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Classification Problems 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Type of classifiers(1) 

Define the function type that will be estimated from data  

•  Linear, Quadratic  

•  Logistic 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Type of classifiers(2) 

•  Tree based (i.e. KD Tree) 

•  Instance based classifier: Classify samples according to its neighbors 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Classifier performance 

•  Confusion matrix 

Describes the classifier performance. Two class example 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N =
D∑

i=1

D∑

i=1

Cf (i, j) = 23 CC =
D∑

i=1

Cf (i, i) = 18 WC = N − CC = 5

CCR =
CC

N
= 0.78 ER =

WC

N
= 1− CCR = 0.22

TPRi =
Cf (i, i)

∑D
j=1 cf (i, j)

FPRi =
∑D

j=1 cf (j, i)− Cf (i, i)

N −
∑D

j=1 cf (i, j)

TPR1 = 8/11 = 0.73
FPR1 = 2/12 = 0.17



Classifier evaluation on training data 

•  Which data we should use to evaluate the classifier performance? 
–  Data may be available at different times 

–  Over‐fitting problem 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Over fitting and Generalization 

•  Why not this one?  
–  Training data: data used to estimate the classifier performance 
–  Training error (i.e. Error Rate on training data) decreases with the number of 

parameters 

•  Use of a validation method 
–  Validation data: data that are NOT used to estimate the classifier but are 

used to estimate the performance 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Simple Cross validation 

•  Randomly split the initial dataset into 2 subset: 
–  Training set (usually 2/3 of the total samples) 
–  Test set (usually 1/3 of the total samples) 

•  Build the classifier considering only the training set 
•  Evaluate the performance of the classifier on validation set 

•  This approach performs well on large dataset 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Training Testing and Validation 

•  Some classifier needs a parameter optimization phase 
•  Use a extra part of dataset 

–  Testing Data: Data used during training to adjust parameters of classifier 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Repeated Holdout 

•  Usually large dataset are not available 
•  Classification is always biased because of the choice of the samples 

•  A solution is given by repeated holdout method that repeats the 
validation process with different sub-samples 
–  For i=1..K 

•  Extract randomly  training (2/3) & validation(1/3) data 
•  Estimate model on training  
•  Evaluate model on validation 

–  Estimate performance   
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K‐Fold Cross validation 

•  Used to avoid overlapping of dataset 
•  Split the dataset into K folds 

–  Use K-1 folds for training and 1 ford for validation 

–  Estimate performance   
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Leave one out cross validation 

•  K‐fold cross validation with K=N 
–  Use N‐1 sample for training 
–  Remove one sample for validation 

•  More slow, but used only with few data 
•  Reduce the variance of performance (Not good) 

–  Removing a sample, the classifier does not change too much 
–  Cross validation may not  be well performed 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Confidence interval 

•  Average is nothing without variance 
•  We obtained an estimated average error rate (or accuracy rate) 

–  mean depends on the number of folds 
–  Having less folds means we are less confident 

•  How close will the real error go to the estimated error? 
•  With what probability?   
•  We can compute a range (confidence interval) of accuracy inside which we can be 

sure to fall with a certain probability 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Confidence interval 

•  Suppose we want to estimate the true error of our classifier 
–  We consider different realization of our evaluation (i.e error on different fold ) 
–  Hp: errors follow a unknown Normal distribution 

–  Number of folds 
–  Estimated mean                                   estimated variance 

•  The difference between the true error and the estimated error follows a t‐student 
distribution 

–          is the true error we are looking for 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Confidence interval 

•  High probability that the difference between true error and estimated error fall 
into a give range 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Pr(−A ≤ T ≤ A) = γ γ(−A, A)
Confidence interval for 
T with significance  

Pr(−A ≤ X̄ε − µ√
S̄2

ε
n

≤ A) = γ = 0.95 0.95 Probability that T falls into 
that range 

γ

Bilateral case: 
γ = 1− 2Pr(T ≥ A)

Pr(T ≥ A) = 1− Pr(T ≤ A)

γ = 1− 2[1− Pr(T ≤ A)]

Pr(T ≤ A) =
1 + γ

2



Confidence interval (bilateral) 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S̄2
ε
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2
= 0.975
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(n− 1)
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2

(n− 1)

√
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2
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√
S̄2
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Confidence interval example 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•  Matlab example… 



Classifier comparison 

•  Suppose we want to establish how much a set of classifier are different in terms 
of performance 

•  Solution: Hypothesis test on their mean   
–  H0 non significant difference on mean 
–  H1 mean are different 

•  A significance test measures how much evidence there is in favor of rejecting the 
null hypothesis (accepting the alternative hypothesis) 

•  Student's  paired t‐test tells us whether the means of two samples are 
significantly different 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Hypothesis Test (from statistics) 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•  Set of stochastic variables 
–  Unknown parameters 

•  Hypothesis on one parameters 
•  Critical region 

–  If samples belong to critical region H0 is rejected 

•  Significance level 
•  Confidence interval for  

x1, . . . , xn iid ∼ N(µ, σ2)

H0 : µ = µ0, H1 : µ != µ0

(x1, . . . , xn) ∈ G

H0 rejected H0 accepted 

H0 is true 

H0 is false 

Pr (H0 accepted | H0 true)  Pr (H0 rejected | H0 true) 

Pr (H0 accepted | H0 false)  Pr (H0 rejected| H0 false) 

GGc

α = Prµ0(H0 rejected|H0 true)

Type I err. 

Type II err. 

γ = 1− α = Prµ0(H0 accepted|H0 true)

µ0



Hypothesis Test (from statistics) 

•  Set of stochastic variables 
•  Hypothesis on mean 
•  Variance is unknown 
•  Critical region 

•  Confidence interval (two tailed) 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x1, . . . , xn iid ∼ N(µ, σ2)
H0 : µ = µ0, H1 : µ != µ0

|x̄− µ0|
s/

√
(n)

≥ t1−α
2
(n− 1)

[
x̄− t 1+γ

2
(n− 1)

s√
(n)

, x̄ + t 1+γ
2

(n− 1)
s√
(n)

]

γ = 1− α



Student's Paired t‐test 

•  Errors follows a gaussian distribution with same variance 

•  Paired test couples samples 
•  Statistic with t‐student distribution 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Ȳ =
1
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Student's Paired t‐test 

•  Hypothesis test with  
•  From previous results.. 
•  Critical region 

–  If the abs difference of mean fall outside the interval, the null hypothesis can 
be rejected 

•  Confidence interval 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H0 : µ = 0, H1 : µ != 0

|X̄ − Ȳ |√
S2

x+S2
y

n

≥ t1−α
2
(n− 1)

[
(X̄ − Ȳ )− t 1+γ

2
(n− 1)

√
S2

x + S2
y

n
, (X̄ − Ȳ ) + t 1+γ

2
(n− 1)

√
S2

x + S2
y

n

]



Student's Paired t‐test 

•  Matlab example 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