
Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 1 of 45

Genetic Algorithms

Andrea Bonarini

Artificial Intelligence and Robotics Lab
Department of Electronics, Information, and Bioengineering

Politecnico di Milano

E-mail: andrea.bonarini@polimi.it
URL:http://www.deib.polimi.it/people/bonarini

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 2 of 45

What are Genetic Algorithms?

Algorithms to learn (sub-optimal) models

inspired by the biological genetic model

Each model can be considered as the solution of a

problem

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 3 of 45

Looking for solutions of a problem

Looking for solutions of a problem is different from looking for
data in a database: the potential solutions might be so many that
it could not possible even list all of them.

We would like to generate candidate solutions to be evaluated,
by applying some criteria to riduce this generation to the ones
that could be good enough to be considered.

Many algorithms to search for solutions exhist, each applicable in
particular conditions, and showing different performances on
different problems (hill climbing, A*, tabu search, simulated
annealing, ...)

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 4 of 45

Search space

We say that we search a solution in a search space.

The quality of the solution is called "fitness" in analogy with the
biological terminology.

Genetic algorithms are an effective tool to search in very large
search spaces (e.g., 1070), also when these show irregularities.

GA recombine parts of solutions to generate better ones. There is
no guarantee to get to the optimum, but it is proved that the
solutions are improving with the iterations of the algorithm.

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 5 of 45

Fitness landscape

The fitness landscape is a spatial
representation of the solutions with
the respective quality

If we have two values to represent
the solution, we can visualize the
fitness landscape in a three-
dimensional space, where we could
see mountains and valleys.

Genetic algorithms are quite good
also when the fitness landscape
has many local minima and
maxima.

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 6 of 45

Short history

Genetic Algorithms are a part of evolutionary computation, and they
are inspired by Darwin's theory of evolution: Problems are solved by an
evolutionary process that mimics natural evolution in looking for a best
(fittest) solution (survivor).

We can trace a brief history of evolutionary computation:

1960: Ingo Rechenberg introduces the idea of evolutionary computing
in his work "Evolution strategies"

1975: John Holland invents Genetic Algorithms and publishes his book
"Adaption in Natural and Artificial Systems"

1992: John Koza uses genetic algorithm to evolve programs to perform
certain tasks. He called his method Genetic Programming

1995: Stewart Wilson re-invents learning classifier systems with XCS:
GA to learn rules...

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 7 of 45

Applications of genetic algorithms

Optimization: circuit layout, job shop scheduling...

Automatic programming: evolving computer programs, inventions, …

Classification: classifying etities from theri features

Prediction: whether forecast, proteins ...

Economy: bidding strategies, market evolution, ...

Ecology: biological arm races, host-parasite coevolution, ...

...

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 8 of 45

Terminology

In biology

Chromosome: information that characerizes an individual

Gene: elementary information contained in chromosomes (e.g.:
eye color); each gene has a specific position in the chromosome

Allele: value for a gene (e.g.: brown, blue, ...)

Genome: the complete collection of the genetic material (all
chromosomes)

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 9 of 45

Terminology (2)

Genotype: the specific set of genes contained in the genome;
two individuals with the same genome have the same genotype

Fenotype: specific set of genes for an individual (physical
features)

Diploid: individual with paired chromosomes

Haploid: individual with non-paired chomosomes

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 10 of 45

Terminology (3)

Crossover: in sexual reproduction, paired chromosomes
exchange genetic material to generate a gamete that combines
with that of the other parent to generate the diploides of the
offsprings. In the haploid reproduction, the chromosomes of the
parents mix with each other to obtain the offsprings'
chomosome.

Mutation: a gene changes during reproduction

Fitness: probability of life and of reproduction, or, also, function
of the generated offsping

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 11 of 45

From biology to genetic algorithms

Chromosome: candidate solution for a problem, usually
represented by a bit string or a character string

Gene: single bit, or set of bits, that charaerize a solution

Allele: in a bit string is either 0 or 1; in generale: an elelment of
the alphabet used to represent a chromosome

In general, reproduction is haploid

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 12 of 45

How does a genetic algorithm work?

1. [Start] Generate random population of n chromosomes (suitable
solutions)

2. [Fitness] Evaluate the fitness f(x) of each chromosome x in the
population

3. [Test] If the end condition is satisfied, return the best solution in current
population, otherwise

4. [New population] Create a new population by repeating the following
steps until the new population is complete

(a) [Selection] Select two parent chromosomes from a population
according to their fitness (the better fitness, the bigger chance to be
selected)

(b) [Crossover] With a crossover probability cross over the parents to
form new offspring. If no crossover was performed, offspring is the
exact copy of parents.

(c) [Mutation] With a mutation probability mutate new offsprings at
each locus

(d) [Accepting] Place new offsprings in the new population

5. [Replace] Use new generated population for a further run of the
algorithm

6. [Loop] Go to step 2

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 13 of 45

Designing genetic algorithm applications

There are many parameters and settings that can be implemented
differently in various problems:

•How to define a fitness function

•How to create chromosomes and what type of encoding do we
have to choose

•How to select parents for crossover in the hope that the better
parents will produce better offspring

•How to define crossover and mutation, the two basic operators of
GA

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 14 of 45

Fitness Function

f(x) is used to evaluate the quality (fitness) of an individual
(solution). It defines the solution to be found and drives the
search.

The evaluation is used to sort the individuals, fundamental
operation for genetic evolution.

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 15 of 45

Data model

Sets (populations) of chromosomes, each representing a candidate
solution for the proposed problem.

The first step in developing a genetic algorithm is defining how to
encode a solution:

• A chromosome should in some way contain information about the
solution that it represents

• The encoding depends mainly on the problem to be solved (e.g.,
integer or real numbers, permutations, parsing trees, . . .)

E.g.:

0 1 1 0 1 1 0 0 1 1

Low High Medium Low Low

1.234 67.345 899.00 78.786

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 16 of 45

Binary encoding

Binary encoding is the most common one, mainly because,
when all

configurations are used, it guarantees the maximum
exploitation of the information representation.

• In binary encoding, every chromosome is a string of bits (0
or 1)

• Simple implementation of the genetic operators

• Not natural for many problems

E.g.:

0 1 1 0 1 1 0 0 1 1

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 17 of 45

Binary encoding: operators

For binary encoding we have many operators.

• Single point crossover: one crossover point is selected, the
binary string from the beginning of the chromosome to the
crossover point is copied from the first parent, the rest is
copied from the other parent

0 0 1 1 0 0 0 1 0 0 1 1 1 1 0 0

 1 0 0 1 1 1 0 0 1 0 0 1 0 0 0 1

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 18 of 45

Binary encoding: operators (2)

• Two point crossover: two crossover points are selected,
binary string from the beginning of the chromosome to the
first crossover point is copied from the first parent, the part
from the first to the second crossover point is copied from
the other parent and the rest is copied from the first parent
again

• Uniform crossover: bits are randomly copied from the first
or from the second parent

• Arithmetic crossover: some arithmetic operation is
performed to make a new offspring (e.g., logic AND)

• Mutation: inversion of bits selected with a given probability

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 19 of 45

Binary encoding: example

 Knapsack problem

• There are things with given value and size. The knapsack
has given capacity. Select things to maximize the value of
things in knapsack, but do not extend knapsack capacity.

• Each bit says whether the corresponding thing is in the
knapsack.

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 20 of 45

Another example

In this simple example we are looking for the extreme of a
function defined over a search space.

1. Search Space: An interval of the real line

2. Fitness Function: The value of the function we are
“exploring”

Why should we use genetic algorithms for this?

Because functions may get quite nasty ;)

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 21 of 45

An example

Our chromosome may look like these:

Cromosome 1 1 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0

Cromosome 2 1 0 1 1 1 1 0 0 0 1 1 1 1 0 0 1

Each chromosome is represented as the binary code of a real
number

We apply single point crossover and standard flipping value
mutation

A demo stolen from:

http://
www.obitko.com/tutorials/genetic-algorithms/example-functio
n-minimum.php

http://www.obitko.com/tutorials/genetic-algorithms/example-function-minimum.php
http://www.obitko.com/tutorials/genetic-algorithms/example-function-minimum.php
http://www.obitko.com/tutorials/genetic-algorithms/example-function-minimum.php

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 22 of 45

Permutation encoding

Permutation encoding can be used in ordering problems

• Every chromosome is a string of numbers that represent a
position in a sequence

• Crossover and mutation must be designed to leave the
chromosome consistent (i.e., have real sequence in it)

 E.g.:

Cromosome 1 15 7 8 3 5 13 10 11 16 12 1 14 2 4 6 9

Cromosome 2 2 9 14 1 11 5 8 15 13 6 12 16 7 3 10 4

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 23 of 45

Permutation encoding: operators

For permutation encoding we have to preserve consistency of
the solution

• Single point crossover: one crossover point is selected, the
permutation is copied from the first parent till the crossover
point, then the other parent is scanned looking the other
numbers

(1 2 3 4 5 6 7 8 9) + (4 5 3 6 8 9 7 2 1) = (1 2 3 4 5 6 8 9 7)

• Order changing mutation: two numbers are selected and
exchanged

(1 2 3 4 5 6 8 9 7) ⇒ (1 8 3 4 5 6 2 9 7)

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 24 of 45

Permutation encoding example

Traveling salesman problem (TSP)

• There are cities and given distances between them.
Traveling salesman has to visit all of them, but he does not
want to travel more than necessary. Find a sequence of
cities with a minimal traveled distance.

• The chromosome describes the order of cities

An example stolen from:

http://www.obitko.com/tutorials/genetic-algorithms/tsp-
example.php

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 25 of 45

Direct value encoding

Direct value encoding can be used in problems where some
more

complicated values are required

• Every chromosome is a sequence of some values
connected to the problem, such as (real) numbers, chars or
any objects

• Good choice for some special problems, but necessary to
develop some specific crossover and mutation

Cromosome1 - A B H Y V V

Cromosome2 - 2.5678 1.4361 3.3426 7.8761

Cromosome3 - close open walk back

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 26 of 45

Direct value: operators

For real value encoding we can reuse crossover from binary
encoding:

• Creep mutation: a small number is added (or subtracted) to
selected values

(1.29 5.68 2.86 4.11 5.55) ⇒ (1.29 5.68 2.73 4.22 5.55)

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 27 of 45

Direct encoding example

Finding weights for a neural network

• A neural network is given with defined architecture. Find
weights between neurons to get the desired output from
the network

• Real values in chromosomes represent weights in the
neural network

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 28 of 45

Tree encoding

Tree encoding is used mainly for evolving programs or
expressions (i.e., genetic programming)

• Every chromosome is a tree of some objects, such as
functions or commands in programming language.

• Programming language LISP is often used for this purpose,
so crossover and mutation can be done relatively easily.

Cromosome (+ X (/ 5 y))

x

+

/

5 y

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 29 of 45

Tree encoding: operators

Crossover cuts a link and exchanges material. Mutation
changes values in nodes

x

+

/

5 y

y

-

*

6x

x

+

*

6x

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 30 of 45

Tree encoding example

Finding a function that would best match given pairs of
values (approximant function)

• Input and output values are given. The task is to find a
function that will give the best outputs for all inputs.

• Chromosome are functions represented in a tree

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 31 of 45

Selection of the individuals

According to Darwin's theory of evolution the best
chromosomes survive to create new offspring.

The best individuals should be selected to contribute to the
new population so that it improves. They are the ones that
mate to generate hopefully better offsprings.

Genetic operators are applied to pairs of good individuals to
generate offsprings to be inserted in the population.

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 32 of 45

Selection methods

There are many methods to select the best chromosomes:

• Roulette wheel selection,

• Rank selection

• Tournament selection

• Boltzmann selection

• . . .

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 33 of 45

Roulette wheel selection

Parents are selected proportionally to their fitness.

The better they are, the more chances to be selected they
have.

1. Imagine a roulette wheel where all the chromosomes in
the population are placed

2. The size of the section in the roulette wheel is
proportional to the value of the fitness function of every
chromosome - the bigger the value is, the larger the
section is

3. A marble is thrown in the roulette wheel and the
chromosome where it stops is selected

Possible problems if there is a large difference of fitness from
the best to the worst, which could hardly be selected.

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 34 of 45

Rank selection

Parents are ranked and the selection probability is
proportional to the rank.

Roulette before ranking

Roulette after ranking

Possible problems: slow convergence, due to small difference
between best and worst parents.

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 35 of 45

Tournament selection

 Parents are pooled and a tournament is held within the pool(s).

Pseudocode:

• choose k (the tournament size) individuals from the
population at random

• choose the best individual from pool/tournament with
probability p

• choose the second best individual with probability p ∗ (1 − p)

• choose the third best individual with probability p ∗ ((1 − p)2)

• and so on...

Efficient implementation, easy to adjust.

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 36 of 45

Boltzmann selection

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 37 of 45

Reproduction

How the new individuals are generated?

10101110 (0.98)

01000100 (0.95) ?
11101000 (0.88)

00101011 (0.75)

01010100 (0.56)

00101000 (0.42)

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 38 of 45

Copy operator

When creating a new population, we have a big chance that we
will lose the best chromosome.

Elitism is the name of the method that first copies the best
chromosome (or few best chromosomes) to the new population.
It can rapidly increase the performance, because it prevents a
loss of the so–far best found solution.

The copy operator simply copies the individual in the new
population.

The other operators used are crossover and mutation, already
introduced.

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 39 of 45

Why does crossover work?

Hypothesis: an individual is good because it contains good

sequences (building blocks hypothesis)

There is some probability that crossover compose good solution

parts obtaining an individual better than its parents

Crossover point is randomly selected in order to avoid blocking

the dimension of the building blocks to be found

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 40 of 45

Schemata

Holland (1975) formalizes the idea ofbuilding block

A schema is a set of strings described by a template made of 0, 1
and *, where * is a wildcard character and stands for any of the
others

E.g.,

H=1****1

represents any bit string that starts and ends by 1.

The order of the schema is the number of defined bits (in this case 2)

Any bit string of length l is an individual made of 2l schemata.

Any string evaluation actually evaluate many schemata.

The more the evaluated strings for a schema, the more the average
value reliably represents its value

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 41 of 45

Schema theorem

The expected number of individuals belonging to the same
schema, at the next step is bounded by:

Average fitness
observed for H

Average
fitness in the
population

Number of
individuals of
type H at time t

Crossover
probability Length of H

Legth of
strings in the
search space

Mutation
Probability

Number of
bits defined
in H

 )()1(
1

)(
1),(

)(

),(ˆ
))1,((Ho

mc p
l

Hd
ptHm

tf

tHu
tHmE 










Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 42 of 45

Consequence of the schema theorem

Short schemata, of low order, whose fitness is higher than the
average fitness of teh population have a number of samples
evaluated that grows exponentially, given that they are less

damaged by crossover and mutation

Convergency

Given that many schemata are evaluated at the same time, we can
say that Genetic Algorithms exploit implicit parallelism

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 43 of 45

When should we use genetic algorithms?

• large, non-unimodal, non-smooth search space

• a global optimum is not strictly required, but a sub-
optimal solution found in a short time is acceptable

• fitness function is noisy

If…

• the search space is small => exaustive search

• the search space is unimodal => steepest ascent (e.g.,
gradient)

• The search space is known => heuristics

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 44 of 45

Some general modeling criteria

• Shorter strings are easier to learn

• The chromosome should describe completely the solution

• Binary representation gives the highest possibility to develop
building blocks

• Aim at supporting the presence of significant building blocks

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)
- 45 of 45

Rules of thumb

These “rules of thumb” are often results of empiric studies
performed on binary encoding only, but they usually work fine . . .

• Crossover rate should be high, generally about 80% − 95%
(however some results show that for some problems crossover
rate about 60% is the best.)

• Mutation rate should be very low. Good rates could be about
0.5% − 1% per allele

• Very big population size usually does not improve performance
(in the sense of speed of finding solution). Good population size
is about 20 − 30, however sometimes sizes 50 − 100 are
reported as the best

• Basic roulette wheel selection can be used, but sometimes rank
or tournament selection can be better. Elitism should be used for
sure if you do not use other method for saving the best found
solution

	Slide 1
	What are Genetic Algorithms?
	Looking for solutions of a problem
	Search space
	Fitness landscape
	Short history
	Applications of genetic algorithms
	Terminology
	Terminology (2)
	Terminology (3)
	From biology to genetic algorithms
	How does a genetic algorithm work?
	Designing genetic algorithm applications
	Fitness Function
	Data model
	Binary encoding
	Binary encoding: operators
	Binary encoding: operators (2)
	Binary encoding: example
	Another example
	An example
	Permutation encoding
	Permutation encoding: operators
	Permutation encoding example
	Direct value encoding
	Direct value: operators
	Direct encoding example
	Tree encoding
	Tree encoding: operators
	Tree encoding example
	Selection of the individuals
	Selection methods
	Roulette wheel selection
	Rank selection
	Tournament selection
	Boltzmann selection
	Reproduction
	Copy operator
	Why does crossover work?
	Schemata
	Schema theorem
	Consequence of the schema theorem
	When should we use genetic algorithms?
	Some general modeling criteria
	Rules of thumb

