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Recall from the first lecture … 2

Regression

𝑿 ∈ ℝ𝑝 𝑌 ∈ ℝ

𝑿 ∈ ℝ𝑝 𝑌 ∈ {𝛺0, 𝛺1, … , 𝛺𝐾}

Classification

𝑿 ∈ ℝ𝑝 𝑌 ∈ ℘(𝑋)

Clustering

Continuous 

Output

Discrete 

Output

Partitions
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Example: Default dataset 3

Overall Default

Rate 3%
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Linear regression for classification?

o Suppose to predict the medical condition of a patient. 

How should this be encoded?

 We could use dummy variables in case of binary output

but how to deal with multiple output?

 Different encodings could result in different models
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Recall here the Bayesian Classifier

o For a classification problem we can use the error rate i.e.

 Where                   is an indicator function, which will give 1 if 

the condition               is correct, otherwise it gives a 0.

 The error rate represents the fraction of incorrect 

classifications, or misclassifications 

o The Bayes Classifier minimizes the Average Test Error Rate

o The Bayes error rate refers to the lowest possible Error Rate 

achievable knowing the “true” distribution of the data
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The best classifier 

possible estimates 

the class posterior 

probability!!
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Logistic Regression

o We want to model the probability of the class given the input 

but a linear model has some drawbacks
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Example: Default data & Linear Regression 7

Negative 

probability?

Overall Default

Rate 3%
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Logistic Regression

o We want to model the probability of the class given the input 

but a linear model has some drawbacks

o Logistic regression solves the negative probability (ad other 

issues as well) by regressing the logistic function
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Example: Default data & Logistic Regression 9
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Logistic Regression

o We want to model the probability of the class given the input 

but a linear model has some drawbacks (see later slide)

o Logistic regression solves the negative probability (ad other 

issues as well) by regressing the logistic function

from this we derive

and taking logarithms
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This is called odds

This is called 

log-odds or logit

Linear Regression

Logistic Regression



Prof. Matteo Matteucci – Machine Learning

Coefficient interpretation

o Interpreting what 1 means is not very easy with logistic 

regression, simply because we are predicting P(Y) and not Y.

 If 1 =0, this means that there is no relationship between Y 

and X

 If 1 >0, this means that when X gets larger so does the 

probability that Y = 1

 If 1 <0, this means that when X gets larger, the probability 

that Y = 1 gets smaller.

o But how much bigger or smaller depends on where we are on 

the slope, i.e., it is not linear
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Training Logistic Regression (1/4)

o For the basic logistic regression wee need two parameters

o In principle we could use (non linear) Least Squares fitting on the 

observed data the corresponding model

o But a more principled approach for training in classification 

problems is based on Maximum Likelihood

 We want to find the parameters which maximize the 

likelihood function
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Maximum Likelihood flash-back (1/6)

o Suppose we observe some i.i.d. samples coming from a Gaussian 

distribution with known variance:

Which distribution do you prefer?
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Maximum Likelihood flash-back (2/6)

o There is a simple recipe for Maximum Likelihood estimation

o Let’s try to apply it to our example
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Maximum Likelihood flash-back (3/6)

o Let’s try to apply it to our example

1. Write le likelihood for the data
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Maximum Likelihood flash-back (4/6)

o Let’s try to apply it to our example

2. (Take the logarithm of the likelihood -> log-likelihood)
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Maximum Likelihood flash-back (5/6)

o Let’s try to apply it to our example

3. Work out the derivatives using high-school calculus
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Maximum Likelihood flash-back (6/6)

o Let’s try to apply it to our example

4. Solve the unconstrained equations
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Training Logistic Regression (1/4)

o For the basic logistic regression we need two parameters

o In principle we could use (non linear) Least Squares fitting on the 

observed data the corresponding model

o But a more principled approach for training in classification 

problems is based on Maximum Likelihood

 We want to find the parameters which maximize the 

likelihood function
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Training Logistic Regression (2/4)

o Let’s find the parameters which maximize the likelihood function

o If we compute the log-likelihood for N observations

where 

o We obtain a log-likelihood in the form of

20

Taken from ESL

Can you derive it?
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Training Logistic Regression (3/4)

o Let’s find the parameters which maximize the likelihood function

 Z-statistics has the same role of the regression t-statistics, a 

large value means the parameter is not null

 Intercept does not have a particular meaning is used to adjust 

the probability to class proportions
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Example: Default data & Logistic Regression 22
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Training Logistic Regression (4/4)

o Let’s find the parameters which maximize the likelihood function

 We can train the model using qualitative variables through the 

use of binary (dummy) variables

23
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Making predictions with Logistic Regression

o Once we have the model parameters we can predict the class

o The Default probability having 1000$ balance is <1%

while with a balance of 2000$ this becomes 58.6%

o With qualitative variables, i.e., dummy variables, we get that being 

a students results in 

24
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Multiple Logistic Regression

o So far we have considered only one predictor, but we can extend 

the approach to multiple regressors

o By maximum likelihood we learn the corresponding parameters

25

What about this?
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An apparent contradiction 26

Positive

Negative!!!



Prof. Matteo Matteucci – Machine Learning

Example: Confounding in Default data set 27
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Example: South African Heart Disease 28

Taken from ESL
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Logistic Regression for Feature Selection

o If we fit the complete model on these data we get

o While if we use stepwise Logistic Regression

29

Taken from ESL

Taken from ESL
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Logistic Regression parameters meaning

o Regression parameters represent the increment on the logit of 

probability given by a unitary increment of a variable

o Let consider the increase of tobacco consumption in life od 1Kg, 

this count for an increase in log-odds of exp(0.081)=1.084 which 

means an overall increase of 8.4%

o With a 95% confidence interval 

30

Taken from ESL
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Regularized Logistic Regression

o As for Linear Regression we can compute a “Lasso” version
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Regularized Logistic Regression

o As for Linear Regression we can compute a “Lasso” version
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Taken from ESL
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Multiclass Logistic Regression

o Logistic Regression extends naturally to multiclass problems by 

computing the log-odds w.r.t. the Kth class

o This is equivalent to 

o Can you prove it ?!?!?
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Comes from ESL, 

but it’s worth 

knowing!!!

Notation different 

because it comes 

from ESL
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Wrap-up on Logistic Regression

o We model the log-odds as a linear regression model

o This means the posterior probability becomes

o Parameters represent log-odds increase per variable unit 

increment keeping fixed the others

o We can use it to perform feature selection using z-scores and 

forward stepwise selection

o The class decision boundary is linear, but points close to the 

boundary count more … this will be discussed later
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Beyond Logistic Regression …

o Logistic Regression models directly class posterior probability

o Linear Discriminant Analysis uses the Bayes Theorem

o What improvements come with this model?

 Parameter learning unstable in Logistic Regression for well 

separated classes

 With little data and normal predictor distribution LDA is 

more stable

 A very popular algorithm with more than 2 response classes

35



Prof. Matteo Matteucci – Machine Learning

Linear Discriminant Analysis (1/3)

o Suppose we want to discriminate among K>2 classes

o Each class has a prior probability

o Given the class we model the density function of predictors as

o Using the Bayes Theorem we obtain

 Prior probability     is relatively simple to learn

 Likelihood          might be more tricky and we need some 

assumptions to simplify it

o If we correctly estimate the likelihood          we obtain the Bayes 

Classifier, i.e., the one with the smallest error rate! 
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Linear Discriminant Analysis (2/3)

o Let assume p=1 and use a Gaussian distribution 

o Let assume all classes have the same covariance

o The posteriors probability as computed by LDA becomes 

o The selected class is the one with the highest posterior which is 

equivalent to the highest discriminating function

37

Linear discriminant 

function in xCan you 

derive this?
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Linear Discriminant Analysis (3/3)

o With 2 classes having the same prior probability

we decide the class according to the inequality

o The Bayes decision boundary corresponds to

o Training is as simple as estimating the model parameters

38
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LDA Simple Example (with p=1) 39
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Linear Discriminant Analysis with p>1 (1/3)

o In case p>1 we assume                                  comes from 

40
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Linear Discriminant Analysis with p>1 (2/3)

o In the case of p>1 the LDA classifier assumes 

 Observations from the k-th class are drawn from

 The covariance structure is common to all classes 

o The Bayes discriminating function becomes

o From this we can compute the boundary between each class 

(considering the two classes having the same prior probability)

o Training formulas for the LDA parameters are similar to the case 

of p=1 …

41

Still linear in x!!!

Can you 

derive this?
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Linear Discriminant Analysis Example 42
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Example: LDA on the Default Dataset

o LDA on the Default dataset gets 2.75% training error rate

 Having 10000 records and p=3 we do not expect much 

overfitting … by the way how many parameters we have?

 Being 3.33% the number of defaulters a dummy classifier 

would get a similar error rate 
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On the performance of LDA

o Errors in classification are often reported as a Confusion Matrix

 Sensitivity: percentage of true defaulters

 Specificity: percentage of non-defaulters correctly identified

o The Bayes classifier optimize the overall error rate independently 

from the class they belong to an it does this by thresholding

o Can we improve on this?

44
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Example: Increasing LDA Sensitivity

o We might want to improve classifier sensitivity with respect to a 

given class because we consider it more “critical”

 Reduced “Default” error rate from 75.7% to 41.4%

 Increased overall error of 3.73% (but it is worth)

45
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Tweaking LDA sensitivity 46

The right choice comes 

from domain knowledge
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ROC Curve

o The ROC (Receiver Operating Characteristics) summarizes false 

positive and false negative errors

o Obtained by testing all possible thresholds 

 Overall performance given by Area Under the ROC Curve 

 A classifier which randomly guesses (with two classes) has an 

AUC = 0.5 a perfect classifier has AUC = 1

o ROC curve considers true positive and false positive rates

 Sensitivity is equivalent to true positive rate

 Specificity is equivalent to 1 – false positive rate

47
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ROC Curve for LDA on Default data 48

ROC Curve for Logistic 

Regression is ~ the same

All subjects are 

defaulters

No subject is 

defaulter
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Clearing out terminology

o When applying a classifier we can obtain 

o Out of this we can define the following

49
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Quadratic Discriminant Analysis

o Linear Discriminant Analysis assumes all classes having a common 

covariance structure

o Quadratic Discriminant Analysis assumes different covariances

o Under this hypothesis the Bayes discriminant function becomes

o The decision LDA vs. QDA boils down to bias-variance trade-off

 QDA requires                   parameters while LDA only 

50

Can you 

derive this?
Quadratic function
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QDA vs LDA Example 51
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Which classifier is better?

o Let consider 2 classes and 1 predictor

 It can be seen that for LDA the log odds is given by

 While for Logistic Regression the log odds is

 Both linear functions but learning procedures are different …

o Linear Discriminant Analysis is the Optimal Bayes if its hypothesis 

holds otherwise Logistic Regression can outperforms it!

o Quadratic Discriminant Analysis is to be preferred if the class 

covariances are different and we have a non linear boundary
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Some scenarios tested …

o Linear Boundary Scenarios

1. Samples from 2 uncorrelated normal distributions

2. Samples from 2 slightly correlated normal distributions

3. Samples from t-student distributed classes
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Some other scenarios tested …

o Non Linear Boundary Scenarios

4. Samples from 2 normal distribution with different correlation

5. Samples from 2 normals, predictors are quadratic functions

6. As previous but with a more complicated function
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Overall conclusion on the comparison 

o No method is better than all the others

 In the decision boundary is linear then LDA and Logistic 

Regression are those performing better

 When the decision boundary is moderately non linear QDA 

may give better results

 For much complex decision boundaries non parametric 

approaches such as KNN perform better, but the right level 

of smoothness has to be chosen
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