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Machine Learning

SupportVector Machines
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Discriminative vs. Generative Approaches 2

o Generative approach: we derived the classifier from some
generative hypothesis about the way data have been generated

* Linearity of the log odds for posteriors (Logistic Regression)

* Multivariate Gaussian given the class for the likelihood (LDA)

o Discriminative approach: find the prescribed boundary (e.g., a
linear separating boundary) able to reduce the classifier error

* Define a discriminating function instead of making

assumptions on the data distribution
From ESL

o Example: find the separating hyperplane which separates the data
points in the best way (e.g., with the minimum error rate)

{.i‘ ; -}D -+ -}1.,!‘1 -+ -}g.i'g = U}
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Perceptron 3

o A perceptron computes the value of a weighted sum and returns
its sign (name dates back to '50s literature on neural networks)

{..{‘ ; -}D -+ -}1..!‘1 -+ -}g.i'g = U}

o Basically a perceptron is a linear classifier for which:

* We do not assume any particular probabilistic model
generating the data

* We learn the parameters using some optimization technique
so to minimize an error function (e.g., the error rate)

* We cannot infer the role of the single variables in the model
from the values of the weights

o Inference in discriminative models is quite complex and usually it
is not the goal which is prediction.
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An Example: Simulated Data 4

LDA Solution

FIGURE 4.14. A toy example with two classes separable by a hyperplane. The
orange line 1s the least squares solution, which maisclassifies one of the training
points. Also shown are two blue separating hyperplanes found by the perceptron
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learning algorithm with different random starts.
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Hyperplanes Linear Algebra 5

o Let consider the hyperplane (affine set) L in R?

flz)=py+plz=0 '

= Any two points x; and x, on L have |
B (1 —x9) =0 w:
* The vector normal to the surface L is N
o d 3+ BTz =0
— 3/113|
= For any point x, in L we have _
-"j:))Tl,{.'O — — (g
" The signed distance of any point x to L is defined by
T 1
G (x —xg) = W Y+ Bo) f(x) proportional to the
| || distance of x from the
— Wf( ). plane defined by f(x)=0
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Perceptron Learning Algorithm (1/2) 6

o The error function for the perceptron learning is the distance of
misclassified points from the decision boundary

* The output is coded with +|/-1
= |If an output which should be +1 is misclassified
wT 3+ 8y < 0

* For an output with -1 we have the opposite

Set of points
misclassified

o The goal becomes minimizing

= This is non negative and proportlonal to the distance of the
misclassified points from

8la+ 6, =0
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Perceptron Learning Algorithm (2/2) 7

o Minimize by stochastic gradient descend the error function
(8. 50) = = Y wilw] B+ Bo)
e M
* The gradients with respect to the model parameters are

7 (5)3 DD A
1=l
. D(\.E. '30)
00— - = — E
(_) '30 pynyy i

= Stochastic gradient descent applies for each misclassified point

o If data are linearly separable, it converges to a separating
hyperplane in a finite number of steps
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An Example: Simulated Data 8

LDA Solution

Is there any
optimal plane?
|

FIGURE 4.14. A toy example with two classes separable by a hyperplane. The
orange line 1s the least squares solution, which maisclassifies one of the training
points. Also shown are two blue separating hyperplanes found by the perceptron
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learning algorithm with different random starts.
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An Example: Simulated data 9

Maximum margin
classifier ...

FIGURE 4.16. The same data as in Figure {.14. The shaded region delineates
the marimum margin separating the two classes. There are three support points
indicated, which lie on the boundary of the margin, and the optimal separating
hyperplane (blue line) bisects the slab. Included in the figure is the boundary found
using logistic regression (red line), which is very close to the optimal separating
hyperplane (see Section 12.3.3).
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Separable Case Formulation (1) 10

o Maximize the margin M / \ From ESL

max M
B,60,||8]|=1

::':LlhjeC‘-t tO ;zi(;{r?;'j’ — 5’0) :_*; M i=1... . . N

2 TB+B=0 .
o The two constraints respectively

= Select one of the possible
hyper planes

JZ{(I,SU + b1 + 52‘17;‘2 ...+ ,.Spi:ip) — 0

= Each point is on the right side . r
J.'-Illf_{ —
|

marqgin

of the margin [ = b
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Separable Case Formulation (2) I

o WWe can remove the constraint on the parameter norm by
changing the margin constraint
1

18]

yi(x] B+ o) > M

= which becomes

yi(if?é3 + o) = M||3|]

o If we redefine M = 1/|3|| we obtain the equivalent problem

1 :
min — || 3||?
8,60 2
subject to -_z@-(;r?.’_a’ +06o) =1, i=1,...,] N

o Which is a “simple” convex optimization problem
(quadratic with linear constraints)
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Separable Case Solution (1) 12

o WVe can solve the constrained quadratic problem by the use of

Lagrange multipliers
N

1
Lp = 5\\_.-3\2—;&@[;1( 3+ 3o) — 1]

= Setting the derivatives to zero we have
N

S— E QYL

i=1
N

0 = Zﬂz‘yir Can you derive it?

i=1
= And by substitution the SO- called W

Lp = Zﬂz — _Zzﬂzakhﬁc{ Lk

1i=1 k=1

subject to oy > 0.
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Separable Case Solution (2) 13

o The Karush-Kuhn-Tucker conditions must hold too
iy (X B+ By) — 1] = 0 Vi.
= If a; > 0 thenwehave y;(x!l 3+ 3) = 1

= If yi(e] 5+050) > 1 this means a; = 0
T34+ By=0 .

o The final output comes from:

G(x) = signf ()

marqgin

M =,

1

8]
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Non Separable Case Formulation (1) 14

o Maximize the margin M

max M

B,60,||8]|=1
subject to yi(;tf?{j’ +06g)>M.i=1,....N
‘« » T3+ =0
o To accommodate for “errors” we P L ).
use some extra variables ... . o
e e
yi(eL 3+ Bo) > M —§&,
. o
yi(w; B+ Bg) = M(1—-¢&), < °
» . margin
: N
Vi, & 20, 3 ;-4 & < constant This gives a convex

optimization problem
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Non Separable Case Formulation (2) 15

o WVe can remove the constraint on the parameter norm obtaining

yi(xT B+ Bo) > 1 — & Vi,
& >0, > & < constant.

o This can be rewritten as \ From ESL
N

1 2
min —||131< +C -
18 :-.ﬁ[]' 2 : Z 51

min || 3| subject to

Infinite corresponds to

Used defined cost
separable case ...

o Solved by Lagrange multipliers as for the separable case ...
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Non Separable Case Solution (1) 16

o The primal Lagrange function is

+(*Zgg Za@ yi(a T3+ Go) — (1 —=&)] —Z,u.igi.
1 i=1
= Setting the derivatives to zero gives

N

3 = Z QY
i=1
N

0 = Z 4 Yi
i=1

a; = C — py, Vi,

= with . i fg > 0 Vi

o By substitution we obtain the Lagrangian (Wolf) dual function ...
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Non Separable Case Solution (2) 17

o The dual Lagrange function is Can you derive it?

Lp = Zaa - A Z Z A s Ua)’a’i £Lqr

i—=1 i1'=1

= Subjectto 0 < a; < C'and S, iy = 0

" Having the Karush-Kuhn-Tucker conditions

iy (X B+ 5o) — (1 = &)] 0,
pi& = 0,
Jz(’- B+ 770) (1—&) > 0,

o Solving the optimization problem we have
N

3 == E (i;"yg';ifg;.

i=1
" computed using only the support vectors ...
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Non Separable Case Solution (3) 18

o The solution of the Dual optimization problem provides

N

3 = E fi’iyi £,

i=1
o Karush-Kuhn-Tucker conditions imply

ﬂ'z‘['yi(i-'@Tﬁi? + GBo) — (1 = &)] 0,

wi& = 0,

yi(ei B+ o) = (1= &) > 0,

= «; is non zero only for support vectors

= If & = 0 the support is on the marginand 0 < a; < C
If & >0 wehave a; = C

= Using the margin points 0 < ¢;. & = 0 we can solve for
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Separable Data vs Non Separable Data

19

T3+ By =0

.-I--\.-_.-\-- ;1-!' : 1
r : El
- Y

V- L
M = 13|

TMargin

FIGURE 12.1. Support vector classifiers. The left panel shows the separable
case. The decision boundary is the solid line, while broken lines bound the shaded
mazimal margin of width 2M = 2/||3||. The right panel shows the nonseparable
(overlap) case. The points labeled £ are on the wrong side of their margin by
an amount £ = ME;; points on the correct side have §; = 0. The margin 1s
mazimized subject to a total budget > & < constant. Hence > & is the total
distance of points on the wrong side of their margin.
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A Synthetic Example 120

Bayes Optimal Classifier Linear Regression of 0/1 Response

FIGURE 2.1. A classification example in two dimensions. The classes are coded
as a binary variable (BLUE = 0, ORANGE = 1), A-:md. then fit by linear regression.
The line is the decision boundary defined by 7 3 = 0.5. The orange shaded region

denotes that part of input space classified as ORANGE, while the blue region is
classified as BLUE.
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A Synthetic Example

21
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FIGURE 12.2. The linear support vector boundary for the mirture data exam-
ple with two overlapping classes, for two different values of C'. The broken lines
indicate the margins, where f(x) = +1. The support points (o, > 0) are all the
points on the wrong gide of their margin. The black solid dots are those support
points falling exactly on the margin (£, =0, «, > 0). In the upper panel 62% of
the observations are support points, while in the lower panel 85% are. The broken

purple curve in the background is the Bayes decision boundary.
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Support Vector Machines (1) 22

o Learning the classifier involves only the scalar product of features

N

Lp = Zm -5 Z Z i yiyir (h(wg), h(ag))

=1 ~ =1 i’'=1

Scalar product

o WVe can compute this scalar product in a new feature space
hp(x), m=1,.... M

h(x;) = (h1(x;), ha(x;),. ... har(xi)), i = 1,...,N.
Fla) = h(x)Tf + o
G(x) = sign(f(x))

o The feature space can grow up to infinity with SVM ...

fle) = h(x)" 3+ 5 /“ Scalar product
N

— Zn;u;{:h(if').h{.t'f}}‘ 0y

i=1
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The Kernel Trick 23

o What we need for learning and prediction is the result of the
scalar product only

flx) = h@)Is+ 5
N

= Z oy (h(x), h(xg)) + Bo
i=1
o In some cases this scalar product can be written as a Kernel

K(x,2") = (h(x), h(x"))

o Popular choices are
dth-Degree polynomial: K (z,z') = (1 + (x,z'))?,
Radial basis: K (z,2") = exp(—~||z — 2’||?),

Neural network: K (x,x") = tanh(sq{x, x") + ko).
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The Kernel Trick Example 24

o Consider an Input space with two variables and a polynomial
kernel of degree 2

KX, X")=(1+(X,X"))?
= (1+ X1 X, + XoX5)?
=14+ 2X 1 X +2Xo X0, + (X1 X))? + (XoX))? +2X, X[ X, XD

o It turns out the that M=6 and if we chose

hi(X) = 1 ha(X) = X2

ha(X) = V2X, hs(X) = X2

ha(X) = V2X5 he(X) = V2X1 X5
o We obtain

K(X,X') = (h(X). h(X"))
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A Synthetic Example (Non Linear) 25

SVM - Degree-4 Polynomial in Feature Space SVM - Radial Kernel in Feature Space

Training Error: 0.160
Test Error: 0.218
Bayes Ermmor: 0.210

Training Error 0180
TestBmor: 0245 “-=ie—_7
Ba.yes Erl-or [I_21U Sl oLl

FIGURE 12.3. Two nonlinear SVMs for the mizture data. The upper plot uses
a 4th degree polynomial kernel, the lower a radial basis kernel (with v = 1). In
each case C' was tuned to approximately achieve the best test error performance,
and C' = 1 worked well in both cases. The radial basis kernel performs the best
(close to Bayes optimal), as might be expected given the data arise from miztures
of Gaussians. The broken purple curve in the background is the Bayes decision
boundary.
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