ROS DEVELOPMENT

ROBOTICS

<=

POLITECNICO
MILANO 1863

EVERYTHING HAPPENS IN NODES

Nodes are the main and atomic element of ROS. Each node is an
indipendent process.

How do we create a node?

Write code in C++ or Python

INSIDE THE NODE

Service
provider

Main loop

Parameters
& Data

INITIALIZATION

Any node has to be registered to the ROS master using an unique identifier
The actual node is initialized using an handler
Each executable has an unique name

Each executable may have multiple handlers

void ros::init(argv, argc, std::string node _name, uint32_t options);
ros::init(argc, argv, "my _node name");

ros::init(argc, argv, "my_node name", ros::init_options::AnonymousName);

ros::NodeHandle nh;

MAIN LOOP

Each ROS node loops waiting for
something to do
At each loop checks:
is there a message waiting to be received?
is there a completed timer?

is there a parameter to be reconfigured?
Two ways to implement the main loop:

Automatically, no developer intervention

Manual, specific sleep time and execution at
each loop

ros::spin();

ros::Rate r(10);
while (ros::ok()) {

}

ros::spinOnce();

r.sleep();

PARAMETERS

Stored in the parameter server and retrieved at the beginning of the execution
Adjustable at runtime using dynamic reconfigure

Global parameters and relative parameters (in the node namespace)

if('nh.getParam("/global_name", global_name)) { }
if(Inh.getParam("relative_name", relative_name)) { }

nh.param<std::string>("param_name", default_param, "default value");

PUBLISHER

Used to publish messages on a ROS topic
On declaration connect the publisher to a topic and define the type of the message
Can be called from everywhere

The frequency of the messages are not set

ros::Publisher pub = nh.advertise<std_msgs::String>("topic_name", 5);
std_msgs::String str;
str.data = "hello world";

pub.publish(str);

SUBSCRIBER

Used to read messages from a ROS topic
On declaration connect the subscriber to a topic and define the type of the message
Call a specific function when receive a message

Operate at a given frequency

ros::Subscriber sub = nh.subscribe(“topic_name”, 10, callback);
sub = nh.subscribe(“topic_name”, 10, &class::callback, this);

void [class::]callback(const pack _name::msg_type::ConstPtr& msg)

Used to execute something after a specific time (repeatable)

When the timer ends a callback function get called

Tied to ROS internal clock

ros:: Timer timer = nh.createTimer(ros::Duration(0.5), callback);
timer = nh.createTimer(ros::Duration(0.5), &class::callback, this);

void [class::]callback(const ros::TimerEvent& t)

SERVICE PROVIDER (SERVER)

Answer to a service call and execute some logic associated with the content of the
call

On declaration connect to the callback with the implemented logic

The answer of the service is already in the callback

ros:.ServiceServer s = nh.advertiseService(“service”, callback);
s = nh.advertiseService(“service”, &class::callback, this);
bool [class::]callback(pack::srv_type::Request& req,

pack::srv_type::Response& res);

SERVICE PROVIDER (SERVER)

Generates the call for a specific service
On declaration is connected to the a service identified by a name
Can be called everywhere in the code

May result in a bad call

ros::ServiceClient cl = nh.serviceClient<pack::srv_type>(“service”);

pack::srv_type srv;

if (cl.call(srv)) { } else { }

CREATING THE WORKSPACE

ROS uses a custom compiling environment called Catkin
cmake/make with specific flags
Requires a workspace with a specific structure

Easy to setup and easy to use

mkdir -p ~/catkin_ws/src

cd ~/catkin_ws/

catkin_make

echo "source ~/catkin_ws/devel/setup.bash" >> ~/.bashrc

source ~/.bashrc

WORKSPACE STRUCTURE

Source space (/src): All youk: stulff goes
SIS
contains the source code of catkin packages.

Subfolder of this are the ROS packages you want to add to your system
Build space (/build):

space where cmake is invoked to build the catkin packages

cmake and catkin keep their cache information and other intermediate files here
Devel space (/devel):

Space where built targets are placed prior to being installed

BUILDING YOUR CODE

cmake_minimum_required(VERSION 2.8.3)

project(package _name)

find_package(catkin REQUIRED COMPONENTS roscpp std_msgs genmsg)
add_message files(FILES custom_ message.msg)

add_service files(FILES custom_service.srv)
generate_messages(DEPENDENCIES std_msgs)

catkin_package()

include_directories(include ${catkin INCLUDE_DIRS})
add_executable(executable _name src/source code.cpp)
target_link_libraries(executable _name ${catkin LIBRARIES})

add_dependencies(executable name package name_ generate _messages cpp)

BUILDING YOUR CODE

cmake_minimum_required(VERSION 2.8.3)
project(package _name)
find_package(catkin REQUIRED COMPONENTS roscpp std_msgs genmsg)

add_message files(FILES custom_ message.msg)

add_service files(FILES custom_service.srv)
generate_messages(DEPENDENCIES std_msgs)
catkin_package()

This is what you have to

change depending on
your code!

include_directories(include ${catkin INCLUDE_DIRS})
add_executable(executable name src/source code.cpp)
target_link_libraries(executable _name ${catkin_LIBRARIES})

add_dependencies(executable name package name generate_messages cpp)

BUILDING YOUR CODE

cmake_minimum_required(VERSION 2.8.3)
project(package _name)
find_package(catkin REQUIRED COMPONENTS roscpp std_msgs genmsg)

add_message files(FILES custom_ message.msg)

add_service files(FILES custom_service.srv)

generate_messages(DEPENDENCIES std_msgs) On[y 1 you have custom
catkin_package() messages!

include_directories(include ${catkin INCLUDE_DIRS})
add_executable(executable _name src/source code.cpp)
target_link_libraries(executable _name ${catkin LIBRARIES})

add_dependencies(executable name package name_ generate _messages cpp)

WRITING A PUBLISHER NODE

First create a package inside you src folder:

$ catkin_create_pkg pub_sub std _msgs rospy roscpp

Next cd to the new pub_sub/src folder and create a c++ file:

$ gedit pub.cpp

WRITING A PUBLISHER NODE

First write some includes:

#include "ros/ros.h"
#include "std_msgs/String.h"

#include <sstream>

WRITING A PUBLISHER NODE

We are still writing c++ code, so we have to write a min function

int main(int argc, char **argv)

{

All the code for the publisher node will be written inside this function

WRITING A PUBLISHER NODE

As previously explained the first thing to do when we write a ROS node is call

ros::init():

ros::init(argc, argv, "pub");

And next create a node handle:

ros::NodeHandle n;

WRITING A PUBLISHER NODE

Now we create a publisher object:

ros: :Publisher chatter_pub = n.advertise<std_msgs::String>("publisher",
1000);

We have different way to create a spinner in ROS, but in this case we want to

control the loop frequency:

ros::Rate loop_rate(10);

WRITING A PUBLISHER NODE

Next we write the main loop:

while (ros::ok())

1
»

while (ros::ok()) is just a better way to write while(1), it'll handle interrupt, stop if a

new node with the same name is create or a shutdown command is called

WRITING A PUBLISHER NODE

Before calling the publisher node we create our message:

std_msgs::String msg;
std::stringstream ss;
ss << "hello world ";

msg.data = ss.str();

The type of the message, as shown during the publisher creation is std_msgs::String

WRITING A PUBLISHER NODE

Now that we have a message we can call publish it:

chatter_pub.publish(msg);

Last we call:

loop_rate.sleep();

which will wait until the time previously specified has passed, and then restart the

loop

WRITING A PUBLISHER NODE

Before compiling our code we have to add it to the CMakelLists.txt file

It already has some code, generated by the create_package command; first add at

the end of the file:
add_executable(publisher src/pub.cpp)

to add the new file we have created

WRITING A PUBLISHER NODE
Then add:

target_link_libraries(publisher ${catkin_LIBRARIES})

to specify the correct library, and:

add_dependencies(publisher pub_sub_generate_messages_cpp)

to specify the dependencies from message generation

Now we can cd to the root of the workspace and compile our code using;

S catkin_make

WRITING A PUBLISHER NODE

If everything went well you can start roscore:

$ roscore
and start your node:

$ rosrun pub_sub publisher

you can check the published topic with:
$ rostopic echo /publisher

WRITING A SUBSCRIBER NODE

The subscriber node has a similar structure to the publisher, create a

file called sup.cpp:
#include "ros/ros.h"
#include "std_msgs/String.h"
int main(int argc, char **argv)

{

ros::init(argc, argv, "sub");
ros::NodeHandle n;

»

WRITING A SUBSCRIBER NODE

But this time inside the main function we create a subscriber object

ros::Subscriber sub = n.subscribe("/publisher”, 1000, pubCallback);

where pubCallback is the name of the callback function called every

time a new message is received

WRITING A SUBSCRIBER NODE

We are also not interested in cycle at a predetermined speed, so we

will simply call:

ros::spin();

return O;

ros::spin() will simply cycle as fast as possible calling our callback
when needed, but without using CPU if there is nothing to do

WRITING A SUBSCRIBER NODE

Now we can write our callback function

void pubCallback(const std_msgs::String::ConstPtr& msg)

{
ROS_INFO("I heard: [%s]", msg->data.c_str());

»

the argument of the function is a pointer to the received message, in
our case a std_msg::String

WRITING A SUBSCRIBER NODE

As we did with the publisher node we have to add it to the
CMakelLists.txt file:

add_executable(subscriber src/sub.cpp)
target_link_libraries(subscriber ${catkin_LIBRARIES})
add_dependencies(subscriber pub_sub_generate_messages_cpp)

Now we can compile it and test the two nodes together

CREATE A MESSAGE

Messages are saved in the msg folder of the package; first create the folder inside the

pub_sub package:
$ mkdir msg

Next create the msg file:

$ echo "int64 num" > msg/Num.msg

CREATE A MESSAGE

Before using the new message we have to make sure they are converted into source

code for c++, open the package.xml file and uncomment those two line:

<build_depend>message_generation</build_depend>
<exec_depend>message_runtime</exec_depend>

CREATE A MESSAGE

Next we have to edit the CMakelists.txt file, first add message_generation

dependency to find_package
find_package(catkin REQUIRED COMPONENTS

roscpp

rospy

std_msgs

message_generation <« ——————
)

CREATE A MESSAGE

Then export the message_runtime dependency uncommenting the following call

and adding message_runtime:
catkin_package(

CATKIN_DEPENDS message_runtime

CREATE A MESSAGE

Last we have to add the message file and generate them, so uncomment the

“add_message_files” and “generate_messages” and add to the first our msg file

add_message._files(generate_messages(
FILES DEPENDENCIES
Num.msg std_msgs

)

)

CREATE A MESSAGE

Now we can compile our code calling catkin_make in the root directory of the

workspace and test if ros finds our new message calling:

$ rosmsg show pub_sub/Num

USING CUSTOM MESSAGES

To test our new message we will modify the publisher-subscriber nodes open the

pub.cpp file

first we include the custom message adding:

#include "pub_sub/Num.h”

then we modify the publisher object, changing the type of the message:

ros::Publisher chatter_pub = n.advertise<pub_sub::Num>("publisher"”, 1000);

USING CUSTOM MESSAGES
Last we create a message of type pub_sub::Num and assign a number to the num

field:

static int i=0;
i=(i+1)% 1000,
pub_sub::Num msg,

msg.num =i;

Now we can compile our code and look at the published topic using:

$ rostopic echo /publisher

USING CUSTOM MESSAGES

The changes to the sub.cpp file are similar:

first include the new message

#include "pub_sub/Num.h”

Then change the type of the message received by the callback:

void pubCallback(const pub_sub::Num::ConstPtr& msg)

USING CUSTOM MESSAGES

Last update the print function:

ROS_INFO("I heard: [%d]", msg->num),;

Now we can compile and test both the publisher and the subscriber

LAUNCH FILE

When working on big project it's useful to create a launch file which with only one
command will:

-start roscore
-start all the node of the project together

-set all the specified parameters

To create a launch file cd to the pub_sub package and create a launch folder
S mkdir launch

LAUNCH FILE

Inside the launch folder create a launcher.launch file
the launchfile is a XML file, the root tags are
<launch></launch>

inside these tags you can start all your nodes using:

<node pkg="package" type="file_name" name="node_name"/>

when we started a node from the command line we used:

S rosrun package file_name

the name attribute allow us to specify inside the launch file the name of the node

LAUNCH FILE

We can also regroup some nodes under a specific namespace using the tags:
<group ns="turtlesiml1"></group >

Namespaces allow us to start multiple node with the same name, because they lives
in different namespace

Sometimes we may need to change some topics name without changing directly the

package code, to accomplish this task we use:
<remap from="original" to="new"/>

A
o o Ill/,,”///

LAUNCH FILE

Inside the launchfile paste this code:

<launch>

<group ns="turtlesim1">
<node pkg="turtlesim" name="sim" type="turtlesim_node"/>
</group>

<group ns="turtlesim2">
<node pkg="turtlesim" name="sim" type="turtlesim_node"/>

</group>

<node pkg="turtlesim" name="mimic" type="mimic">
<remap from="input" to="turtlesim1/turtlel"/>
<remap from="output" to="turtlesim2/turtle1"/>
</node>

</launch>

LAUNCH FILE

This code starts two turtlesim and connect them together, the command fromm cmd

vel to turtlesim1 will be redirected also to turtlesim?
But we still have to run in a new terminal window the teleop_key node

So we also have to add

<node pkg="turtlesim" name="control" type="turtle_teleop_key"/>

inside the turtlesim1 namespace

If we want to open a node in a new terminal we can add the attribute:

launch-prefix="xterm -e"

