iy,
7
“,

\\

\\\\\\\

) 2
SEN %,
= =

i s
4
5
A

Cognitive Robotics
2017/2018

From Perceptrons to Neural Networks

Matteo Matteucci
matteo.matteucci@polimi.it

Artificial Intelligence and Robotics Lab - Politecnico di Milano

In principle it was the Perceptron ...

7 77) POLITECNICO MILANO 1863

How this all started out?

Why it eventually
died out?

How came we still use
neural networks?

The inception of Al

A PROPOSAL FOR THE
DARTMOUTH SUMMER RESEARCH PROJECT

ON ARTIFICIAL INTELLIGENCE

J. McCarthy, Dartmouth College
M. L. Minsky, Harvard University
N. Rochester, I.B.M. Corp

C.E. Shannon, Bell Telepho

August 31, 1955

1) Automatic Computers

If a machine can do a job, then an automatic calculator can
be programmed to simulate the machine. The speeds and
memory capacities of present computers may be insufficient
to simulate many of the higher functions of the human brain,
but the major obstacle is not lack of machine capacity, but
our inability to write programs taking full advantage of what

we have.

3. Neuron Nets

How can a set of (hypothetical) neurons be ar-
ranged so as to form concepts. Considerable theoret-
ical and experimental work has been done on this prob-
lem by Uttley, Rashevsky and his group, Farley and
Clark, Pitts and McCulloch, Minsky, Rochester and
Holland, and others. Partial results have been ob-

tained but the problem needs more theoretical work.

*

5) Self-Improvement oy

A Proposal for the

DARTMOUTH SUMMER RESEARCH PROJECT ON ARTIFICIAL INTELLI

We propose that a 2 month, 10 man study of artificial intelligence

carried out during the summer of 1956 at Dartmouth College in Hanover, New
Hampshire. The study is to proceed on the basis of the conjecture that every
aspect of learning or any other feature of intelligence can in principle be so pre

cisely described that a machine can be made to simulate it. An attempt will be

made to find how to make machines use language, form abstractions and concepts,
solve kinds of problems now reserved for humans, and improve themselves. We

think that a significant advance can be made in one or more of these problems if

a carefully selected group of scientists work on it together for a summer.

The following are some aspects of the artificial intelligence problem:

Probably a truly intelligent machine will carry out ;
activities which may best be described as self-improve-
ment. Some schemes for doing this have been proposed

and are worth further study. It seems likely that this

question can be studied abstractly as well.

6) Abstractions -
- A number of types of "abstraction' can be distinctly ..

defined and several others less distinctly. A direct
attempt to classify these and to describe machine
methods of forming abstractions from sensory and other

data would seem worthwhile.

Let’s go back to 1940s ...

Computers were already good at

* Doing precisely what the programmer
programs them to do

* Doing arithmetic very fast

However we would have liked them to:

° Interact with noisy data or directly
with the environment

° Be massively parallel and fault tolerant
* Adapt to circumstances

22 0.0 2.0 23,0 08,99 % ¢ 2.2 2.0 SUNH

Researchers were seeking a computational model other than Yon Neumann Machine!

“\ POLITECNICO MILANO 1863

The Brain Computationa Model

The human brain has a huge number of computing units:
* 10 (one hundred billion) neurons
° 7,000 synaptic connections to other neurons

* In total from 1014 to 5 x 1014 (100 to 500 trillion) in adults
to 10%° synapses (1 quadrillion) in a three year old child

The computational model of the brain is:
* Distributed among simple non linear units
° Redundant and thus fault tolerant
° Intrinsically parallel

Perceptron: a computational model based on the brain!

[L77) POLITECNICO MILANO 1863

Computation in Biological Neurons

Cell body

Axon

Nucleus

Axon hillock
i

Golgi apparatus
Endoplasmic
reticulum

P
Mitochondrion Dendrite

Dendritic branches

N\

POLITECNICO MILANO 1863

Telodendria

Synaptic terminals

Computation in Artificial Neurons

Information is transmitted through chemical mechanisms:
° Dendrites collect charges from synapses, both Inhibitory and Excitatory
° Cumulates charge is released (neuron fires) once a Threshold is passed

h](X|W, b) — h] (Zl=1Wi *Xi — b) — h] (Z{=0Wi ¥ Xi) — h](WTX)

r %
{ -

"\ POLITECNICO MILANO 1863

Computation in Artificial Neurons

Information is transmitted through chemical mechanisms:
° Dendrites collect charges from synapses, both Inhibitory and Excitatory
° Cumulates charge is released (neuron fires) once a Threshold is passed

h](X|W, b) — h] (Z{=1Wi *Xi — b) — h] (le=0wi ¥ Xi) — h](WTX)

OLITECNICO MILANO 1863

Who did it first?

Several researchers were investigating models for the brain

° In 1943, Warren McCullog and Walter Harry Pitts
proposed the Treshold Logic Unit or Linear Unit,
the activation function was a threshold unit
equivalent to the Heaviside step function

° In 1957, Frank Rosemblatt developed the first
Perceptron. Weights were encoded in potentiometers,
and weight updates during learning were performed
by electric motors

° In 1960, Bernard Widrow introduced the idea of
representing the threshold value as a bias term
In the ADALINE (Adaptive Linear Neuron or later
Adaptive Linear Element)

In Be
i |
"

- -
- -
3
i
% -
-
- -'
i
-
i I
! 2
3
Yy
! I
-

- wies 4 T - T - e

i The Mark | Perceptron 7

" POLITECNICO MILANO 1863

What can you do with it?

m

0
1 0 1 1
1
1

=
N
~ O

0
1 0 1 0
1 1 O 0
1 1 1 1

Perceptron as

Logical OR
W1:1 hOR(W0+W1‘X1+W2'x2)=
1
= hOR (__‘l‘ X1 +x2) =
hor(x|w) 2
1
_ 1, lf <__+x1+x2>>0
—-1/2 -
@ 0, otherwise

hanp(Wo + Wy - X1 + Wy - Xp) =

3
= hAND <—2 + = X1 + x2> =
hanp (x[w) 2

3
_ 1, lf (—2+§x1+x2>>0

0, otherwise

Perceptron as

Logical AND

POLITECNICO MILA. .

" POLITECNICO MILANO 1863

Perceptron Math

A perceptron computes the value of a weighted sum and returns its Sign (Thresholding)
— I — Qi
hi(x|w) = h]-(Zl-:OWi - x;) = Sign(wg + wy - x1 + -+ w; - xp)
It is basically a linear classifier for which the decision boundary is the hyperplane

WO+W1'X1+'”+WI'XI=O

In 2D, this turns into sz
W0+W1'x1+W2°X2=O \CD ¢

Boolean Operators Linear Boundaries

The previous boundary explains how the Perceptron implements the Boolean operators

°
®
o What’s about it? We
had already Boolean
operators

POLITECNICO MILANO 1863

Hebbian Learning

“The strength of a synapse increases according to the simultaneous
activation of the relative input and the desired target”
(Donald Hebb, The Organization of Behavior, 1949)

Hebbian learning can be summarized by the following rule: Start from a random
k+1 .k k initialization
w; = W; + AWl' ®

Awf =n - xF -tk

L
Where we have: ..

Fix the weights one sample

* n:learning rate at the time (online), and
* x¥: the it" perceptron input at time k only if the sample is not

* tk: the desired output at time k correctly predicted

POLITECNICO MILANO 1863

Perceptron Example

Learn the weights to implement the OR operator

* Start from random weights, e.g.,
w=][111]

° Chose a learning rate, e.g.,
n =0.5
° Cycle through the records by
fixing those which are not correct

° End once all the records are correctly predicted

Does the procedure converge?
Does it always converge to the same sets of weights?

" POLITECNICO MILANO 1863

What can’t you do with it?

What if the dataset we want to learn does not have a linear separation boundary

A
-- X2
= “ Marvin Minsky, Seymour Papert
, 1 2 “Perceptrons: an introduction to :
’ ° 0 . [¢ computational geometry” 1969 ' \ QQ&_‘; 4
v | §\j_.:_::fl’crccplrons

1 0 1 1 =
1 1 0 1
T TR T S|

-? @ >

X1

The Perceptron does not work any more and we need alternative solutions

° Non linear boundary

* Alternative input representations - ¢ O The idea behind Multi
Layer Perceptrons

POLITECNICO MILANO 1863

What can’t you do with it?

Type of Classes with Most General
Decision Region XOR Problem Meshed Regions Region Shapes

Half bounded
by hyperplanes

Topology

®

Convex Open or
Clesed Regions

Unfortunately Hebbian
learning does not work
any more ...

Arbitrary Regions
(Complexity limited by
the number of nodes)

I_UyL.l I Ci LLFLI Uihio

POLITECNICO MILANO 1863

Feed Forward Neural Networks Non-linear model characterized by the

number of neurons, activation
functions, and the values of weights.

Activation
functions must be
differentiable

The output of a neuron depends
only on the previous layers

D — [-1 l
through weights W1 = { = {hj (h=D, W))}

Layers are connected

v b

Which Activation Function?

Sigmoid and Tanh
used. in Classification

3.0
ol o T— X »
N — g @
P S - O -]
ool T O —_—
cosl Ty S D —

10k e A T — S

I e — — S R
—2.0F e 20k ,,,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,,, ,,,,,,,, | —2.0F \ TR

—as5b.. T e R T o5k T SN S—— T

-3.03 -2 -1 0 1 2 3

Linear activation function Sigmoid activation function Tanh activation function

_ 1 exp(a) — exp(—a)

g’(a) =a g(a) = 1+ exp(—a) 9(a) = exp(a) + exp(—a)
gla)=1 g'(@) = g(@)(1 - g(a)) g'(@) =1-g(a)?

—3.03 =3 1 0 1 2 3 -303 —2 -1 0 1 2 3

POLITECNICO MILANO 1863

Output Layer in Regression and Classification

In Regression the output spans the whole R domain:
° Use a Linear activation function for the output neuron

In Classification with two classes, chose according to their coding:
* Two classes {Q, = —1,Q,; = +1} then use Tanh output activation

* Two classes {Q, = 0,Q; = 1} then use Sigmoid output activatig
(it can be interpreted as class posterior probability) «One hot» coding

0@
When dealing with multiple classes (K) use as many neuron as classes

* Classesarecodedas {Q,=[001],Q, =[010],Q, =[100]}

eXp(hk (Zf wrix l))
T exp {1y (St

* Output neurons use a softmax unit y, =

" POLITECNICO MILANO 1863

Neural Networks are Universal Approximators

“A single hidden layer feedforward neural network
with S shaped activation functions can approximate
any measurable function to any desired degree of
accuracy on a compact set ”

Universal approximation theorem
(Kurt Hornik, 1991)

> xl
Images from Hugo Larochelle’s DL Summer School Tutorial

Regardless of what function we are learning, a single layer can represent it:
° It doesn’t mean there is a learning algorithm that can find the necessary weights!
° In the worse case, an exponential number of hidden units may be required
* The layer may have to be unfeasibly large and may fail to learn and generalize
Classification requires just one extra layer ...

&) POLITECNICO MILANO 1863

Optimization and Learning

Recall about learning a model in regression and classification

(x, WD
* Given a training set ° W11 'l' h; (x, W)
D =< xl,tl > e < XN tN > m
* We want to find the model parameters "”@ g(xlw)

such that for new data
<
0&1’&@ C
<\

y(x,|0) ~ t,

°* |n case of a Neural Network this
can be rewritten as

g(x |W) ~ t oD For this you can minimize
n n >
E = Y (tn — g0enlw))

} POLITECNICO MILANO 1863

Sum of Squared Errors

20

| _
‘ B |||I f g(xn|w)

Sales

iy

Linear model which minimizes
2
E = Zg(tn w g(xnlw))

POLITECNICO MILANO 1863

Non Linear Optimization 101

To find the minimum of a generic function, we compute the partial derivatives of the
function and set them to zero

Iw) _

ow

Closed-form solutions are practically never available so we can use iterative solutions:

° Initialize the weights to a random value 1
. J
* |terate until convergence w

Initial

2 .
ll’/ Gradient
i

Global cost minimum
Jmin(w)

. N

25 POLITECNICO MILANO 1863

Gradient descent - Backpropagation

Use multiple reastarts to seek
for a proper global minimum.

Finding the weighs of a Neural Network is a non linea
®> °

A

N
argmin,, E(w) = z (tn — g(xn, w))? E(w)

n=1

We iterate from a initial configuration

k+1 _ ok _ 0E (w)
w — n
ow | &
W H . H = .
To avoid local minima can use momentum wO wl winb3 w

It depends on where
we start from

OLITECNICO MILANO 1863

Gradient Descent Example

]
g1(xp|lw) = g4

I
2 1

Wl(j) - hy zvvj(l : "Xin

0

J

N
EW) =) (tn = 100, W)’
n=1

0 i

(1) . .
Compute the Wi weight update formula by gradient descent

POLITECNICO MILANO 1863

Gradient Descent Example

Using all the data
points (BATCH)

08
aE(W.(.l))) N 2 ,
](ll) = —2 Z(tn — 91 (xn» W))gi (xn; W)Wl(j)hj <Z Wj(il) - xi’n> X;
Owji - L

POLITECNICO MILANO 1863

Backpropagation and Chain Rule (1)

Updating the weights can be done in parallel, locally, and it requires just two passes ...
° Let x be areal number and two functions f:R >R and g: R - R
* Consider the composed function z = f(g(x)) = f(y) where y = g(x)
° The deivative of f w.r.t. x can be computed applying the chain rule

d dz dy
o= dydx =090 =(960)g')

The same holds for backpropagation

0E (ws”)) ’
2 1
awV _Zz(t — g1 (xn, W)) g1 (xn, W) - w (" h, (2 J(‘) 'xi'n> o
Wi or O ag(xn w) aw(”h()) on;(.) owVx;
ow 09 (xn, W) wPh() () ow D, FWOR

ji Wi

Backpropagation and Chain Rule (2)

Backward pass -
6Wj(l.)

Forward pass

aE(W.(.l))) N I
Ji _ , @) . D

Jt n i=0

\ POLITECNICO MILANO 1863

Gradient Descent Variations

What Hebbian learning

: had to do with this?
Batch gradient descent

Use a single sample,
unbiased, but with

PEwW) 1 iaE(xn, w)
ow N ow
n

Stochastic gradient descent (SGD) high variance
OE(w) 9Escp(w) OE (x,, w)
ow ~ ow - ow Use a subset of

. _ samples, good trade off
Mini-batch gradient descent variance-computation

..

M<N
0E(w) 0Eyp(w) 1 z E (Xn, W)
ow ow M L ow
neMinibatch

OLITECNICO MILANO 1863

Hyperplanes Linear Algebra

Let consider the hyperplane (affine set) L € R?
L:wg +wlix =0

Any two points x; and x, on L € R? have
wl(x; —x,) =0

The versor normal to L € R? is then

wr =w/|lw]

For any point x, in L € R% we have

T

W' Xg = —Wy
The signed distance of any point x in L € R? is defi (w'x + wy) is proportional to
1 the distance of X from the plane
w*' (x — Xo) = 7 (W X + wp) “ defined by (w'x + wg) = 0

Iwll

POLITECNICO MILANO 1863

Perceptron Learning Algorithm (1/2)

It can be shown, the error function the Hebbian rule is minimizing is the distance of
misclassified points from the decision boundary.
Let’s code the perceptron output as +1/-1

* If an output which should be +1 is misclassified then wix + wy, < 0

° For an output with -1 we have the opposite

Set of points
The goal becomes minimizing misclassified

D(w,wy) = — Z t(wlx; + wp)
iEM
This Is non negative and proportional to the distance of the misclassified points from

wix+w,=0

" POLITECNICO MILANO 1863

Perceptron Learning Algorithm (2/2)

Let's minimize by stochastic gradient descend the error function

D(w,wy) = — z t;(Wix; + wp)
IEM
The gradients with respect to the model parameters are

GD(W,WO)__zt . dD(w,wy) Zt
= i " Xj = - i

ow _ dwy, _
lEM lEM

Stochastic gradient descent applies for each misclassified point

whHDY (k . - x;
we) \wp L ti
‘9 Hebbian learning

implements Stocastic
Gradient Descent

\ POLITECNICO MILANO 1863

How to Chose the Error Function?

Sum of Squared

We have observed different error functions so far Errors

N
Ew) =) (tn = 910tn, W))?
n=1

D(w,wy) = — Z t; (WX + wpo) 0@

IEM

Perceptron
Classification Error

Error functions define the task to be solved, but how to design them?
* Exploit background knowledge on the task and the model, e.g., Perceptron
* Use all your knowledge/assumptions about the data distribution
° Use your creativity!
y y o

This requires lots of
trial and errors ...

OLITECNICO MILANO 1863

A Note on Maximum Likelihood Estimation

Let’'s observe some i.i.d. samples coming from a Gaussian distribution with known o2

VoD plelino?) = e 0
X1, X2, e, XN ~ U, o p(xX|U,o”) = e 20
V2o
A This hypothesis makes

p(X) .
the most of the points

likely to be observed

L
‘e This point is very
unlikely under the RED
hypothesis

This point is very
unlikely under the
GREEN hypothesis

POLITECNICO MILANO 1863

A Note on Maximum Likelihood Estimation

Let’'s observe some i.i.d. samples coming from a Gaussian distribution with known o2

VoD plelino?) = e 0
X1, X2, e, XN ~ U, o p(xX|U,o”) = e 20
V2o
A This hypothesis makes

p(X) .
the most of the points

likely to be observed

Maximum Likelihood: Chose the parameters which maximize the data probability

OLITECNICO MILANO 1863

Maximum Likelihood Estimation: The Recipe

Let 6 = (04,6, ...,Hp)T a vector of parameters, find the MLE for 6 by knowing p(Data|6):
* Write the likelihood L = P(Data|8) for the data

* [Take the logarithm of likelihood | = log P(Data|60)] ., 4
oL __ al . . Optional
* Work out g OF 55 USing high-school calculus -
al

. . oL
* Solve the set of simultaneous equations Y i 0 or Py i 0
l l

* Check that 6MLE js a maximum

We know already about

o L o gradient descent, let’s try
To maximize/minimize the (log)likelihood you can use: with some analitical stuff ...

* Analytical Technigues (i.e., solve the equations) , ® ©
* Optimizaion Techniqgues (e.g., Lagrange mutipliers)
* Numerical Techniques (e.g., gradient descend)

OLITECNICO MILANO 1863

Maximum Likelihood Estimation Example

Let’'s observe some i.i.d. samples coming from a Gaussian distribution with known o2

, 1 _=w?
X1, X2, o, Xy ~ N(,0%) p(x|u,0%) = mae 2052

A

p(X)

Find the Maximum Likelihood Estimator for u

POLITECNICO MILANO 1863

Maximum Likelihood Estimation Example

Let’'s observe some i.i.d. samples coming from a Gaussian distribution with known o2

, 1 _=w?
X1, X2, o, Xy ~ N(,0%) p(x|u,0%) = mae 2052

* Write the likelihood L = P(Data|@) for the data

N
L(w) = p(x1, %2, .., xylu, 02) = Hp(xnlu,az) =
n=1

L1 Gamw?
=‘ ‘ e 202

1 V2no

n=1

OLITECNICO MILANO 1863

Maximum Likelihood Estimation Example

Let’'s observe some i.i.d. samples coming from a Gaussian distribution with known o2

5 1 _(x—p)?
X1, X2, o, Xy ~ N(,0%) p(x|u,0%) = mae 2052
* Take the logarithm | = log P(Data|@) of the likelihood
1) =1 = 1 _(xn—pzt)z A 1 1 _(xn_lvz")z
H) =10 1_[e 2:0 — 2 0) e 20 —
i ey V&' TO — gVZ-ﬂa

N

1 1
= N - log Z(xn Dk

2.7-[0'_2'0-2

n

POLITECNICO MILANO 1863

Maximum Likelihood Estimation Example

Let’'s observe some i.i.d. samples coming from a Gaussian distribution with known o2

, 1 _=w?
X1, X2, o, Xy ~ N(,0%) p(x|u,0%) = \/Eae 2052

* Work out dl/d6 using high-school calculus

ol() @ 1 1 <
= N log———— o (e~ W)? | =
n

POLITECNICO MILANO 1863

Maximum Likelihood Estimation Example

Let’'s observe some i.i.d. samples coming from a Gaussian distribution with known o2

, 1 _=w?
X1, X2, o, Xy ~ N(,0%) p(x|u,0%) = \/Eae 2052

* Solve the set of simultaneous equations % =0

Let’s apply this all to
Neural Networks!

I} POLITECNICO MILANO 1863

Neural Networks for Regression

Goal: approximate a target function t having a finite set of N observations

t, = g(x,|w) + €, e, ~ N(0,0%)

: POLITECNICO MILANO 1863

Statistical Learnig Framework

'%.

2w _ i “n ?
o 2
@ o 9 (xplw) |
|I [l
E - / ||- 1| I “ | ¢
% ot
gl tn
| | | | | | |
0 50 100 150 200 250 300

OLITECNICO MILANO 1863

Neural Networks for Regression

Goal: approximate a target function t having a finite set of N observations

t, = glx,|w) + €,, €, ~N(0,62) ™ t, ~N(gk,lw),c%)

POLITECNICO MILANO 1863

Maximum Likelihood Estimation for Regression

We have some i.i.d. samples coming from a Gaussian distribution with known ¢*

1 _(t—g(XIW))2
ty, ~ N(g(xy|w),c?) p(tlg(x|w),0%) = NP 207

Write the likelihood L = P(Data|8) for the data

N
L) = plt, o, tylgCew), 02 = | | ptalgCenlw), o) =
n=1

o1 (tamgGnw)’
— 1_[e 202
n=1

} POLITECNICO MILANO 1863

Maximum Likelihood Estimation for Regression

We have some i.i.d. samples coming from a Gaussian distribution with known ¢*

1 _(t—g(xIW))2
ty, ~ N(g(xy|w),c?) p(tlg(x|w),0%) = NP 207

Look for the weights which maximixe the likelihood

() N 1 (tn_g(xn|W))2
argmax,, L(w) = argmax,, 1_[e 202 =
n=1\/27w

N 1 _(tn—g<xn|w))2\ u 1 1 2
= argmax,, z]()g o e 207 = argmax,, lOg \/EO‘ — 20_2 (tn — g(xn|W)) =

n n

N
. 2
argmin,, z(tn - g(xnlw))
n

' POLITECNICO MILANO 1863

Neural Networks for Classification

Goal: approximate a posterior probability t having a finite set of N observations

g(xnlw) = p(tylxy), t, €{0,1} — ty ~ Be(g(xnlw))

POLITECNICO MILANO 1863

Maximum Likelihood Estimation for Classification

We have some 1.i.d. samples coming from a Bernulli distribution with known

tn ~ Be(gGalw)) p(tlg(xlw)) = gCxlw)* - (1 - g(xIw)) ™

Write the likelihood L = P(Data|8) for the data

N
L(w) = p(ty, ty, ., tylg(xIw)) = Hp(tnm(xn'“’)) =
n=1

N
= Hg(xnlw)tn ' (1 — g(xnlw))l_tn
n=1

POLITECNICO MILANO 1863

Maximum Likelihood Estimation for Classification

We have some 1.i.d. samples coming from a Bernulli distribution with known

tn ~ Be(gGalw)) p(tlg(xlw)) = gCxlw)* - (1 - g(xIw)) ™

Look for the weights which maximize the likelihood

N
argmax,, L(w) = argmax,, ng(xnlw)tn (1- g(xn|w))1_t" =

n=1
N

Crossentropy 1X,, z t,log g(x,|w) + (1 —t,)log(1 — g(x,|w)) =
— Yn ty 1og g (s |W)

argmin, —)ty log gCeulw) + (1 = t,) log(1 — gy |w))

OLITECNICO MILANO 1863

iy,
7
“,

\\

\\\\\\\

) 2
e\ 7,
= £

4 H
4
S
A

Cognitive Robotics
2018/2019

Neural Networks Training

Matteo Matteucci
matteo.matteucci@polimi.it

Artificial Intelligence and Robotics Lab - Politecnico di Milano

Neural Networks are Universal Approximators

“A single hidden layer feedforward neural network
with S shaped activation functions can approximate
any measurable function to any desired degree of
accuracy on a compact set ”

Universal approximation theorem (Kurt Hornik, 1991)

Regardless of what function we are learning, a single layer can do it ...
° ... butit doesn't mean we can find the necessary weights!
° ... but an exponential number of hidden units may be required
° ... butit might be useless in practice if it does not generalize!

“Entia non sunt multiplicanda praeter necessitatem” '
William of Ockham (c 1285 — 1349) |

“\ POLITECNICO MILANO 1863

Model Complexity

Inductive Hypothesis: A solution approximating the target function over a sufficiently large set of
training examples will also approximate it over unobserved examples

Too simple models
Underfit the data ...

Too complex models
Overfit the data and do
not Generalize

POLITECNICO MILANO 1863

How to Measure Generalization?

Training error/loss is not a good indicator of performance on future data:

* The classifier has been learned from the very same training data,
any estimate based on that data will be optimistic

New data will probably not be exactly the same as training data
You can find patterns even in random data

We need to test on an independent new test set Done for training on
' Il dataset
* Someone provides you a new dataset L LRSS

* Split the data and hide some of them for later evaluation
* Perform random subsampling (with replacement) of the dataset

In classification you should preserve class distribution, i.e., stratified sampling!

" POLITECNICO MILANO 1863

Cross-validation Variations

Cross-validation uses training data itselves to estimate the error on new data
* When enough data available use an hold out set and perform validation

OLITECNICO MILANO 1863

123

!

FIGURE 5.1. A schematic display of the validation set approach. A set of n
observations are randomly split into a training set (shown in blue, containing
observations 7, 22, and 13, among others) and a validation set (shown in beige,
and containing observation 91, among others). The statistical learning method is
fit on the training set, and its performance is evaluated on the validation set.

72213 91

54

Cross-validation Variations 55

Cross-validation uses training data itselves to estimate the error on new data
* When enough data available use an hold out set and perform validation
* When not too many data available use leave-one-out cross-validation (LOOCV)

123

n

123
123

123

123 n

FIGURE 5.3. A schematic display of LOOCYV. A set of n data points is repeat-
edly split into a training set (shown in blue) containing all but one observation,
and a validation set that contains only that observation (shown in beige). The test
error is then estimated by averaging the n resulting MSE’s. The first training set

contains all but observation 1, the second training set contains all but observation
2, and so forth.

7} POLITECNICO MILANO 1863

Cross-validation Variations 56

Cross-validation uses training data itselves to estimate the error on new data
* When enough data available use an hold out set and perform validation
* When not too many data available use leave-one-out cross-validation (LOOCV)
* Use k-fold cross-validation for a good trade-off (sometime better than LOOCYV)

123 n

. 1 E(|) 11765 47
e, — — Xn, |W

k™ N z: Nk 11765 47

ngeN

kle 11765 a7

E=E &, 11765 a7

” 11765 a7

FIGURE 5.5. A schematic display of 5-fold CV. A set of n, observatio

randomly split into five non-overlapping groups. Each of these Q oot .
validation set (shown in beige), and the remainder as a traini What do | do with all
blue). The test error is estimated by averaging the five resulting W these models?

) POLITECNICO MILANO 1863

Early Stopping: Limiting Overfitting by Cross-validation

Overfitting networks show a monotone training error trend (on average with SGD) as the
number of gradient descent iterations k, but they lose generalization at some point ...

E(x|w)
* Hold out some data

° Train on the training set

* Perform cross-validation
on the hold out set Online estimate of the

° Stop the train when generalization error
validation error increases

Egs(x|w)

Training set error

\ POLITECNICO MILANO 1863

Cross-validation and Hyperparameters Tuninig

Model selection and evaluation happens at different levels:
* Parameters level, i.e, when we learn the weights w for a neural network

* Hyperparameters level, i.e., when we chose the number of layers L or
the number of hidden neurons J® or a give layer

° Meta-learning, i.e., when we learn from data a model to chose hyperparameters

E(x|w) E(x|Xv)
. L
Generalization error Eps(xw) _? Chose model with
with J neurons in 1 layer , i best validation error
Validation set error ~ CES(XIW) T
_____________ Efs(xlw) [t
Training set error i i
kgs k 1 2 JO

POLITECNICO MILANO 1863

Weight Decay: Limiting Overfitting by Weights Regularization
Regularization is about constraining the model «freedom», based on a-priori

assumption on the model, to reduce overfitting.
o o Maximum
So far we have maximized the data likelihood: Likelihood

wyg = argmax,, P(D|w)

_ _ , Make assumption
We can reduce model «freedom» by using a Bayesian ap on parameters

(a-priori) distribution

g o Wyap = argmax,, P(w|D) o
A-Posteriori = argmax,, P(D|w) - P(w)

Small weights have been observed to improve generalization of neural networks:

P(w) ~ N(0,a;3)

OLITECNICO MILANO 1863

Weight Decay: Limiting Overfitting by Weights Regularization

w = argmax,, P(w|D) = argmax,, P(D|w) P(w)

2
N 1 _(tn_g(xn|W))2 ¢ 1 _(;ng
= argmax 1_[e 207 e “%w
Wn=1\/27w _1v2may,
N 2 Q 2
_ (tn — g(xnlw)) + (Wq)
= argmin,, 202 202 Here it comes
n=1 q=1 W another loss
N Q function!!!
. 2 2.0
= argmin,,) (t, —glxa|w)) +vy (Wq)
oot . 27 . J
Fitting Regularization

OLITECNICO MILANO 1863

Recall Cross-validation and Hyperparameters Tuninig

You can use cross-validaton to select the proper y:
* Split data in training and validation sets

Co : E(x|w
° Minimize for different values of y (lA) __
NTRAIN , Q , EY4L -_-'.‘ -?
EPFAN = 3 (ty — gCralw))’ +7) (we) "
n=1 g=1 EVAL ,____i____";’ i
* Evaluate the model A §
5 EVAL | gy :
EYA =) (ta = gCalw) T | |
L i N
* Chose the y* with the best validation error 01 1 5 100 vy

° Put back all data together and minimize

N Q
2 " 2 * .
By =) (ta = gCeulw)* + 7) (wy) Chose y* = 5 with
n=1 q=1 best validation error

POLITECNICO MILANO 1863

Dropout: Limiting Overfitting by Stochastic Regularization

By turning off randomly some neurons we force them to learn an independent feature
preventing hidden units to rely on other units (co-adaptation):

* Each hidden unit is set to zero with p](-l) probability, e.q., p](.l) = 0.3

l l

i~ e 1)

g1(x|w) J

AO W Dp=D e m)

gx (x[w)

Dropout: Limiting Overfitting by Stochastic Regularization

By turning off randomly some neurons we force them to learn an independent feature
preventing hidden units to rely on other units (co-adaptation):

* Each hidden unit is set to zero with p](-l) probability, e.q., p](.l) = 0.3

l l

? ~ e (o)

g1(x|w) J

AO W Dp=D e m)

gx (x[w)

5 ‘;:;i POLITECNICO MILANO 1863

Dropout: Limiting Overfitting by Stochastic Regularization

By turning off randomly some neurons we force them to learn an independent feature
preventing hidden units to rely on other units (co-adaptation):

* Each hidden unit is set to zero with p](-l) probability, e.q., p](.l) = 0.3

l l
D (D
m; -~ ~ Be (pj)

91 (x|w)
AO W Dp=D e m)

gx (x[w)

5 ‘;:;i POLITECNICO MILANO 1863

Dropout: Limiting Overfitting by Stochastic Regularization

By turning off randomly some neurons we force them to learn an independent feature
preventing hidden units to rely on other units (co-adaptation):

* Each hidden unit is set to zero with p](-l) probability, e.q., p](.l) = 0.3

l l

? ~ e (o)

g1(x|w) J

AO W Dp=D e m)

gx (x[w)

5 ‘;:;i POLITECNICO MILANO 1863

Dropout: Limiting Overfitting by Stochastic Regularization

In Dropout we train a number of weaker classifiers, on the different mini- batch and then
at test time we use them by averaging the responses of all ensemble members.

Behaves as an
ensemble method

" POLITECNICO MILANO 1863

Dropout: Limiting Overfitting by Stochastic Regularization

In Dropout we train a number of weaker classifiers, on the different mini- batch and then
at test time we use them by averaging the responses of all ensemble members.

At testing time we remove the masks and we average the output (by weight scaling)

Behaves as an
ensemble method

iy,
7
“,

\\

\\\\\\\

) 2
e\ 7,
= £

4 H
4
S
A

Cognitive Robotics
2018/2019

Neural Networks Tips & Tricks

Matteo Matteucci
matteo.matteucci@polimi.it

Artificial Intelligence and Robotics Lab - Politecnico di Milano

Better Activation Functions

Activation functions such as Sigmoid or Tanh saturate 1

Saturation
°* Gradient is close to zero Zero Gradient

. . L . \
° Backprop. requires gradient multiplications -10
* Gradient faraway from the output vanishes
° Learning in deep networks does not happen

10

~

JACHR
a(<1>))__ZZ(— g1 (W) - g1 (W) - Wi+ B (Z @. >

This is a well known problem in Recurrent Neural Networks, but it affects also deep
networks, and it has hindered neural network training since ever ...

7\ POLITECNICO MILANO 1863

Rectified Linear Unit

10

The ReLU activation function has been introduced

g(a) = ReLu(a) = max(0,a)
g'(a)

= 1450

It has several advantages: —10 10

* Faster SGD Convergence (6x w.r.t sigmoid/tanh)
° Sparse activation (only part of hidden units are activated)

° Efficient gradient propagation (no vanishing or exploding gradient problems),
and Efficient computation (just thresholding at zero)

* Scale-invariant:
max(0, ax) = amax(0, x)

77 POLITECNICO MILANO 1863

Rectified Linear Unit

10

The ReLU activation function has been introduced

g(a) = ReLu(a) = max(0,a)

gr(a) = 1a>0
It has potential sisadvantages: -10 10
* Non-differentiable at zero: however it is differentiable anywhere else
° Non-zero centered output Decreased model

capacity, it happens with

° Unbounded: Could potentially blow up high learning rates

° Dying Neurons: ReLU neurons can sometimes bggtsh
they become inactive for essentially all inputs. No gradients flow backward
through the neuron, and so the neuron becomes stuck and "dies".

OLITECNICO MILANO 1863

Rectified Linear Unit (Variants)

Leaky ReLU: fix for the “dying ReLU” problem

(

T if x>0

\0.013: otherwise

f(z) = <

ELU: try to make the mean activations closer to zero
which speeds up learning. Alpha is tuned by handby hand

T if x>0

ae® —1) otherwise

: POLITECNICO MILANO 1863

Weights Initialization

The final result of gradient descent is highly affected by weight initialization:
* Zeros: it does not work! All gradient would be zero, no learning will happen
° Big Numbers: bad idea, if unlucky might take very long to converge

° w~ N(0,0% = 0.01): good for small networks, but it might be a problem for
deeper neural networks

In deep networks:
* If weights start too small, then gradient shrinks as it passes through each layer

* If the weights in a network start too large, then gradient grows as it passes
through each layer until it's too massive to be useful

Some proposal to solve this Xavier initialization or He initialization ...

5 ‘;:;i POLITECNICO MILANO 1863

Xavier Initialization

Suppose we have an input x with I components and a linear neuron with random
weights w. Its output is

hi = wjixq + - +wjxg + -+ wjp X
We can derive that wj;x; Is going to have variance
Var(wjix;) = E[xi]zVar(Wji) + E[Wji]zVar(xi) + Var(w;;)Var(x;)
Now if our inputs and weights both have mean 0, that simplifies to
Var(wjix;) = Var(wj)Var(x;)
If we assume all w; and x; are i.i.d. we obtain
Var(hj) = Var(wjlxl + o Fwiixg o+ wyy x,) = nVar(w;)Var(x;)

The variance of the output is the variance of the input, but scaled by nVar(w;).

o Ty

\ POLITECNICO MILANO 1863

Xavier Initialization

If we want the variance of the input and the out to be the same

Linear assumption

nVar(w;) =1 seem too much, but
in practice it works!

For this reason Xavier proposes to initialize w ~ N (0, i) ®

Nin

Performing similar reasoning for the gradient Glorot & Bengio found

noutVar(wj) =1

To accommodate for this and for the Xavier constraint they propose w ~ N (O,n +2n)
in out

More recently He proposed, for rectified linear units, w ~ N (O, i)

Nin

POLITECNICO MILANO 1863

Recall about Backpropagation

Finding the weighs of a Neural Network is a non linear minimization process

N
argmin,, E(w) = z (tn — g(xn, w))? E(w)

n=1

We iterate from a initial configuration

0E (w)

k+1 _ ok _ N7
L ow

w =

wk

%

A

To avoid local minima can use momentum

Several variations
exists beside these two

More about Gradient Descent

Nesterov Accelerated gradient: first make a jump as the momentum, then adjust

1 0E (w
dw wk-1
whtl = ik _p OE(w)
ow K+
w 2

brown vector = jump, red vector = correction, green vector = accumulated gradient

blue vectors = standard momentum

OLITECNICO MILANO 1863

Adaptive Learning Rates

Neurons in each layer learn differently
* Gradient magnitudes vary across layers
* Early layers get “vanishing gradients”
* Should ideally use separate adaptive learning rates

Several algoritm proposed.
* Resilient Propagation (Rprop — Riedmiller and Braun 1993)
* Adaptive Gradient (AdaGrad — Duchi et al. 2010)
°* RMSprop (SGD + Rprop — Teileman and Hinton 2012)
° AdaDelta (Zeiler et at. 2012)
* Adam (Kingma and Ba, 2012)

Learning Rate Matters

SGD - — SGD
Momentum [- Momentum
—— NAG : — NAG
— Adagrad | — Adagrad
~ Adadelta ~ Adadelta
Rmsprop - Rmsprop

e

