 1 1 0 0 1 1
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Binary encoding: operators

For binary encoding we have many operators.

• Single point crossover: one crossover point is selected, the 
binary string from the beginning of the chromosome to the 
crossover point is copied from the first parent, the rest is 
copied from the other parent

0 0 1 1 0 0 0 1 0 0 1 1 1 1 0 0

   1 0 0 1 1 1 0 0 1 0 0 1 0 0 0 1
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Binary encoding: operators (2)

• Two point crossover: two crossover points are selected, 
binary string from the beginning of the chromosome to the 
first crossover point is copied from the first parent, the part 
from the first to the second crossover point is copied from 
the other parent and the rest is copied from the first parent 
again

• Uniform crossover: bits are randomly copied from the first 
or from the second parent

• Arithmetic crossover: some arithmetic operation is 
performed to make a new offspring (e.g., logic AND)

• Mutation: inversion of bits selected with a given probability
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Binary encoding: example

 Knapsack problem

• There are things with given value and size. The knapsack 
has given capacity. Select things to maximize the value of 
things in knapsack, but do not extend knapsack capacity.

• Each bit says whether the corresponding thing is in the 
knapsack.
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Another example

In this simple example we are looking for the extreme of a 
function defined over a search space.

1.  Search Space: An interval of the real line

2.  Fitness Function: The value of the function we are 
“exploring”

Why should we use genetic algorithms for this?

Because functions may get quite nasty ;)
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An example

Our chromosome may look like these:

Cromosome 1 1 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0

Cromosome 2 1 0 1 1 1 1 0 0 0 1 1 1 1 0 0 1

Each chromosome is represented as the binary code of a real 
number

We apply single point crossover and standard flipping value 
mutation 

A demo stolen from:

http://
www.obitko.com/tutorials/genetic-algorithms/example-functio
n-minimum.php

http://www.obitko.com/tutorials/genetic-algorithms/example-function-minimum.php
http://www.obitko.com/tutorials/genetic-algorithms/example-function-minimum.php
http://www.obitko.com/tutorials/genetic-algorithms/example-function-minimum.php
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Permutation encoding

Permutation encoding can be used in ordering problems

• Every chromosome is a string of numbers that represent a 
position in a sequence

• Crossover and mutation must be designed to leave the 
chromosome consistent (i.e., have real sequence in it)

 E.g.:

Cromosome 1   15 7 8 3 5 13 10 11 16 12 1 14 2 4 6 9 

Cromosome 2 2 9 14 1 11 5 8 15 13 6 12 16 7 3 10 4 
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Permutation encoding: operators

For permutation encoding we have to preserve consistency of 
the solution

• Single point crossover: one crossover point is selected, the 
permutation is copied from the first parent till the crossover 
point,  then the other parent is scanned looking the other 
numbers

(1 2 3 4 5 6 7 8 9) + (4 5 3 6 8 9 7 2 1) = (1 2 3 4 5 6 8 9 7)

• Order changing mutation: two numbers are selected and 
exchanged

(1 2 3 4 5 6 8 9 7) ⇒ (1 8 3 4 5 6 2 9 7)
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Permutation encoding example

Traveling salesman problem (TSP)

• There are cities and given distances between them. 
Traveling salesman has to visit all of them, but he does not 
want to travel more than necessary. Find a sequence of 
cities with a minimal traveled distance.

• The chromosome describes the order of cities

An example stolen from:

http://www.obitko.com/tutorials/genetic-algorithms/tsp-
example.php
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Direct value encoding

Direct value encoding can be used in problems where some 
more

complicated values are required

• Every chromosome is a sequence of some values 
connected to the problem, such as (real) numbers, chars or 
any objects

• Good choice for some special problems, but necessary to 
develop some specific crossover and mutation

Cromosome1  - A  B  H  Y V V

Cromosome2   - 2.5678 1.4361 3.3426 7.8761

Cromosome3  - close open walk  back
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Direct value: operators

For real value encoding we can reuse crossover from binary 
encoding:

• Creep mutation: a small number is added (or subtracted) to 
selected values

(1.29 5.68 2.86 4.11 5.55) ⇒ (1.29 5.68 2.73 4.22 5.55)
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Direct encoding example

Finding weights for a neural network

• A neural network is given with defined architecture. Find 
weights between neurons to get the desired output from 
the network

• Real values in chromosomes represent weights in the 
neural network
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Tree encoding

Tree encoding is used mainly for evolving programs or 
expressions   (i.e., genetic programming)

• Every chromosome is a tree of some objects, such as 
functions or commands in programming language.

• Programming language LISP is often used for this purpose, 
so  crossover and mutation can be done relatively easily.

Cromosome (+ X (/ 5 y))

x

+

/

5 y
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Tree encoding: operators

Crossover cuts a link and exchanges material. Mutation 
changes values in nodes

x

+

/

5 y

y

-

*

6x

x

+

*

6x
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Tree encoding example

Finding  a  function that would best match given pairs of 
values (approximant function)

• Input and output values are given. The task is to find a 
function that will give the best outputs for all inputs.

• Chromosome are functions represented in a tree
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Selection of the individuals

According to Darwin's theory of evolution the best 
chromosomes survive to create new offspring. 

The best individuals should be selected to contribute to the 
new population so that it improves. They are the ones that 
mate to generate hopefully better offsprings.

Genetic operators are applied to pairs of good individuals to 
generate offsprings to be inserted in the population.
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Selection methods

There are many methods to select the best chromosomes:

• Roulette wheel selection,

• Rank selection

• Tournament selection

• Boltzmann selection

• . . .



Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)  
- 33 of 45

Roulette wheel selection

Parents are selected proportionally to their fitness.

The better they are, the more chances to be selected they 
have.

1.  Imagine a roulette wheel where all the chromosomes in 
the population are placed

2.  The size of the section in the roulette wheel is 
proportional to the value of the fitness function of every 
chromosome - the bigger the value is, the larger the 
section is

3. A marble is thrown in the roulette wheel and the 
chromosome  where it stops is selected

Possible problems if there is a large difference of fitness from 
the best to the worst, which could hardly be selected.
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Rank selection

Parents are ranked and the selection probability is 
proportional to the rank.

Roulette before ranking

Roulette after ranking

Possible problems: slow convergence, due to small difference 
between best and worst parents.
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Tournament selection

 Parents are pooled and a tournament is held within the pool(s).

Pseudocode:

• choose k (the tournament size) individuals from the 
population at random

• choose the best individual from pool/tournament with 
probability p

• choose the second best individual with probability p ∗ (1 − p)

• choose the third best individual with probability p ∗ ((1 − p)2 )

• and so on...

Efficient implementation, easy to adjust.
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Boltzmann selection
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Reproduction

How the new individuals are generated?

10101110 (0.98)

01000100 (0.95) ?
11101000 (0.88)

00101011 (0.75)

01010100 (0.56)

00101000 (0.42)
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Copy operator

When creating a new population, we have a big chance that we 
will lose the best chromosome.

Elitism is the name of the method that first copies the best 
chromosome (or few best chromosomes) to the new population. 
It can rapidly increase the performance, because it prevents a 
loss of the so–far best found solution.

The copy operator simply copies the individual in the new 
population.

The other operators used are crossover and mutation, already 
introduced.
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Why does crossover work?

Hypothesis: an individual is good because it contains good 

sequences (building blocks hypothesis)

There is some probability that crossover compose good solution 

parts obtaining an individual better than its parents

Crossover point is randomly selected in order to avoid blocking 

the dimension of the building blocks to be found
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Schemata

Holland (1975) formalizes the idea ofbuilding block

A schema is a set of strings  described by a template made of 0, 1 
and  *,  where * is a wildcard character and stands for any of the 
others

E.g.,

H=1****1 

represents any bit string that starts and ends by 1.

The order of the schema is the number of defined bits (in this case 2)

Any bit string of length l is an individual made of  2l schemata.

Any string evaluation actually evaluate many schemata.

The more the evaluated strings for a schema, the more the average 
value reliably represents its value
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Schema theorem

The expected number of individuals belonging to the same 
schema, at the next step is bounded by:

Average fitness 
observed  for H

Average 
fitness in the 
population

Number of 
individuals of 
type H at time t

Crossover 
probability Length of  H

Legth of 
strings in the 
search space

Mutation 
Probability

Number of  
bits defined 
in H
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Consequence of the schema theorem

Short schemata, of low order, whose fitness is higher than the 
average fitness of teh population have a number of samples 
evaluated that grows exponentially, given that they are less 

damaged by crossover and mutation

Convergency

Given that many schemata are evaluated at the same time, we can 
say that Genetic Algorithms exploit implicit parallelism
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When should we use genetic algorithms?

• large, non-unimodal, non-smooth search space

• a global optimum is not strictly required, but a sub-
optimal solution found in a short time is acceptable

• fitness function is noisy

If…

• the search space is small => exaustive search

• the search space is unimodal => steepest ascent (e.g., 
gradient)

• The search space is known => heuristics
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Some general modeling criteria

• Shorter strings are easier to learn

• The chromosome should describe completely the solution

• Binary representation gives the highest possibility to develop 
building blocks

• Aim at supporting  the presence of significant building blocks
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Rules of thumb

These “rules of thumb” are often results of empiric studies 
performed on binary encoding only, but they usually work fine . . .

• Crossover rate should be high, generally about 80% − 95% 
(however some results show that for some problems crossover 
rate about 60% is the best.)

• Mutation rate should be very low. Good rates could be about 
0.5% − 1% per allele

• Very big population size usually does not improve performance 
(in the sense of speed of finding solution). Good population size 
is about 20 − 30, however sometimes sizes 50 − 100 are 
reported as the best

• Basic roulette wheel selection can be used, but sometimes rank 
or tournament selection can be better. Elitism should be used for 
sure if you do not use other method for saving the best found 
solution
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