ROBOTIC MIDDLEWARES

ROBOTICS

<=

POLITECNICO
MILANO 1863

MIDDLEWARE ORIGINS

The origins
1968 introduced by d’Agapeyeff

80’s wrapper between legacy systems and
new applications

Nowadays: widespread in different domain
fields (including Robotics)

Some (non robotics) examples: Android,
SOAP, Web Services, ...

Application
programs

Service
Routines

Control

Compilers prog. Assemblers

MIDDLEWARE ORIGINS

The Middleware idea
Application
Well-known in software engineering pragranms
It provides a computational layer e M
A bridge between the application Jenice
and the low-level details ——
Compilers prog. Assemblers

It is not a set of APl and library

MIDDLEWARE ORIGINS

. . Application
Issues in developing real robots programs
Cooperation between hardware and software 7~ coTTTTTTe
Middleware
Architectural differences in robotics systems Serice
ouTines
Software reusability and modularity Control
Compilers prog. Assemblers

WHAT IS A MIDDLEWARE?

Software that connects different software
components or applications:

Set of services that permits to several processes to
interact

Framework used to reduce the developing time in
complex systems.

Operating
system

Middleware

Application
S

WHAT IS A MIDDLEWARE?

Middleware vs. Operating System

The middleware stays between software and
different operating systems.

The distinction between operating system and
middleware is sometimes arbitrary.

Some features of a middleware are now integrated
in operating systems (e.g., TCP/IP stack).

Operating
system

Middleware

Application
S

MIDDLEWARES MAIN FEATURES

Portability: provides a common programming model regardless the programming
language and the system architecture.

Reliability: middleware are tested independently. They permit to develop robot
controllers without considering the low level details and using robust libraries.

Manage the complexity: low-level aspects are handled by libraries and drivers inside
the middleware. It (should) reduce(s) the programlnming error and decrease the
development time.

ROBOT MIDDLEWARES: A LIST

Several middleware have been developed in recent years:

OROCOS [Europe]

ORCA [Europe]

YARP [Europe / Italy]
BRICS [Europe]
OpenRTM [Japan]

OpenRave [US]

ROS [US]

Let's see their commmon features and main differences

OROCOS: OPEN ROBOT CONTROL SOFTWARE

The project started in December 2000 from an
initiative of the mailing list EURON then it become an
European project with 3 partners: K.U. Leuven
(Belgium), LAAS Toulouse (France), KTH Stockholm
(Sweden)

OROCOS requirements:
Open source license
Modularity and flexibility
Not related to robot industries
Working with any kind of device

Software components for kinematics, dynamics,
planning, sensors, controller

Not related to a unique programming language

RealTime
Toolkit

Components
for
Control

Kinematics Bayesian
Dynamics | <o [T i Filtering
Library Library

OROCOS STRUCTURE

Control Components
Build

Applications

Real-Time Toolkit (RTT)

infrastructure and functionalities
for real-time robot systems

Control Applications

component-based applications

Component Library (OCL) Build

Components

4=
X

provides ready-to-use components,
e.g., device drivers, debugging tools,
path planners, task planners

Real-Time Toolkit

C+ + Classes

OROCOS STRUCTURE

Bayesian Filtering Library (BFL)

application independent framework, _gj {-’_E

G0 N
. -t ,,/'} ; \,// 2) l d
e.g., (Extended) Kalman Filter, / m— / / / L /
. . ,,f' RealTime / Bayesian Fiktenng Kinematics oyn amics
Particle Filter /' oomi Library Library

Kinematics & Dynamics Library (KDL) /—-\77 /"‘7’7
Components for Simulink
real-time kinematics & dynamics onto olbox

computations

OROCOS RTT FRAMEWORK

Component Infrastructure

[

<

Distribution
Communication

D AR

and Scripting

y -

)

XML
config.

=

J

e - -—--

ORCA: COMPONENTS FOR ROBOTICS

The aim of the project is to focus on software reuse
for scientific and industrial applications

Key properties:
= Enable software reuse defining commonly-use interfaces
= Simplify software reuse providing high-level libraries

m Encourage software reuse updated software repositories

ORCA defines itself as “unconstrained component-based
system”

5] 5]

MyComponent /O YourComponent

ORCA AND ICE

The main difference between OROCOS and ORCA is the communication toolkit:
OROCOS uses CORBA while ORCA uses ICE
w ZeroC

ICE is a modern framework developed by ZeroC
lceGrid registry (Naming service): which provides the logic mapping between different components

ICE is an open-source commercial communication system

ICE provides two core services

lceStorm service (Event service): which constitute the publisher and subscriber architecture

“A component can find the other components through the IceGrid registry and can
communicate with them through the IceStorm service.”

RT MIDDLEWARE

RT-Middleware (RTM) is a common platform standard
to construct the robot system by combining the
software modules of the robot functional elements

(RTC): - Q, a ’

Aot tor

« Cameracom ponent V‘Zﬁfﬁ,ﬁ’gﬁ,ﬁf cocrzr?ggrriznt Fgcr)cn‘i[fgrqz?:t component componnt component
 Stereovision component ‘ ‘ ‘ ‘ ‘ ‘
« Face recognition component
* Microphone component m . .
recognition-interlocution NArm Movable carriage
component

el component component
Speech recognition component ‘ ‘
« Conversational component
« Head and arm component

- Speech synthesis component Q

OpenRTM-aist (Advanced Industrial Science & Service
Technology) is based on the CORBA technology to
implement RTC extended specification

BRICS: BEST PRACTICES IN ROBOTICS

Aimed at find out the "best practices” in the ‘D
developing of the robotic systems: B/~ |C —)
* Investigate the weakness of robotic projects SEST PRACTICE IN ROBOTICS

* Investigates the integration between hardware
& software

« Promote model driven engineering in robot
development

k-

("Roundtripping")

 Design an Integrated Development

Environment for robotic projects (BRIDE)
M2T

 Define showcases for the evaluation of project ' ot code
robustness with respect to BRICS principles. - {,P,,gg'ggment file

“The prime objective of BRICS is to structure and formalize the robot development process itself and to provide tools,
models, and functional libraries, which help accelerating this process significantly.”

ROS: ROBOT OPERATING SYSTEM

Presented in 2009 by Willow Garage, is a meta-operating system for robotics with a
rich ecosystem of tools and programs

Capabilities Ecosystem

apps (fetch beer)
capa bilites (navigation, arm, grasping)
libs (tf, pcl, opency, bullet, eigen)

. 7/;» (rxgraph, rostopic, roslaunch)
UNIVETSE N .
: —p (rosmaster, roscpp, rosbuild)

main

WHY ROS?

1 M. 85,023

ROS has grown to include
a large community of
users worldwide

The community of
developer is one of the
most important
characteristics of ROS

A LOT OF RESOURCES

ROS Wiki ROS Q&A
Archive for the existing ROS component For specific problems
Installation and configuration guides Thousand of already answered questions
Information about the middleware itself Active community

Lots of tutorials Like Stack Overflow for ROS

SOME NUMBERS

ROS wiki: ROS Q&A: ROS deb:
pages: 17058 total Q: 30243 total DL: 8441279
edits: 14,7/day total A: 21697 unique DL: 7582

views: 44794 /day avg Q: 17,2/day unique IP: 113345

ROBOT AND RESEARCH

number of robots

120

90

60

30

11

12

13

years

14

15

16

Total number of papers citing
ROS: an open-source Robot
Operating System

(Quigley et al., 2009)

2683 (+46%)

ROS INTRODUCTION

ROBOTICS

<=

POLITECNICO
MILANO 1863

ROS: ROBOT OPERATING SYSTEM

ROS main features: ROS Components
Distributed framework File system tools
Reuse code Building tools
Language independent Packages
Easy testing on Real Robot & Simulation Monitoring and GUIs
Scaling Data Logging

:::ROS

INSTALLATION

This instruction are for:
Ubuntu 16.04 (suggested)
and Ubuntu15.10 only

INSTALLATION

Initial setup for sources and keys for downloading the packages

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(Isb_release -sc) main" >
[etc/apt/sources.list.d/ros-latest.list’

sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80 --recv-key
421C365BD9FF1F717815A3895523BAEEBO1FA116

INSTALLATION

Update the packaged index
sudo apt-get update

Choose between the four pre-packaged ROS installation
Desktop-Full Install: sudo apt-get install ros-kinetic-desktop-full
Desktop Install: sudo apt-get install ros-kinetic-desktop

ROS-Base: sudo apt-get install ros-kinetic-ros-base

INSTALL

How to install single packages:
sudo apt-get install ros-kinetic-PACKAGE
Example

sudo apt-get install ros-kinetic-slam-gmapping

To find the exact name of a package you can use the usual aptitude search:

apt-cache search ros-kinetic

INITIALIZATION AND SETUP

rosdep enables you to easily install system dependencies and it's required by some ROS packages
sudo rosdep init

rosdep update

To use catkin (the compiling environment of ROS) you need to define the location of your ROS
installation.

In each new terminal type:

source /opt/ros/kinetic/setup.bash

Or put it inside your .bashrc

echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc

source ~/.bashrc

ROS STRUCTURE: COMPUTATIONAL GRAPH

AN / The Computation Graph is the

Computatio peer-to-peer network of ROS

h _ .
o tor n grap Tarofie processes that are processing data
et s together.

Executable unit of ROS:
Scripts for Python

Compiled source code for C++
Process that performs computation

Nodes exchange information via the
graph
Meant to operate at fine-grained scale

A robot system is composed by various
nodes

rosrun package name node name

rosrun turtlesim turtlesim_node

MASTER

Provides naming and registration
services

Essential for nodes interactions

’

Advertise(images) ,*

One master for each system, even on .
distributed architectures !
Enables individual ROS nodes to locate
ne another iage
O viewer

One of the functionalities provided by
roscore

MASTER

Provides naming and registration
services

Essential for nodes interactions

One master for each system, even on
distributed architectures

Enables individual ROS nodes to locate
one another

One of the functionalities provided by
roscore

Camera

4" imagesbl

Subscribe(images)

Image
viewer

MASTER

Provides naming and registration
services

Essential for nodes interactions

One master for each system, even on
distributed architectures

Enables individual ROS nodes to locate
one another

One of the functionalities provided by
roscore

Camera

Image
viewer

—P imageshl

TOPICS

Named channels for communication
Implement the publish/subscribe paradigm
No guarantee of delivery

Have a specific message type

Multiple nodes can publish messages on a
topic

Multiple nodes can read messages from a topic

talker

/chat

TOPICS

Named channels for commmunication

Implement the publish/subscribe paradigm talker
No guarantee of delivery
Have a specific message type /Cf"\ at

Multiple nodes can publish messages on a
topic

Multiple nodes can read messages from a
topic

TOPICS

Named channels for communication
Implement the publish/subscribe paradigm

No guarantee of delivery

Have a specific message type /chat

Multiple nodes can publish messages on a
topic !
listene

Multiple nodes can read messages from a
topic r

MESSAGES

Messages are exchanged on topics
They define the type of the topic
Various already available messages

It is possible to define new messages using a
simple language

Existing message types can be used in new
messages together with base types

std_msgs/Header.mgs

uint32 seq
time stamp
string frame _id

std_msgs/String.msg

string data

sensor_msgs/Joy.msg
std_msgs/Header header
float32[] axes
int32[] buttons

MESSAGES

Messages are exchanged on topics
They define the type of the topic
Various already available messages

It is possible to define new messages using a
simple language

Existing message types can be used in new
messages together with base types

Quick recap:

14 base types

32 std_msgs

29 geometry_msgs
26 sensor_msgs

...and more

SERVICES

Work like remote function calls
Implement the client/server paradigm
Code waits for service call to complete
Guarantee of execution

Use of message structures

example/AddTwolnt.srv
int64 A
int64 B

int64 Sum

PARAMETER SERVER

Shared, multivariable dictionary that is
accessible via network

Nodes use this server to store and
retrieve parameters at runtime

Not designed for performance, not for
data exchange

Connected to the master, one of the
functionalities provided by roscore

rosparam [set|get] name value

rosparm set use_sim_time True

rosparam get use_sim_time

True

PARAMETER SERVER

Shared, multivariable dictionary that is
accessible via network

Nodes use this server to store and
retrieve parameters at runtime

Not designed for performance, not for
data exchange

Connected to the master, one of the
functionalities provided by roscore

Available types:
32-bit integers
Booleans
Strings
Doubles
ISO8601 dates
Lists
Base64-encoded binary data

File format (*.bag) for storing and playing
back messages

rosbag record —a
Primary mechanism for data logging rosbag record /topic1 /topic2

Can record anything exchanged on the
ROS graph (messages, services, rosbag play ~/bags/fancy_log.bag
parameters, actions)

Important tool for analyzing, storing, rqt_bag ~/bags/fancy_log.bag

visualizing data and testing algorithmes.

ROSCORE

roscore is a collection of nodes and programs that are pre-requisites of a
ROS-based system

Must be running in order for ROS nodes to communicate
Launched using the roscore command.

Elements of roscore:
a ROS Master
a ROS Parameter Server

a rosout logging node

ROS FILE SYSTEM

r Package |
. manifest |

()

Messages

. J

palz\lf;ges]—[Packages Service

Code

Others

ROS FILE SYSTEM

r Package |
_manifest |

()

Messages

. J

()

"-[Packages Service

Code

Usually you skip this one

Others

PACKAGES AND METAPACKAGES

PACKAGES

Atomic element of ROS file system
Used as a reference for most ROS commands
Contains nodes, messages and services

package.xml used to describe the package

Mandatory container

METAPACKAGES

Aggregation of logical related elements

Not used when navigating the ROS file
system

Contains other packages

package.xml used to describe the package

Not required

STRUCTURE OF A PACKAGE

v [my First_pkg

Folder structure: > '::Dnﬁg
. . . > | include
/src, /include, /scripts (coding) v [launch
/launch (launch files) | 9 robot.launch
/config (configuration files) ¥ | scripks
Required files: . teleop.py
Src

CMakelList.txt: Build rules for catkin [cMakelLists.txt
package.xml: Metadata for ROS .| package.xml

