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Machine Learning

Linear Classification
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Recall from the first lecture ... )
:> Regression :> Continuous
’ Output
XeER Y € {Qy, 2y, ..., )

Classification :> Discrete
Output

XER?P Y € p(X)
> Clustering :: > Partitions
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Example: Default dataset 3
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FIGURE 4.1. The Default data set. Left: The annual incomes and monthly
credit card balances of a number of individuals. The individuals who defaulted on
their credit card payments are shown in orange, and those who did not are shoun
in blue. Center: Boxplots of balance as a function of default status. Right:
Bozxplots of income as a function of default status.
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Linear regression for classification? 4

o Suppose to predict the medical condition of a patient.
How should this be encoded?

" We could use dummy variables in case of binary output

Fe

{ 0 1if stroke;

1 if drug overdose.

but how to deal with multiple output?

= Different encodings could result in different models
1 1t stroke; if epileptic seizure;

Y =42 if drug overdose; VY = if stroke:

[ s T

3 if epileptic seizure. if drug overdose.
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Recall here the Bayesian Classifier 5

o For a classification problem we can use the error rate i.e.
n
Error Rate =) I(y; = ¥;)/n
=1

= Where |(Y: # V.)is an indicator function, which will give | if
the condition (Y, # V.) is correct, otherw|sq The best classifier

= The error rate represents the fraction of |n{ Possible estimates
the class posterior

classifications, or misclassifications .
probability!!
o The Bayes Classifier minimizes the Average Test Error Rate
max; P(Y = J| X =X;)

o The Bayes error rate refers to the lowest possible Error Rate
achievable knowing the “true” distribution of the data

1 —FE (111{1}{ Pr(Y = ,i|X))
j
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Logistic Regression 6

o WVe want to model the probability of the class given the input
p(X)=Pr(Y =1|X)
p(X) =G+ /1 X

but a linear model has some drawbacks
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Example: Default data & Linear Regression 7

Overall Default
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FIGURE 4.2. Classification using the Default data. Left: Estimated probabil-
ity of default using linear regression. Some estimated probabilities are negative!
The orange ticks indicate the 0/1 values coded for default(No or Yes). Right:
Predicted probabilities of default wusing logistic regression. All probabilities lie
between 0 and 1.
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Logistic Regression 8

o WVe want to model the probability of the class given the input
p(X) =Pr(Y =1|X)
p(X) = fo+ 1 X
but a linear model has some drawbacks

o Logistic regression solves the negative probability (ad other
issues as well) by regressing the logistic function

€ ;'9 o+ ;'3 1 X

I)(‘Xr) — J_ _|_ E.’SD_F.BIXI
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Example: Default data & Logistic Regression 9
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FIGURE 4.2. Classification using the Default data. Left: Estimated probabil-
ity of default using linear regression. Some estimated probabilities are negative!
The orange ticks indicate the 0/1 values coded for default(No or Yes). Right:
Predicted probabilities of default wusing logistic regression. All probabilities lie
between 0 and 1.
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Logistic Regression 10

o WVe want to model the probability of the class given the input
p(X)=Pr(Y =1|X)
p(X) = o+ 51 X

Linear Regression

but a linear model has some drawbacks (see later slide)

o Logistic regression solves the negative probability (ad other
issues as well) by regressing the logistic functi

Logistic Regression

oBo+B1X
p(‘}{) - 1 4+ eBotB1X
from this we derive _— This is called odds
p(X) _ BotprX
L=p(X) This is called
and taking logarithms log-odds or logit
p(X) P
log (1 —p(X)) — OBy + 1 X
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Coefficient interpretation I

o Interpreting what 3, means is not very easy with logistic
regression, simply because we are predicting P(Y) and not Y.

log (1 ﬁ(j(;{)) = B0+ /1 X

= If B, =0, this means that there is no relationship between Y
and X

= If 3, >0, this means that when X gets larger so does the
probability that Y = |

= If 3, <O, this means that when X gets larger, the probability
that Y = | gets smaller.

o But how much bigger or smaller depends on where we are on
the slope, i.e,, it is not linear
¢

pl(}() — J_ + E'.:_.BD‘I‘.BIXI

Bo+B1X
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Training Logistic Regression (1/4) 12

o For the basic logistic regression wee need two parameters

p(X) .
IU (l—p(}{)) Bo + [#1 X

o In principle we could use (non linear) Least Squares fitting on the
observed data the corresponding model
eBo+F1X

p(X) = 1 PR

o But a more principled approach for training in classification
problems is based on Maximum Likelihood

* We want to find the parameters which maximize the
likelihood function

t(Bo, 1) = H p(x H (1 —p(zir))

1y =1 v 1y r =0
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Maximum Likelihood flash-back (1/6) 13

o Suppose we observe some i.i.d. samples coming from a Gaussian
distribution with known variance:

- : ‘ 1 _ (z—p)?
T, 29, ... 0 ~N(pu,0%)  plajp,o?) = ——e = o
2mo
p(K)A
— )
X

Which distribution do you prefer?
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Maximum Likelihood flash-back (2/6) 14

o There is a simple recipe for Maximum Likelihood estimation

1. Write the likelihood L = P(Data|f) for the data

2. (Take the logarithm of likelihood £ = log P(Datal|f))
3. Work out 9L /06 or 0L/06 using high-school calculus
4
5

. Solve the set of simultaneous equations 0£/00; = 0

. Check that 8¢ is a maximum

o Let’s try to apply it to our example

1 z —p)?
L1y L2y TK NN(J”’:'O_Q) p(ﬂ‘,u,j(fz): € 7

V2To
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Maximum Likelihood flash-back (3/6) 15

o Let’s try to apply it to our example

mlvm%'”vxKNN(Mvo_g) p(m\,u,,orz): \/2— e o
mo

|. Write le likelihood for the data

L) = ploy,as,....on i 0”) = [] p@alp, o)
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Maximum Likelihood flash-back (4/6) 16

o Let’s try to apply it to our example

1 z—p)?

2mO

mlvm%'”vxKNN(Mvo_g) p(m\,u,,orz):

2. (Take the logarithm of the likelihood -> log-likelihood)

N ()2
E — lO Fﬁ_ Qe
gnl;[l 2mo
N
— Z log ! exrp(— (2 — 17 )
— Xive] 207
N
1 1 *
— N{lo - — x, — p)?
( -g 2?1_0_) 20_2 H:I( ." )
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Maximum Likelihood flash-back (5/6) 17

o Let’s try to apply it to our example

1 z—p)?

2mO

mlvm%'”vxKNN(Mvo_g) p(m\,u,,orz):

3. Work out the derivatives using high-school calculus

oL 5 1 ] &
— = —NI( B — — 1)?
I - ,
N
= @nﬂ?(iﬂn — 1t)
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Maximum Likelihood flash-back (6/6) 18

o Let’s try to apply it to our example

1 z—p)?

2mO

mlvm%'”vxKNN(Mvo_g) p(m\,u,,orz):

4. Solve the unconstrained equations 0L/00; = 0

iﬁ”i"
1
=1 ;” € = — X,
N I{ r—1
Z(mn — )u)
n=1
N
>
n=1
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Training Logistic Regression (1/4) 19

o For the basic logistic regression we need two parameters

p(X) .
IU (l—p(}{)) Bo + [#1 X

o In principle we could use (non linear) Least Squares fitting on the
observed data the corresponding model
eBo+F1X

p(X) = 1 PR

o But a more principled approach for training in classification
problems is based on Maximum Likelihood

* We want to find the parameters which maximize the
likelihood function

t(Bo, 1) = H p(x H (1 —p(zir))

1y =1 v 1y r =0
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Training Logistic Regression (2/4) 20

o Let’s find the parameters which maximize the likelihood function

(o) = [] pao) T (1= plan))

:y; =1 v 1y =0
o If we compute the log-likelihood for N observations
N
((0) = Zl‘:’% Pg.(xi:6) Taken from ESL
i=1

where pr(z;:0) = Pr(G = k|X = x;:60)

o WVe obtain a log-likelihood in the form of

Can you derive it?

N
0(E) = Z{yi log p(ai; 3) + (1 Ay:) log(1 — pliy: 3))}
i=1
N
= Y {is T —tog(1+ ) L
1=1
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Training Logistic Regression (3/4) 2|

o Let’s find the parameters which maximize the likelihood function
(5. 80) = T vl TT (1= p(ae))
1y;=1 v 1y 0 =0

= Z-statistics has the same role of the regression t-statistics, a
large value means the parameter is not null

" |Intercept does not have a particular meaning is used to adjust
the probability to class proportions

Coefficient  Std. error Z-statistic  P-value
Intercept —10.6513 0.3612 —29.5 <0.0001
balance 0.0055 0.0002 24.9  <0.0001

TABLE 4.1. For the Default data, estimated coefficients of the logistic regres-
sion model that predicts the probability of default wusing balance. A one-unit
increase in balance is associated with an increase in the log odds of default by
0.0055 units.
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Example: Default data & Logistic Regression 22
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FIGURE 4.2. Classification using the Default data. Left: Estimated probabil-
ity of default using linear regression. Some estimated probabilities are negative!
The orange ticks indicate the 0/1 values coded for default(No or Yes). Right:
Predicted probabilities of default wusing logistic regression. All probabilities lie
between 0 and 1.
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Training Logistic Regression (4/4) 23

o Let’s find the parameters which maximize the likelihood function

((Bo. B1) = H p(x;) H (1 — p(x;r))
i:y; =1 1 1y;0 =0
" We can train the model using qualitative variables through the
use of binary (dummy) variables

Coefficient  Std. error Z-statistic  P-value
Intercept —3.5041 0.0707 —49.55 <0.0001
student [Yes] 0.4049 0.1150 3.52 0.0004

TABLE 4.2. For the Default data, estimated coefficients of the logistic regres-
sion model that predicts the probability of default using student status. Student
status is encoded as a dummy variable, with a value of 1 for a student and a value
of 0 for a non-student, and represented by the variable student [Yes] in the table.
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Making predictions with Logistic Regression 24

o Once we have the model parameters we can predict the class

o The Default probability having 1000$ balance is <1%

oBo+B1X —10.6513+0.0055 x 1,000

p(X) = 1 + eBo+B1X T | 1 ¢—10.6513+0.0055x1,000 0.00576

while with a balance of 2000$ this becomes 58.6%

o With qualitative variables, i.e., dummy variables, we get that being
a students results in
o—3.5041+0.4049x 1

Pr(default=Yes|student=Yes) = [ —3504170.4040%1 0.0431

— E_.—3.5041+D,4D49><0
§ — — — . — 20)%)
Pr(default=Yes|student=No) [ o 350417040490 0.0292
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Multiple Logistic Regression 25

o So far we have considered only one predictor, but we can extend
the approach to multiple regressors

p(X) | , ,
l ¥ p— .3 ."3 X . * ¥ :'3 X .
Dg(l—p(X)) Po + P1A1+ -+ OpAp

EHSD ‘|‘_."91X1 ‘|“|‘(8po
1+ E,BD—I—;'31X1 +-4+Bp X

p(X) =

o By maximum likelihood we learn the corresponding parameters

Coefficient Std. error Z-statistic  P-value

Intercept —10.8690 0.4923 —22.08 <0.0001
balance 0.0057 0.0002 24.74  <0.0001
income 0.0030 0.0082 0.37 0.7115
student [Yes] —0.6468 0.2362 —2.74 Q(OUGQ

TABLE 4.3. For the Default data, e

? f
sion model that predicts the probabilit What about this’ ce, income, and

student status. Student status is encodew a3 @ a0 artavle student [Yes],
with a value of 1 for a student and a value of 0 fo-i' a :n.on-studeﬂ.t. In fitting this

~logistic regres-

model, income was measured in thousands of dollars.
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An apparent contradiction 26

Coefficient Std. Error Z-statistic P-value
Intercept -3.0041 0.0707 -49.00 < 0.0001
student [Yes] 0.4049 0.1150 3.52 0.0004

\—{ Positive

Coeflicient Std. Error Z-statistic P-value
Intercept -10.8690 0.4923 -22.08 < 0.0001
balance 0.0057 0.0002 24.74 < 0.0001
income 0.0030 0.0082 0.37 0.7115
student [Yes] -0.6468 0.2362 -2.74 0.0062

\—{ Negative!!!
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Example: Confounding in Default data set 27

Default Rate
Credit Card Balance
1000 1500 2000 2500

500

0
|

I |
500 1000 1500 2000 No Yes

Credit Card Balance Student Status

FIGURE 4.3. Confounding in the Default data. Left: Default rates are shoun
for students (orange) and non-students (blue). The solid lines display default rate
as a function of balance, while the horizontal broken lines display the overall
default rates. Right: Boxplots of balance for students (orange) and non-students
(blue) are shown.
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FIGURE 4.12. A scatterplot matriz of the South African heart disease data.

Each plot shows a pair of risk factors, and the cases and controls are color coded
(red is a case). The variable family history of heart disease (famhist) is binary

(yes or no).
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Taken from ESL
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Logistic Regression for Feature Selection

29

o If we fit the complete model on these d
TABLE 4.2. Results from a logistic regression o the South ¢

Taken from ESL

disease :/(llll.

Coefficient Std. Error Z Score

(Intercept) —4.130 0.964  —4.285
sbp 0.006 0.006 1.023

tobacco 0.080 0.026 3.034

141 0.185 0.057 3.219

famhist (.939 0.225 4.178
obesity -0.035 0.029 —1.187
alcohol 0.001 0.004 0.136

age 0.043 0.010 __~T157

Taken from ESL

o While if we use stepwise LogisﬂvR{ression

TABLE 4.3. Results from stepwise logistic regression fit to South African heart

disease data.

Coefficient Std. Error Z score

(Intercept) —4.204 0.498 —8.45
tobacco 0.081 0.026 3.16

1d1 0.168 0.054 3.09

famhist 0.924 0.223 4.14

age 0.044 0.010 4.52

Prof. Matteo Matteucci — Machine Learning - I

POLITECNICO DI MILANO



Logistic Regression parameters meaning 30

o Regression parameters represent the increment on the logit of
probability given by a unitary increment of a variable

p(X) | I -

lDC’(l—p(X)) Bo + P1 X1+ -+ BpXp

o Let consider the increase of tobacco consumption in life od 1Kg,
this count for an increase in log-odds of exp(0.081)=1.084 which
means an overall increase of 8.4%

o With a 95% confidence interval exp(0.081 +2 x 0.026) = (1.03,1.14)

TABLE 4.3. Results from stepwise logistic ret

disease data.

¢sston fit to South African heart

Taken from ESL

Coefficient Std. Error Z scdr

(Intercept) —4.204 0.498 —8.45
tobacco 0.081 0.026 3.16

1d1 0.168 0.054 3.09

famhist 0.924 0.223 4.14

age 0.044 0.010 4.52
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Regularized Logistic Regression 31

o As for Linear Regression we can compute a “Lasso” version
(
N

A
p
ax < > {;Ua:(sfao + 8T ;) — log(1 + ePoth = )} -2 16
SR j=1

J/

.
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Regularized Logistic Regression 32

o As for Linear Regression we can compute a “Lasso” version

1 2 4 / 5 6 7

| ﬂ___‘-—""‘-‘w o
Taken from ESL ]
— famhist
= 5
:.,’; C baceo
o /
9 3 K
fres F
3 :‘** qesn® ]y
U ft’ / p
= A /“\ s alcohol
S L obesity
| T T T
00 05 1.0 15 20
[B(A)]]1

FIGURE 4.13. L. regularized logistic regression coefficients for the South
African heart disease data, plotted as a function of the Ly norm. The variables
were all standardized to have unit variance. The profiles are computed exactly at

each of the plotted points.
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Multiclass Logistic Regression 33

o Logistic Regression extends naturally to multiclass problems by
computing the log-odds w.r.t. the K™ class

Comes from ESL,
Pr(G¢ = K|X =) knowing!!!
Pr(G =2|X = z) T
log v = [0+ By x
Pr(G = K|X —K Notation different
; because it comes
' from ESL

Pr(G =K —1|X =)

, AT
log P C—KIX —2) Bk -1y0 + Brx—1T

o This is equivalent to
3 BL x
PrG =KX =2) — PP T 0T g g1,
L+ >, exp(Beo + Bf x)
Pr(G=K|X =2) = — ! . (4.18)
L+, exp(Beo + 5] =)

Prof. Matteo Matteucci — Machine Learning - I
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Wrap-up on Logistic Regression 34

o We model the log-odds as a linear regression model

p(X) Y v -
Dh(l—p(X)) 0+ P1 X1+ + PpAp

o This means the posterior probability becomes

eBot+B1X

p(ﬁi] - 1 4+ efotFrX

o Parameters represent log-odds increase per variable unit
increment keeping fixed the others

o We can use it to perform feature selection using z-scores and
forward stepwise selection

o The class decision boundary is linear, but points close to the
boundary count more ... this will be discussed later

POLITECNICO DI MILANO
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Beyond Logistic Regression ... 35

o Logistic Regression models directly class posterior probability
Pr(Y = k| X = x)
o Linear Discriminant Analysis uses the Bayes Theorem
_ il )
ZI—] T fi(x)

Pr(Y = k| X = x)

o What improvements come with this model?

* Parameter learning unstable in Logistic Regression for well
separated classes

= With little data and normal predictor distribution LDA is
more stable

= A very popular algorithm with more than 2 response classes

Prof. Matteo Matteucci — Machine Learning - I
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Linear Discriminant Analysis (1/3) 36

o Suppose we want to discriminate among K>2 classes
o Each class has a prior probability 7

o Given the class we model the density function of predictors as
fx(X)=Pr(X =z|Y = k)

o Using the Bayes Theorem we obtain

PI(Y — f{; X — T) _ ﬂ-ﬁffflf(;f:)

K ,
;l1 T fi(x)

* Prior probability 7« is relatively simple to learn

* Likelihood /% (X ) might be more tricky and we need some
assumptions to simplify it

o If we correctly estimate the likelihood f;. (X' ) we obtain the Bayes
Classifier, i.e., the one with the smallest error rate!

POLITECNICO DI MILANO
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Linear Discriminant Analysis (2/3) 37

o Let assume p=1| and use a Gaussian distribution

1 1 .
fr(x) = —— exp (—p(r — ,LL;-_)2>

V2Toy, 40,
o Let assume all classes have the same covariance
orf — ... = U%:

o The posteriors probability as computed by LDA becomes

Tk \,/Ql_ﬂr exp (— ooz (@ — pg)?)
ZR | Tl —— V/—g exp (— gz (z — 11)?)

pr(x) =

o The selected class is the one with the highest posterior which is
equivalent to the highest discriminating func:tiﬂ|
)

Can you , e e
derive this? I_Tk(i’“) i 52 952 + log(mg

Linear discriminant
function in x
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Linear Discriminant Analysis (3/3) 38

,]

o With 2 classes having the same prior probability 71
we decide the class according to the inequality

2a (1 — p2) > pi — pa
o The Bayes decision boundary corresponds to
e A SR
2(pr — p2) 2

2

£r =

o Training is as simple as estimating the model parameters

. 1 -
l, = — €T; A 75 pz
HE n. 1yZ:k i /‘ Op(x) =z - =3~ 952 + log(7 )

k= ltyi_ﬁ.

Tk = nk/n
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LDA Simple Example (with p=1) 39

|
|
1
|
1

-4 -2 0 2 4

FIGURE 4.4. Left: Two one-dimensional normal density functions are shown.
The dashed vertical line represents the Bayes decision boundary. Right: 20 obser-
vations were drawn from each of the two classes, and are shown as histograms.
The Bayes decision boundary is again shown as a dashed vertical line. The solid
vertical line represents the LDA decision boundary estimated from the training
data.
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Linear Discriminant Analysis with p>1 (1/3) 4o

FIGURE 4.5. Two multivariate Gaussian density functions are shown, with
p = 2. Left: The two predictors are uncorrelated. Right: The two variables have
a correlation of 0.7.
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Linear Discriminant Analysis with p>1 (2/3) 4

o In the case of p>I the LDA classifier assumes
= Observations from the k-th class are drawn from N (i, 2)

= The covariance structure is common to all classes

o The Bayes discriminating function become}/| Still linear in x!!!
Can you ] _— 1
derive this? || Orp(x) = " 27 — SH

E:E_l,u;g + log 7

o From this we can compute the boundary between each class

(considering the two classes having the same prior probability)
T—1 l 11 T—1 I w1
r 2T — 5k YT = X — SHi 2

o Training formulas for the LDA parameters are similar to the case
of p=1 ...
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Linear Discriminant Analysis Example 42

FIGURE 4.6. An example with three classes. The observations from each class
are drawn from a multivariate Gaussian distribution with p = 2, with a class-spe-
cific mean vector and a common covariance matrix. Left: Ellipses that contain
95 % of the probability for each of the three classes are shown. The dashed lines
are the Bayes decision boundaries. Right: 20 observations were generated from
each class, and the corresponding LDA decision boundaries are indicated using
solid black lines. The Bayes decision boundaries are once again shown as dashed

lines.
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Example: LDA on the Default Dataset

43

o LDA on the Default dataset gets 2.75% training error rate
= Having 10000 records and p=3 we do not expect much
overfitting ... by the way how many parameters we have?

= Being 3.33% the number of defaulters a dummy classifier
would get a similar error rate

252/333 = 75.7% |_

True default status
\b\ Yes | Total

Predicted No

9,644 ~252 | 9,896
default status  Yes 23 81 104
Total | 9,667 333 | 10,000

TABLE 4.4. A confusion matrix compares the LDA predictions to the true de-
fault statuses for the 10,000 training observations in the Default data set. Ele-
ments on the diagonal of the matriz represent individuals whose default statuses
were correctly predicted, while off-diagonal elements represent individuals that

were misclassified. LDA made incorrect predictions for 23 individuals who did
not default and for 252 individuals who did default.
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On the performance of LDA 44

o Errors in classification are often reported as a Confusion Matrix

True default status
00 R U7
99.8 7 I_\ No Yes | Total

Predicted No [19.644 252 | 9,896
default status  Yes 23 81| 104
Total | 9,667 333 N10,000

o o o a4 9 U7
= Sensitivity: percentage of true defaulters \-| 24.3%

= Specificity: percentage of non-defaulters correctly identified

o The Bayes classifier optimize the overall error rate independently
from the class they belong to an it does this by thresholding

Pr(default = Yes|X =z) > 0.5

o Can we improve on this!?

Prof. Matteo Matteucci — Machine Learning - I

POLITECNICO DI MILANO




Example: Increasing LDA Sensitivity 45

o We might want to improve classifier sensitivity with respect to a
given class because we consider it more “critical”

P(default = Yes|X =x) > 0.2
= Reduced “Default” error rate from 75.7% to 41.4%

" |ncreased overall error of 3.73% (but it is worth)

True default status
No Yes | Total
Predicted No 9,432 138 [ 9,570

default status  Yes 235 195 430
Total | 9,667 333 | 10,000

TABLE 4.5. A confusion matriz compares the LDA predictions to the true de-
fault statuses for the 10,000 training observations in the Default data set, using

a modified threshold value that predicts default for any individuals whose posterior
default probability exceeds 20 %.
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Tweaking LDA sensitivity 46
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FIGURE 4.7. For the Default data set, error rates are shown as a function of
the threshold value for the posterior probability that is used to perform the assign-
ment. The black solid line displays the overall error rate. The blue dashed line
represents the fraction of defaulting customers that are incorrectly classified, and

the orange dotted line indicates the fraction of errors among the non-defaulting
customers.

Prof. Matteo Matteucci — Machine Learning - I

POLITECNICO DI MILANO




ROC Curve 47

o The ROC (Receiver Operating Characteristics) summarizes false
positive and false negative errors

o Obtained by testing all possible thresholds
* Opverall performance given by Area Under the ROC Curve

= A classifier which randomly guesses (with two classes) has an
AUC = 0.5 a perfect classifier has AUC = |

o ROC curve considers true positive and false positive rates
= Sensitivity is equivalent to true positive rate

= Specificity is equivalent to | — false positive rate
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ROC Curve for LDA on Default data 48
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2 ° defaulter
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ROC Curve for Logistic
Regression is ~ the same
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False positive rate

FIGURE 4.8. A ROC curve for the LDA classifier on the Default data. It
traces out two types of error as we vary the threshold value for the posterior
probability of default. The actual thresholds are not shown. The true positive rate
15 the sensitivity: the fraction of defaulters that are correctly identified, using
a given threshold value. The false positive mate is 1-specificity: the fraction of
non-defaulters that we classify incorrectly as defaulters, using that same threshold
value. The ideal ROC curve hugs the top left corner, indicating a high true positive
rate and a low false positive rate. The dotied line represents the “no information”
classifier; this is what we would expect if student status and credit card balance

are not associated with probability of default.
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Clearing out terminology 49

o When applying a classifier we can obtain

Predicted class
— or Null + or Non-null Total
True — or Null True Neg. (TN) | False Pos. (FP) N
class  + or Non-null | False Neg. (FN) | True Pos. (TP) P
Total N* P*

TABLE 4.6. Possible results when applying a classifier or diagnostic test to a
population.

o Out of this we can define the following

Name Definition Synonyms

False Pos. rate FP/N | Type I error, 1—Specificity

True Pos. rate TP/P | 1-Type II error, power, sensitivity, recall
Pos. Pred. value TP/P" | Precision, 1—false discovery proportion
Neg. Pred. value TN/N®

TABLE 4.7. Important measures for classification and diagnostic testing,
derived from quantities in Table 4.6.
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Quadratic Discriminant Analysis 50

o Linear Discriminant Analysis assumes all classes having a common
covariance structure

o Quadratic Discriminant Analysis assumes different covariances

X ~ N (g, Zp)

o Under this hypothesis the Bayes discriminant function becomes

i 1 _ 1
Op(x) = —5(‘5—y.;;)TEkl(ir—,u;c) — 510@;\2;;\ + log g
1 Ts—1 Ts—1 1 Ts—1 1
_ —5;{7 X w4 a X g — 5!“'}; ) alog|zk| + log 7k
N <
Can you . .
. . uadratic function
derive this? ‘ Q

o The decision LDA vs. QDA boils down to bias-variance trade-off
= QDA requires Kp(p+1)/2 parameters while LDA only Kp
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QDA vs LDA Example 51

w >

FIGURE 4.9. Left: The Bayes (purple dashed), LDA (black dotted), and QDA
(green solid) decision boundaries for a two-class problem with X1 = Xo. The
shading indicates the QDA decision rule. Since the Bayes decision boundary 1is
linear, it is more accurately approrimated by LDA than by QDA. Right: Details
are as given in the left-hand panel, except that 31 # X2. Since the Bayes decision
boundary is non-linear, it is more accurately approrimated by QDA than by LDA.

Prof. Matteo Matteucci — Machine Learning _ POLITECNICO DI MILANO




Which classifier is better? 52

o Let consider 2 classes and | predictor
* |t can be seen that for LDA the log odds is given by

@)\, (m@)
o (1 25tm) = () =0+ o

* While for Logistic Regression the log odds is

log ( 1 ) = [y + Sz
1 —py

= Both linear functions but learning procedures are different ...

o Linear Discriminant Analysis is the Optimal Bayes if its hypothesis
holds otherwise Logistic Regression can outperforms it!

o Quadratic Discriminant Analysis is to be preferred if the class
covariances are different and we have a non linear boundary
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Some scenarios tested ... 53

o Linear Boundary Scenarios
|. Samples from 2 uncorrelated normal distributions
2. Samples from 2 slightly correlated normal distributions

3. Samples from t-student distributed classes
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FIGURE 4.10. Boxplots of the test error rates for each of the linear scenarios

described in the main text.
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Some other scenarios tested ... 54

o Non Linear Boundary Scenarios
4. Samples from 2 normal distribution with different correlation
5. Samples from 2 normals, predictors are quadratic functions

6. As previous but with a more complicated function
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FIGURE 4.11. Boxplots of the test error rates for each of the non-linear sce-

narios described in the main text.
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Overall conclusion on the comparison 55

o No method is better than all the others

* |n the decision boundary is linear then LDA and Logistic
Regression are those performing better

* When the decision boundary is moderately non linear QDA
may give better results

* For much complex decision boundaries non parametric
approaches such as KNN perform better, but the right level
of smoothness has to be chosen
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