
ROBOTIC MIDDLEWARES
ROBOTICS

MIDDLEWARE ORIGINS

The origins
1968 introduced by d’Agapeyeff
80’s wrapper between legacy systems and
new applications
Nowadays: widespread in different domain
fields (including Robotics)
Some (non robotics) examples: Android,
SOAP, Web Services, …

MIDDLEWARE ORIGINS

The Middleware idea
Well-known in software engineering
It provides a computational layer
A bridge between the application
and the low-level details
It is not a set of API and library

MIDDLEWARE ORIGINS

Issues in developing real robots
Cooperation between hardware and software
Architectural differences in robotics systems
Software reusability and modularity

WHAT IS A MIDDLEWARE?

Software that connects different software
components or applications:

Set of services that permits to several processes to
interact
Framework used to reduce the developing time in
complex systems.

Operating
system

Middleware

Application
s

WHAT IS A MIDDLEWARE?

Middleware vs. Operating System
The middleware stays between software and
different operating systems.
The distinction between operating system and
middleware is sometimes arbitrary.
Some features of a middleware are now integrated
in operating systems (e.g., TCP/IP stack).

Operating
system

Middleware

Application
s

MIDDLEWARES MAIN FEATURES

Portability: provides a common programming model regardless the programming
language and the system architecture.

Reliability: middleware are tested independently. They permit to develop robot
controllers without considering the low level details and using robust libraries.

Manage the complexity: low-level aspects are handled by libraries and drivers inside
the middleware. It (should) reduce(s) the programming error and decrease the
development time.

ROBOT MIDDLEWARES: A LIST

Several middleware have been developed in recent years:
OROCOS [Europe]
ORCA [Europe]
YARP [Europe / Italy]
BRICS [Europe]
OpenRTM [Japan]
OpenRave [US]
ROS [US]
…

Let’s see their common features and main differences

OROCOS: OPEN ROBOT CONTROL SOFTWARE
The project started in December 2000 from an
initiative of the mailing list EURON then it become an
European project with 3 partners: K.U. Leuven
(Belgium), LAAS Toulouse (France), KTH Stockholm
(Sweden)

OROCOS requirements:
Open source license
Modularity and flexibility
Not related to robot industries
Working with any kind of device
Software components for kinematics, dynamics,
planning, sensors, controller
Not related to a unique programming language

OROCOS STRUCTURE

Real-Time Toolkit (RTT)
infrastructure and functionalities
for real-time robot systems
component-based applications

Component Library (OCL)
provides ready-to-use components,
e.g., device drivers, debugging tools,
path planners, task planners

OROCOS STRUCTURE

Bayesian Filtering Library (BFL)
application independent framework,
e.g., (Extended) Kalman Filter,
Particle Filter

Kinematics & Dynamics Library (KDL)
real-time kinematics & dynamics
computations

OROCOS RTT FRAMEWORK

ORCA: COMPONENTS FOR ROBOTICS

The aim of the project is to focus on software reuse
for scientific and industrial applications
Key properties:
◼ Enable software reuse defining commonly-use interfaces
◼ Simplify software reuse providing high-level libraries
◼ Encourage software reuse updated software repositories

ORCA defines itself as “unconstrained component-based
system”

ORCA AND ICE

The main difference between OROCOS and ORCA is the communication toolkit;
OROCOS uses CORBA while ORCA uses ICE

ICE is a modern framework developed by ZeroC
ICE is an open-source commercial communication system
ICE provides two core services

IceGrid registry (Naming service): which provides the logic mapping between different components
IceStorm service (Event service): which constitute the publisher and subscriber architecture

“A component can find the other components through the IceGrid registry and can
communicate with them through the IceStorm service.”

RT MIDDLEWARE
RT-Middleware (RTM) is a common platform standard
to construct the robot system by combining the
software modules of the robot functional elements
(RTC):

• Camera component

• Stereovision component

• Face recognition component

• Microphone component

• Speech recognition component

• Conversational component

• Head and arm component

• Speech synthesis component

OpenRTM-aist (Advanced Industrial Science &
Technology) is based on the CORBA technology to
implement RTC extended specification

BRICS: BEST PRACTICES IN ROBOTICS

Aimed at find out the "best practices" in the
developing of the robotic systems:

• Investigate the weakness of robotic projects
• Investigates the integration between hardware

& software
• Promote model driven engineering in robot

development
• Design an Integrated Development

Environment for robotic projects (BRIDE)
• Define showcases for the evaluation of project

robustness with respect to BRICS principles.

“The prime objective of BRICS is to structure and formalize the robot development process itself and to provide tools,
models, and functional libraries, which help accelerating this process significantly.”

ROS: ROBOT OPERATING SYSTEM

Presented in 2009 by Willow Garage, is a meta-operating system for robotics with a
rich ecosystem of tools and programs

WHY ROS?

ROS has grown to include
a large community of
users worldwide
The community of
developer is one of the
most important
characteristics of ROS

A LOT OF RESOURCES

ROS Wiki
Archive for the existing ROS component
Installation and configuration guides
Information about the middleware itself
Lots of tutorials

ROS Q&A
For specific problems
Thousand of already answered questions
Active community
Like Stack Overflow for ROS

SOME NUMBERS

ROS wiki:
pages: 17058
edits: 14,7/day
views: 44794/day

ROS Q&A:
total Q: 30243
total A: 21697
avg Q: 17,2/day

ROS deb:
total DL: 8441279
unique DL: 7582
unique IP: 113345

ROBOT AND RESEARCH

years

nu
m

be
r o

f r
ob

ot
s

Total number of papers citing
ROS: an open-source Robot
Operating System
(Quigley et al., 2009)
2683 (+46%)

ROS INTRODUCTION
ROBOTICS

ROS: ROBOT OPERATING SYSTEM

ROS main features:
Distributed framework
Reuse code
Language independent
Easy testing on Real Robot & Simulation
Scaling

ROS Components
File system tools
Building tools
Packages
Monitoring and GUIs
Data Logging

This instruction are for:
 Ubuntu 16.04 (suggested)

and Ubuntu 15.10 only

INSTALLATION

INSTALLATION

Initial setup for sources and keys for downloading the packages

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" >
/etc/apt/sources.list.d/ros-latest.list‘

sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80 --recv-key
421C365BD9FF1F717815A3895523BAEEB01FA116

INSTALLATION

Update the packaged index
sudo apt-get update

Choose between the four pre-packaged ROS installation
Desktop-Full Install: sudo apt-get install ros-kinetic-desktop-full

Desktop Install: sudo apt-get install ros-kinetic-desktop

ROS-Base: sudo apt-get install ros-kinetic-ros-base

INSTALL

How to install single packages:
sudo apt-get install ros-kinetic-PACKAGE

Example
sudo apt-get install ros-kinetic-slam-gmapping

To find the exact name of a package you can use the usual aptitude search:
apt-cache search ros-kinetic

INITIALIZATION AND SETUP

rosdep enables you to easily install system dependencies and it’s required by some ROS packages
sudo rosdep init

rosdep update

To use catkin (the compiling environment of ROS) you need to define the location of your ROS
installation.
In each new terminal type:
source /opt/ros/kinetic/setup.bash

Or put it inside your .bashrc

echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc

source ~/.bashrc

ROS STRUCTURE: COMPUTATIONAL GRAPH

Computatio
n graph

Nodes

Master

Topic
s

ServicesMessages

Parameter
server

Bags
The Computation Graph is the
peer-to-peer network of ROS
processes that are processing data
together.

NODES

Executable unit of ROS:
Scripts for Python
Compiled source code for C++

Process that performs computation
Nodes exchange information via the
graph
Meant to operate at fine-grained scale
A robot system is composed by various
nodes

rosrun package_name node_name

rosrun turtlesim turtlesim_node

MASTER

Provides naming and registration
services
Essential for nodes interactions
One master for each system, even on
distributed architectures
Enables individual ROS nodes to locate
one another
One of the functionalities provided by
roscore

MASTER

Provides naming and registration
services
Essential for nodes interactions
One master for each system, even on
distributed architectures
Enables individual ROS nodes to locate
one another
One of the functionalities provided by
roscore

MASTER

Provides naming and registration
services
Essential for nodes interactions
One master for each system, even on
distributed architectures
Enables individual ROS nodes to locate
one another
One of the functionalities provided by
roscore

TOPICS

Named channels for communication
Implement the publish/subscribe paradigm
No guarantee of delivery
Have a specific message type
Multiple nodes can publish messages on a
topic
Multiple nodes can read messages from a topic

talker

listener

/chat

TOPICS

Named channels for communication
Implement the publish/subscribe paradigm
No guarantee of delivery
Have a specific message type
Multiple nodes can publish messages on a
topic
Multiple nodes can read messages from a
topic

talker

lst_1

/chat

lst_2

TOPICS

Named channels for communication
Implement the publish/subscribe paradigm
No guarantee of delivery
Have a specific message type
Multiple nodes can publish messages on a
topic
Multiple nodes can read messages from a
topic

listene
r

/chat

tlk_1 tlk_2

MESSAGES

Messages are exchanged on topics
They define the type of the topic
Various already available messages
It is possible to define new messages using a
simple language
Existing message types can be used in new
messages together with base types

std_msgs/Header.mgs
uint32 seq
time stamp
string frame_id

std_msgs/String.msg
string data

sensor_msgs/Joy.msg
std_msgs/Header header

float32[] axes

int32[] buttons

MESSAGES

Messages are exchanged on topics
They define the type of the topic
Various already available messages
It is possible to define new messages using a
simple language
Existing message types can be used in new
messages together with base types

Quick recap:
14 base types
32 std_msgs
29 geometry_msgs
26 sensor_msgs
...and more

SERVICES

Work like remote function calls
Implement the client/server paradigm
Code waits for service call to complete
Guarantee of execution
Use of message structures

example/AddTwoInt.srv
int64 A

int64 B

int64 Sum

PARAMETER SERVER

Shared, multivariable dictionary that is
accessible via network
Nodes use this server to store and
retrieve parameters at runtime
Not designed for performance, not for
data exchange
Connected to the master, one of the
functionalities provided by roscore

rosparam [set|get] name value

rosparm set use_sim_time True

rosparam get use_sim_time
True

PARAMETER SERVER

Shared, multivariable dictionary that is
accessible via network
Nodes use this server to store and
retrieve parameters at runtime
Not designed for performance, not for
data exchange
Connected to the master, one of the
functionalities provided by roscore

Available types:
32-bit integers
Booleans
Strings
Doubles
ISO8601 dates
Lists
Base64-encoded binary data

BAGS

File format (*.bag) for storing and playing
back messages
Primary mechanism for data logging
Can record anything exchanged on the
ROS graph (messages, services,
parameters, actions)
Important tool for analyzing, storing,
visualizing data and testing algorithms.

rosbag record –a

rosbag record /topic1 /topic2

rosbag play ~/bags/fancy_log.bag

rqt_bag ~/bags/fancy_log.bag

ROSCORE

roscore is a collection of nodes and programs that are pre-requisites of a
ROS-based system
Must be running in order for ROS nodes to communicate
Launched using the roscore command.
Elements of roscore:

a ROS Master
a ROS Parameter Server
a rosout logging node

ROS FILE SYSTEM

File
system

level
Meta

packages Packages

Package
manifest

Messages

Service

Code

Others

ROS FILE SYSTEM

File
system

level
Meta

packages Packages

Package
manifest

Messages

Service

Code

Others
Usually you skip this one

PACKAGES AND METAPACKAGES

PACKAGES
Atomic element of ROS file system
Used as a reference for most ROS commands
Contains nodes, messages and services
package.xml used to describe the package
Mandatory container

METAPACKAGES
Aggregation of logical related elements
Not used when navigating the ROS file
system
Contains other packages
package.xml used to describe the package
Not required

STRUCTURE OF A PACKAGE

Folder structure:
/src, /include, /scripts (coding)
/launch (launch files)
/config (configuration files)

Required files:
CMakeList.txt: Build rules for catkin
package.xml: Metadata for ROS

