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In principle it was the Perceptron ...

How this all started out?

Why it eventually
died out?

How came we still use 
neural networks?
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The inception of AI



4

Let’s go back to 1940s ...

Computers were already good at

• Doing precisely what the programmer 

programs them to do

• Doing arithmetic very fast

However we would have liked them to:

• Interact with noisy data or directly

with the environment

• Be massively parallel and fault tolerant

• Adapt to circumstances

Researchers were seeking a computational model other than Von Neumann Machine!
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The Brain Computationa Model

The human brain has a huge number of computing units: 

• 1011 (one hundred billion) neurons

• 7,000 synaptic connections to other neurons

• In total from 1014 to 5 x 1014 (100 to 500 trillion) in adults

to 1015 synapses (1 quadrillion) in a three year old child

The computational model of the brain is:

• Distributed among simple non linear units

• Redundant and thus fault tolerant

• Intrinsically parallel

Perceptron: a computational model based on the brain!
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Computation in Biological Neurons
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Computation in Artificial Neurons

Information is transmitted through chemical mechanisms:

• Dendrites collect charges from synapses, both Inhibitory and Excitatory

• Cumulates charge is released (neuron fires) once a Threshold is passed

x1

xI

xi

… 

… 

1

ℎ𝑗 𝑥 w, b
𝑤𝑖

𝑤1

𝑤𝐼

𝑏

Σ -

ℎ𝑗 𝑥 w, b = hj Σ𝑖=1
𝐼 𝑤𝑖 ⋅ 𝑥𝑖 − 𝑏 = hj Σ𝑖=0

𝐼 𝑤𝑖 ⋅ 𝑥𝑖 = ℎ𝑗(𝑤
𝑇𝑥)
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Computation in Artificial Neurons

Information is transmitted through chemical mechanisms:

• Dendrites collect charges from synapses, both Inhibitory and Excitatory

• Cumulates charge is released (neuron fires) once a Threshold is passed

ℎ𝑗 𝑥 w, b = hj Σ𝑖=1
𝐼 𝑤𝑖 ⋅ 𝑥𝑖 − 𝑏 = hj Σ𝑖=0

𝐼 𝑤𝑖 ⋅ 𝑥𝑖 = ℎ𝑗(𝑤
𝑇𝑥)

x1

xI

xi

… 

… 

1

ℎ𝑗 𝑥 w
𝑤𝑖

𝑤1

𝑤𝐼
𝑤0
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Who did it first?

Several researchers were investigating models for the brain 

• In 1943, Warren McCullog and Walter Harry Pitts 

proposed the Treshold Logic Unit or Linear Unit, 

the activation function was a threshold unit 

equivalent to the Heaviside step function

• In 1957, Frank Rosemblatt developed the first 

Perceptron. Weights were encoded in potentiometers,

and weight updates during learning were performed 

by electric motors

• In 1960, Bernard Widrow introduced the idea of

representing the threshold value as a bias term

in the ADALINE (Adaptive Linear Neuron or later 

Adaptive Linear Element)
The Mark I Perceptron
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What can you do with it?

𝒙𝟎 𝒙𝟏 𝒙𝟐 OR

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

𝒙𝟎 𝒙𝟏 𝒙𝟐 AND

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

x1

xi

1

ℎ𝐴𝑁𝐷 𝑥 w

𝑤2 = 1

𝑤1 = 3/2

𝑤0 = −2

x1

xi

1

ℎ𝑂𝑅 𝑥 w

𝑤2 = 1

𝑤1 = 1

𝑤0 = −1/2

ℎ𝑂𝑅(𝑤0 + 𝑤1 ⋅ 𝑥1 + 𝑤2 ⋅ 𝑥2) =

= ℎ𝑂𝑅 −
1

2
+ 𝑥1 + 𝑥2 =

=  
1, 𝑖𝑓 −

1

2
+ 𝑥1 + 𝑥2 > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

ℎ𝐴𝑁𝐷(𝑤0 + 𝑤1 ⋅ 𝑥1 + 𝑤2 ⋅ 𝑥2) =

= ℎ𝐴𝑁𝐷 −2 +
3

2
𝑥1 + 𝑥2 =

=  
1, 𝑖𝑓 −2 +

3

2
𝑥1 + 𝑥2 > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Perceptron as 
Logical OR

Perceptron as 
Logical AND
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Perceptron Math

A perceptron computes the value of a weighted sum and returns its Sign (Thresholding)

It is basically a linear classifier for which the decision boundary is the hyperplane

In 2D, this turns into

ℎ𝑗 𝑥 w = hj Σ𝑖=0
𝐼 𝑤𝑖 ⋅ 𝑥𝑖 = 𝑆𝑖𝑔𝑛 𝑤0 + 𝑤1 ⋅ 𝑥1 + ⋯ + 𝑤𝐼 ⋅ 𝑥𝐼

𝑤0 + 𝑤1 ⋅ 𝑥1 + ⋯ + 𝑤𝐼 ⋅ 𝑥𝐼 = 0

𝑤0 + 𝑤1 ⋅ 𝑥1 + 𝑤2 ⋅ 𝑥2 = 0
𝑤2 ⋅ 𝑥2 = −𝑤0 − 𝑤1 ⋅ 𝑥1

𝑥2 = −
𝑤0

𝑤2
−

𝑤1

𝑤2
⋅ 𝑥1

𝑥1

𝑤0 + 𝑤𝑇𝑥 = 0

𝑥2
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Boolean Operators Linear Boundaries

The previous boundary explains how the Perceptron implements the Boolean operators

𝑥1

𝑤0 + 𝑤𝑇𝑥 = 0

𝑥2

𝑥1

𝑤0 + 𝑤𝑇𝑥 = 0

𝑥2

𝒙𝟎 𝒙𝟏 𝒙𝟐 OR

1 0 0 -1

1 0 1 1

1 1 0 1

1 1 1 1

𝒙𝟎 𝒙𝟏 𝒙𝟐 AND

1 0 0 -1

1 0 1 -1

1 1 0 -1

1 1 1 1

What’s about it? We 
had already Boolean 

operators
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Hebbian Learning

“The strength of a synapse increases according to the simultaneous 

activation of the relative input and the desired target” 

(Donald Hebb, The Organization of Behavior, 1949)

Hebbian learning can be summarized by the following rule:

Where we have:

• 𝜂: learning rate

• 𝑥𝑖
𝑘: the 𝑖𝑡ℎ perceptron input at time 𝑘

• 𝑡𝑘: the desired output at time 𝑘

𝑤𝑖
𝑘+1 = 𝑤𝑖

𝑘 + Δ𝑤𝑖
𝑘

Δ𝑤𝑖
𝑘 = 𝜂 ⋅ 𝑥𝑖

𝑘 ⋅ 𝑡𝑘

Fix the weights one sample 
at the time (online), and 
only if the sample is not 

correctly predicted

Start from a random 
initialization
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Perceptron Example

Learn the weights to implement the OR operator

• Start from random weights, e.g., 

𝑤 = [1 1 1]

• Chose a learning rate, e.g., 

𝜂 = 0.5

• Cycle through the records by

fixing those which are not correct

• End once all the records are correctly predicted

Does the procedure converge? 

Does it always converge to the same sets of weights?

𝒙𝟎 𝒙𝟏 𝒙𝟐 OR

1 0 0 -1

1 0 1 1

1 1 0 1

1 1 1 1

x1

xi

1

ℎ𝑂𝑅 𝑥 w

𝑤2 = ?

𝑤1 = ?

𝑤0 = ?
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What can’t you do with it?

What if the dataset we want to learn does not have a linear separation boundary

The Perceptron does not work any more and we need alternative solutions

• Non linear boundary

• Alternative input representations

𝑥1

𝑥2

𝒙𝟎 𝒙𝟏 𝒙𝟐 XOR

1 0 0 -1

1 0 1 1

1 1 0 1

1 1 1 -1

Marvin Minsky, Seymour Papert
“Perceptrons: an introduction to 
computational geometry” 1969.

The idea behind Multi 
Layer Perceptrons
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What can’t you do with it?

What if the dataset we want to learn does not have a linear separation boundary

The Perceptron does not work any more and we need alternative solutions

• Non linear boundary

• Alternative input representations

𝑥1

𝑥2

𝒙𝟎 𝒙𝟏 𝒙𝟐 XOR

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

Marvin Minsky, Seymour Papert
“Perceptrons: an introduction to 
computational geometry” 1969.

The idea behind Multi 
Layer Perceptrons

Unfortunately Hebbian
learning does not work 

any more …
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Feed Forward Neural Networks

x1

xI

xi

… 

… 

1

𝑔1 𝑥 w
𝑤𝑗𝑖

𝑤11

𝑤𝐽𝐼

𝑤10

… … … 

… 

1 1

𝑔𝐾 𝑥 w

1

Input Layer
(I neurons)

Output Layer
(K neurons)

Hidden Layer 1
(J1 neurons)

Hidden Layer 2
(J2 neurons)

Hidden Layer 3
(J3 neurons)

Non-linear model characterized by the 
number of neurons, activation 

functions, and the values of weights.

Layers are connected

through weights  𝑊(𝑙) = 𝑤𝑗𝑖
(𝑙)

The output of a neuron depends 
only on the previous layers 

ℎ(𝑙) = ℎ𝑗
𝑙
(ℎ 𝑙−1 , 𝑊(𝑙))

Activation 
functions must be 

differentiable
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Which Activation Function?

Linear activation function

𝑔 𝑎 = 𝑎

𝑔′ 𝑎 = 1

Sigmoid activation function

𝑔 𝑎 =
1

1 + exp(−𝑎)

𝑔′ 𝑎 = 𝑔(𝑎)(1 − 𝑔 𝑎 )

Tanh activation function

𝑔 𝑎 =
exp 𝑎 − exp(−𝑎)

exp(𝑎) + exp(−𝑎)

𝑔′ 𝑎 = 1 − 𝑔 𝑎 2

Linear activation 
used in Regression

Sigmoid and Tanh 
used in Classification
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Output Layer in Regression and Classification

In Regression the output spans the whole ℜ domain:

• Use a Linear activation function for the output neuron

In Classification with two classes, chose according to their coding:

• Two classes Ω0 = −1, Ω1 = +1 then use Tanh output activation

• Two classes Ω0 = 0, Ω1 = 1 then use Sigmoid output activation 

(it can be interpreted as class posterior probability)

When dealing with multiple classes (K) use as many neuron as classes

• Classes are coded as Ω0 = 0 0 1 , Ω1 = 0 1 0 , Ω2 = [1 0 0]

• Output neurons use a softmax unit  yk =
exp ℎ𝑘  𝑖

𝐼 𝑤𝑘𝑖⋅𝑥𝑖

 
𝑗
𝐽

exp ℎ𝑗  𝑖
𝐼 𝑤𝑗𝑖⋅𝑥𝑖

«One hot» coding
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Regardless of what function we are learning, a single layer can represent it:

• It doesn’t mean there is a learning algorithm that can find the necessary weights!

• In the worse case, an exponential number of hidden units may be required

• The layer may have to be unfeasibly large and may fail to learn and generalize

Classification requires just one extra layer … 

Images from Hugo Larochelle’s DL Summer School Tutorial 

Neural Networks are Universal Approximators

“A single hidden layer feedforward neural network 
with S shaped activation functions can approximate 
any measurable function to any desired degree of 

accuracy on a compact set ”

Universal approximation theorem
(Kurt Hornik, 1991)
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Optimization and Learning

Recall about learning a model in regression and classification

• Given a training set

• We want to find the model parameters

such that for new data

• In case of a Neural Network this 

can be rewritten as

x1

xI

xi

… 

… 

𝑔 𝑥 w
𝑤𝑗𝑖

𝑤11

𝑤𝐽𝐼

… 

ℎ𝑗(𝑥, W(1)) 

1

1

𝐷 =< 𝑥1, 𝑡1 > ⋯ < 𝑥𝑁, 𝑡𝑁 >

𝑦 𝑥𝑛 𝜃 ∼ 𝑡𝑛

𝑔 𝑥𝑛 𝑤 ∼ 𝑡𝑛
For this you can minimize 

𝐸 =  𝑛
𝑁 𝑡𝑛 − 𝑔 𝑥𝑛 𝑤

2
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Sum of Squared Errors

𝑔 𝑥𝑛 𝑤

𝑡𝑛

Linear model which minimizes 

𝐸 =  𝑛
𝑁 𝑡𝑛 − 𝑔 𝑥𝑛 𝑤

2

𝑡𝑛 − 𝑔 𝑥𝑛 𝑤
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Non Linear Optimization 101

To find the minimum of a generic function, we compute the partial derivatives of the 

function and set them to zero

Closed-form solutions are practically never available so we can use iterative solutions:

• Initialize the weights to a random value

• Iterate until convergence

𝜕𝐽(𝑤)

𝜕𝑤
= 0

𝑤𝑘+1 = 𝑤𝑘 − 𝜂  
𝜕𝐽 𝑤

𝜕𝑤
𝑤𝑘
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𝑤

𝐸(𝑤)

Gradient descent - Backpropagation

Finding the weighs of a Neural Network is a non linear minimization process

We iterate from a initial configuration

To avoid local minima can use momentum

𝑎𝑟𝑔𝑚𝑖𝑛𝑤 𝐸 𝑤 =  

𝑛=1

𝑁

𝑡𝑛 − 𝑔(𝑥𝑛, 𝑤) 2

𝑤0 𝑤1 𝑤2𝑤3𝑤4

𝑤𝑘+1 = 𝑤𝑘 − 𝜂  
𝜕𝐸 𝑤

𝜕𝑤
𝑤𝑘

𝑤𝑘+1 = 𝑤𝑘 − 𝜂  
𝜕𝐸 𝑤

𝜕𝑤
𝑤𝑘

− 𝛼  
𝜕𝐸 𝑤

𝜕𝑤
𝑤𝑘−1

Use multiple reastarts to seek 
for a proper global minimum.

It depends on where 
we start from
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x1

xI

xi

… 

… 

𝑔 𝑥 w
𝑤𝑗𝑖

(1)

𝑤11
(1)

𝑤𝐽𝐼
(1)

… 

ℎ𝑗(𝑥, W(1)) 

1

1

Gradient Descent Example

Compute the 𝑤𝑗𝑖
(1)

weight update formula by gradient descent

𝐸 𝑤 =  

𝑛=1

𝑁

𝑡𝑛 − 𝑔1(𝑥𝑛, 𝑤) 2

𝑔1 𝑥𝑛|𝑤 = 𝑔1  

𝑗=0

𝐽

𝑤1𝑗
(2)

⋅ ℎ𝑗  

𝑖=0

𝐼

𝑤𝑗𝑖
(1)

⋅ 𝑥𝑖,𝑛
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Gradient Descent Example

x1

xI

xi

… 

… 

𝑔 𝑥 w
𝑤𝑗𝑖

(1)

𝑤11
(1)

𝑤𝐽𝐼
(1)

… 

ℎ𝑗(𝑥, W(1)) 

1

1

𝐸 𝑤 =  

𝑛=1

𝑁

𝑡𝑛 − 𝑔1(𝑥𝑛, 𝑤) 2

𝑔1 𝑥𝑛|𝑤 = 𝑔1  

𝑗=0

𝐽

𝑤1𝑗
(2)

⋅ ℎ𝑗  

𝑖=0

𝐼

𝑤𝑗𝑖
(1)

⋅ 𝑥𝑖,𝑛

𝜕𝐸(𝑤𝑗𝑖
(1)

))

𝜕𝑤𝑗𝑖
(1)

= −2  

𝑛

𝑁

𝑡𝑛 − 𝑔1 𝑥𝑛, 𝑤 𝑔1
′ 𝑥𝑛, 𝑤 𝑤1𝑗

2
ℎ𝑗

′  

𝑖=0

𝐼

𝑤𝑗𝑖

(1)
⋅ 𝑥𝑖,𝑛 𝑥𝑖

Using all the data 
points (BATCH)
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Backpropagation and Chain Rule (1)

Updating the weights can be done in parallel, locally, and it requires just two passes ...

• Let x be a real number and two functions 𝑓: ℜ → ℜ and 𝑔:ℜ → ℜ

• Consider the composed function 𝑧 = 𝑓 𝑔 𝑥 = 𝑓 𝑦 where 𝑦 = 𝑔 𝑥

• The deivative of 𝑓 w.r.t. 𝑥 can be computed applying the chain rule

The same holds for backpropagation

𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦

𝑑𝑦

𝑑𝑥
= 𝑓′ 𝑦 𝑔′ 𝑥 = 𝑓′ 𝑔 𝑥 𝑔′ 𝑥

𝜕𝐸(𝑤𝑗𝑖
(1)

))

𝜕𝑤𝑗𝑖
(1)

= −2  

𝑛

𝑁

𝑡𝑛 − 𝑔1 𝑥𝑛, 𝑤 ⋅ 𝑔1
′ 𝑥𝑛, 𝑤 ⋅ 𝑤1𝑗

2
⋅ ℎ𝑗

′  

𝑖=0

𝐼

𝑤𝑗𝑖

(1)
⋅ 𝑥𝑖,𝑛 ⋅ 𝑥𝑖

𝜕𝐸

𝜕𝑔 𝑥𝑛, 𝑤

𝜕𝐸

𝜕𝑤𝑗𝑖
(1)

𝜕𝑔 𝑥𝑛, 𝑤

𝜕𝑤1𝑗
2

ℎ𝑗(. )

𝜕𝑤1𝑗
2

ℎ𝑗(. )

𝜕ℎ𝑗(. )

𝜕ℎ𝑗(. )

𝜕𝑤𝑗𝑖
(1)

𝑥𝑖

𝜕𝑤𝑗𝑖
(1)

𝑥𝑖

𝜕𝑤𝑗𝑖
(1)



28

Backpropagation and Chain Rule (2)

𝜕𝐸(𝑤𝑗𝑖
(1)

))

𝜕𝑤𝑗𝑖
(1)

= −2  

𝑛

𝑁

𝑡𝑛 − 𝑔1 𝑥𝑛, 𝑤 ⋅ 𝑔1
′ 𝑥𝑛, 𝑤 ⋅ 𝑤1𝑗

2
⋅ ℎ𝑗

′  

𝑖=0

𝐼

𝑤𝑗𝑖
(1)

⋅ 𝑥𝑖,𝑛 ⋅ 𝑥𝑖

x1

xI

xi

… 

… 

𝑔 𝑥 w

𝑤𝑗𝑖
(1)

𝑤11
(1)

𝑤𝐽𝐼
(1)

… 

ℎ𝑗(𝑥, W(1)) 

1

1

𝜕𝐸

𝜕𝑔 𝑥𝑛, 𝑤

𝜕𝑔 𝑥𝑛, 𝑤

𝜕𝑤1𝑗
2

ℎ𝑗(. )

𝜕𝑤1𝑗
2

ℎ𝑗(. )

𝜕ℎ𝑗(. )

𝜕ℎ𝑗(. )

𝜕𝑤𝑗𝑖
(1)

𝑥𝑖

𝜕𝑤𝑗𝑖
(1)

𝑥𝑖

𝜕𝑤𝑗𝑖
(1)

Forward pass

𝜕𝐸

𝜕𝑤𝑗𝑖
(1)

Backward pass
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Gradient Descent Variations

Batch gradient descent

Stochastic gradient descent (SGD)

Mini-batch gradient descent

𝜕𝐸(𝑤)

𝜕𝑤
=

1

𝑁
 

𝑛

𝑁
𝜕𝐸(𝑥𝑛, 𝑤)

𝜕𝑤

𝜕𝐸(𝑤)

𝜕𝑤
≈

𝜕𝐸𝑆𝐺𝐷(𝑤)

𝜕𝑤
=

𝜕𝐸(𝑥𝑛, 𝑤)

𝜕𝑤

𝜕𝐸(𝑤)

𝜕𝑤
≈

𝜕𝐸𝑀𝐵 𝑤
𝜕𝑤

=
1

𝑀
 

𝑛∈𝑀𝑖𝑛𝑖𝑏𝑎𝑡𝑐ℎ

𝑀<𝑁
𝜕𝐸(𝑥𝑛, 𝑤)

𝜕𝑤

Use a single sample, 
unbiased, but with 

high variance

Use a subset of 
samples, good trade off 
variance-computation

What Hebbian learning 
had to do with this?
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Hyperplanes Linear Algebra

Let consider the hyperplane (affine set) 𝐿 ∈ ℜ2

Any two points x1 and x2 on 𝐿 ∈ ℜ2 have

The versor normal to 𝐿 ∈ ℜ2 is then

For any point x0 in 𝐿 ∈ ℜ2 we have

The signed distance of any point x in 𝐿 ∈ ℜ2 is defined by

𝑥1

𝑤0 + 𝑤𝑇x = 0

𝑥2

x

x0

𝑤∗

𝐿: 𝑤0 + 𝑤𝑇x = 0

𝑤𝑇(x1 − x2) = 0

𝑤∗ = 𝑤/‖𝑤‖

𝑤∗𝑇 x − x0 =
1

𝑤
(𝑤𝑇x + 𝑤0)

𝑤𝑇x0 = −𝑤0

(𝑤𝑇x + 𝑤0) is proportional to 
the distance of x from the plane 

defined by 𝑤𝑇x + 𝑤0 = 0
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Set of points 

misclassified

Perceptron Learning Algorithm (1/2)

It can be shown, the error function the Hebbian rule is minimizing is the distance of 

misclassified points from the decision boundary. 

Let’s code the perceptron output as +1/-1

• If an output which should be +1 is misclassified then wTx + w0 < 0

• For an output with -1 we have the opposite

The goal becomes minimizing

𝐷 𝑤, 𝑤0 = −  

𝑖∈M

𝑡𝑖(w
Txi + w0)

This is non negative and proportional to the distance of the misclassified points from 

wTx + w0 = 0
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Let’s minimize by stochastic gradient descend the error function

The gradients with respect to the model parameters are

Stochastic gradient descent applies for each misclassified point

Perceptron Learning Algorithm (2/2)

𝐷 𝑤, 𝑤0 = −  

𝑖∈M

𝑡𝑖(w
Txi + w0)

𝜕𝐷 𝑤, 𝑤0

𝜕𝑤
= −  

𝑖∈M

𝑡𝑖 ⋅ xi

𝜕𝐷 𝑤, 𝑤0

𝜕𝑤0
= −  

𝑖∈M

𝑡𝑖

𝑤𝑘+1

𝑤0
𝑘+1 =

𝑤𝑘

𝑤0
𝑘 + 𝜂

𝑡𝑖 ⋅ 𝑥𝑖

𝑡𝑖

Hebbian learning 
implements Stocastic 

Gradient Descent
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How to Chose the Error Function?

We have observed different error functions so far

Error functions define the task to be solved, but how to design them?

• Exploit background knowledge on the task and the model, e.g., Perceptron

• Use all your knowledge/assumptions about the data distribution

• Use your creativity!

This requires lots of 
trial and errors ...

𝐷 𝑤, 𝑤0 = −  

𝑖∈M

𝑡𝑖(w
Txi + w0)

𝐸 𝑤 =  

𝑛=1

𝑁

𝑡𝑛 − 𝑔1(𝑥𝑛, 𝑤) 2

Sum of Squared 
Errors

Perceptron 
Classification Error
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A Note on Maximum Likelihood Estimation

Let’s observe some i.i.d. samples coming from a Gaussian distribution with known 𝜎2

𝑥1, 𝑥2, … , 𝑥𝑁 ∼ 𝑁 𝜇, 𝜎2 𝑝 𝑥|𝜇, 𝜎2 =
1

2𝜋𝜎
𝑒

−
𝑥−𝜇 2

2𝜎2

This point is very 
unlikely under the RED 

hypothesis

This point is very 
unlikely under the 
GREEN hypothesis

This hypothesis makes 
the most of the points 
likely to be observed
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A Note on Maximum Likelihood Estimation

Let’s observe some i.i.d. samples coming from a Gaussian distribution with known 𝜎2

Maximum Likelihood: Chose the parameters which maximize the data probability

𝑥1, 𝑥2, … , 𝑥𝑁 ∼ 𝑁 𝜇, 𝜎2 𝑝 𝑥|𝜇, 𝜎2 =
1

2𝜋𝜎
𝑒

−
𝑥−𝜇 2

2𝜎2

This hypothesis makes 
the most of the points 
likely to be observed
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Maximum Likelihood Estimation: The Recipe

Let 𝜃 = 𝜃1, 𝜃2, … , 𝜃𝑝
𝑇

a vector of parameters, find the MLE for 𝜃 by knowing 𝑝 𝐷𝑎𝑡𝑎 𝜃 :

• Write the likelihood 𝐿 = 𝑃 𝐷𝑎𝑡𝑎|𝜃 for the data

• [Take the logarithm of likelihood l = log 𝑃 𝐷𝑎𝑡𝑎|𝜃 ]

• Work out 
𝜕𝐿

𝜕𝜃
or 

𝜕𝑙

𝜕𝜃
using high-school calculus

• Solve the set of simultaneous equations 
𝜕𝐿

𝜕𝜃𝑖
= 0 or 

𝜕𝑙

𝜕𝜃𝑖
= 0

• Check that 𝜃𝑀𝐿𝐸 is a maximum

To maximize/minimize the (log)likelihood you can use:

• Analytical Techniques (i.e., solve the equations)

• Optimizaion Techniques (e.g., Lagrange mutipliers)

• Numerical Techniques (e.g., gradient descend)

We know already about 
gradient descent, let’s try 

with some analitical stuff ...

Optional
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Maximum Likelihood Estimation Example

Let’s observe some i.i.d. samples coming from a Gaussian distribution with known 𝜎2

Find the Maximum Likelihood Estimator for 𝜇

𝑥1, 𝑥2, … , 𝑥𝑁 ∼ 𝑁 𝜇, 𝜎2 𝑝 𝑥|𝜇, 𝜎2 =
1

2𝜋𝜎
𝑒

−
𝑥−𝜇 2

2𝜎2
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Maximum Likelihood Estimation Example

Let’s observe some i.i.d. samples coming from a Gaussian distribution with known 𝜎2

• Write the likelihood 𝐿 = 𝑃 𝐷𝑎𝑡𝑎|𝜃 for the data 

𝑥1, 𝑥2, … , 𝑥𝑁 ∼ 𝑁 𝜇, 𝜎2 𝑝 𝑥|𝜇, 𝜎2 =
1

2𝜋𝜎
𝑒

−
𝑥−𝜇 2

2𝜎2

𝐿 𝜇 = 𝑝 𝑥1, 𝑥2, … , 𝑥𝑁|𝜇, 𝜎2 =  

𝑛=1

𝑁

𝑝 𝑥𝑛|𝜇, 𝜎2 =

=  

𝑛=1

𝑁
1

2𝜋𝜎
𝑒

−
𝑥𝑛−𝜇 2

2𝜎2
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Maximum Likelihood Estimation Example

Let’s observe some i.i.d. samples coming from a Gaussian distribution with known 𝜎2

• Take the logarithm 𝑙 = log 𝑃 𝐷𝑎𝑡𝑎|𝜃 of the likelihood

𝑥1, 𝑥2, … , 𝑥𝑁 ∼ 𝑁 𝜇, 𝜎2 𝑝 𝑥|𝜇, 𝜎2 =
1

2𝜋𝜎
𝑒

−
𝑥−𝜇 2

2𝜎2

𝑙 𝜇 = log  

𝑛=1

𝑁
1

2 ⋅ 𝜋𝜎
𝑒

−
𝑥𝑛−𝜇 2

2⋅𝜎2 =  

𝑛=1

𝑁

log
1

2 ⋅ 𝜋𝜎
𝑒

−
𝑥𝑛−𝜇 2

2⋅𝜎2 =

= 𝑁 ⋅ log
1

2 ⋅ 𝜋𝜎
−

1

2 ⋅ 𝜎2
 

𝑛

𝑁

𝑥𝑛 − 𝜇 2
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Maximum Likelihood Estimation Example

Let’s observe some i.i.d. samples coming from a Gaussian distribution with known 𝜎2

• Work out 𝜕𝑙/𝜕𝜃 using high-school calculus

𝑥1, 𝑥2, … , 𝑥𝑁 ∼ 𝑁 𝜇, 𝜎2 𝑝 𝑥|𝜇, 𝜎2 =
1

2𝜋𝜎
𝑒

−
𝑥−𝜇 2

2𝜎2

𝜕𝑙 𝜇

𝜕𝜇
=

𝜕

𝜕𝜇
𝑁 ⋅ log

1

2𝜋𝜎
−

1

2𝜎2
 

𝑛

𝑁

𝑥𝑛 − 𝜇 2 =

= −
1

2𝜎2

𝜕

𝜕𝜇
 

𝑛

𝑁

𝑥𝑛 − 𝜇 2 = −
1

2𝜎2
 

𝑛

𝑁

2 𝑥𝑛 − 𝜇
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Maximum Likelihood Estimation Example

Let’s observe some i.i.d. samples coming from a Gaussian distribution with known 𝜎2

• Solve the set of simultaneous equations 
𝜕𝑙

𝜕𝜃𝑖
= 0

𝑥1, 𝑥2, … , 𝑥𝑁 ∼ 𝑁 𝜇, 𝜎2 𝑝 𝑥|𝜇, 𝜎2 =
1

2𝜋𝜎
𝑒

−
𝑥−𝜇 2

2𝜎2

−
1

2𝜎2
 

𝑛

𝑁

2 𝑥𝑛 − 𝜇 = 0

 

𝑛

𝑁

𝑥𝑛 − 𝜇 = 0

 

𝑛

𝑁

𝑥𝑛 =  

𝑛

𝑁

𝜇

Let’s apply this all to
Neural Networks!

𝜇𝑀𝐿𝐸 =
1

𝑁
 

𝑛

𝑁

𝑥𝑛
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Neural Networks for Regression

Goal: approximate a target function 𝑡 having a finite set of N observations 

x1

xI

xi

… 

… 

𝑔 𝑥 w
𝑤𝑗𝑖

(1)

𝑤11
(1)

𝑤𝐽𝐼
(1)

… 

ℎ𝑗(𝑥, W(1)) 

1

1

𝑔 𝑥𝑛|𝑤 = 𝑔  

𝑗=0

𝐽

𝑤1𝑗
(2)

⋅ ℎ𝑗  

𝑖=0

𝐼

𝑤𝑗𝑖
(1)

⋅ 𝑥𝑖,𝑛

𝑡𝑛 = 𝑔 𝑥𝑛|𝑤 + 𝜖𝑛, 𝜖𝑛 ∼ 𝑁 0, 𝜎2
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Statistical Learnig Framework

𝑔 𝑥𝑛 𝑤

𝑡𝑛

𝜖𝑛
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Neural Networks for Regression

Goal: approximate a target function 𝑡 having a finite set of N observations 

x1

xI

xi

… 

… 

𝑔 𝑥 w
𝑤𝑗𝑖

(1)

𝑤11
(1)

𝑤𝐽𝐼
(1)

… 

ℎ𝑗(𝑥, W(1)) 

1

1

𝑔 𝑥𝑛|𝑤 = 𝑔  

𝑗=0

𝐽

𝑤1𝑗
(2)

⋅ ℎ𝑗  

𝑖=0

𝐼

𝑤𝑗𝑖
(1)

⋅ 𝑥𝑖,𝑛

𝑡𝑛 = 𝑔 𝑥𝑛|𝑤 + 𝜖𝑛, 𝜖𝑛 ∼ 𝑁 0, 𝜎2 𝑡𝑛 ∼ 𝑁 𝑔 𝑥𝑛|𝑤 , 𝜎2
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Maximum Likelihood Estimation for Regression

We have some i.i.d. samples coming from a Gaussian distribution with known 𝜎2

Write the likelihood 𝐿 = 𝑃 𝐷𝑎𝑡𝑎|𝜃 for the data 

𝑝 𝑡|𝑔 𝑥|𝑤 , 𝜎2 =
1

2𝜋𝜎
𝑒

−
𝑡−𝑔 𝑥|𝑤

2

2𝜎2

𝐿 𝑤 = 𝑝 𝑡1, 𝑡2, … , 𝑡𝑁|𝑔 𝑥|𝑤 , 𝜎2 =  

𝑛=1

𝑁

𝑝 𝑡𝑛|𝑔 𝑥𝑛|𝑤 , 𝜎2 =

=  

𝑛=1

𝑁
1

2𝜋𝜎
𝑒

−
𝑡𝑛−𝑔 𝑥𝑛|𝑤

2

2𝜎2

𝑡𝑛 ∼ 𝑁 𝑔 𝑥𝑛|𝑤 , 𝜎2
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Maximum Likelihood Estimation for Regression

We have some i.i.d. samples coming from a Gaussian distribution with known 𝜎2

Look for the weights which maximixe the likelihood 

𝑝 𝑡|𝑔 𝑥|𝑤 , 𝜎2 =
1

2𝜋𝜎
𝑒

−
𝑡−𝑔 𝑥|𝑤

2

2𝜎2

𝑎𝑟𝑔𝑚𝑎𝑥𝑤 𝐿 𝑤 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑤  

𝑛=1

𝑁
1

2𝜋𝜎
𝑒

−
𝑡𝑛−𝑔 𝑥𝑛|𝑤

2

2𝜎2 =

= 𝑎𝑟𝑔𝑚𝑎𝑥𝑤  

𝑛

𝑁

log
1

2𝜋𝜎
𝑒

−
𝑡𝑛−𝑔 𝑥𝑛|𝑤

2

2𝜎2 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑤  

𝑛

𝑁

log
1

2𝜋𝜎
−

1

2𝜎2
𝑡𝑛 − 𝑔 𝑥𝑛|𝑤

2
=

= 𝑎𝑟𝑔𝑚𝑖𝑛𝑤  

𝑛

𝑁

𝑡𝑛 − 𝑔 𝑥𝑛|𝑤
2

𝑡𝑛 ∼ 𝑁 𝑔 𝑥𝑛|𝑤 , 𝜎2
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Neural Networks for Classification

Goal: approximate a posterior probability 𝑡 having a finite set of N observations 

x1

xI

xi

… 

… 

𝑔 𝑥 w
𝑤𝑗𝑖

(1)

𝑤11
(1)

𝑤𝐽𝐼
(1)

… 

ℎ𝑗(𝑥, W(1)) 

1

1

𝑔 𝑥𝑛|𝑤 = 𝑔  

𝑗=0

𝐽

𝑤1𝑗
(2)

⋅ ℎ𝑗  

𝑖=0

𝐼

𝑤𝑗𝑖
(1)

⋅ 𝑥𝑖,𝑛

𝑔 𝑥𝑛|𝑤 = 𝑝 𝑡𝑛|𝑥𝑛 , 𝑡𝑛 ∈ 0, 1 𝑡𝑛 ∼ 𝐵𝑒 𝑔 𝑥𝑛|𝑤
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Maximum Likelihood Estimation for Classification

We have some i.i.d. samples coming from a Bernulli distribution with known

Write the likelihood 𝐿 = 𝑃 𝐷𝑎𝑡𝑎|𝜃 for the data 

𝑝 𝑡|𝑔 𝑥|𝑤 = 𝑔 𝑥|𝑤 𝑡 ⋅ 1 − 𝑔 𝑥|𝑤
1−𝑡

𝐿 𝑤 = 𝑝 𝑡1, 𝑡2, … , 𝑡𝑁|𝑔 𝑥|𝑤 =  

𝑛=1

𝑁

𝑝 𝑡𝑛|𝑔 𝑥𝑛|𝑤 =

=  

𝑛=1

𝑁

𝑔 𝑥𝑛|𝑤 𝑡𝑛 ⋅ 1 − 𝑔 𝑥𝑛|𝑤
1−𝑡𝑛

𝑡𝑛 ∼ 𝐵𝑒 𝑔 𝑥𝑛|𝑤
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Maximum Likelihood Estimation for Classification

We have some i.i.d. samples coming from a Bernulli distribution with known

Look for the weights which maximize the likelihood

𝑝 𝑡|𝑔 𝑥|𝑤 = 𝑔 𝑥|𝑤 𝑡 ⋅ 1 − 𝑔 𝑥|𝑤
1−𝑡

𝑎𝑟𝑔𝑚𝑎𝑥𝑤 𝐿 𝑤 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑤  

𝑛=1

𝑁

𝑔 𝑥𝑛|𝑤 𝑡𝑛 ⋅ 1 − 𝑔 𝑥𝑛|𝑤
1−𝑡𝑛

=

= 𝑎𝑟𝑔𝑚𝑎𝑥𝑤  

𝑛

𝑁

𝑡𝑛 log𝑔 𝑥𝑛|𝑤 + 1 − 𝑡𝑛 log(1 − 𝑔 𝑥𝑛|𝑤 ) =

= 𝑎𝑟𝑔𝑚𝑖𝑛𝑤 −  

𝑛

𝑁

𝑡𝑛 log 𝑔 𝑥𝑛|𝑤 + 1 − 𝑡𝑛 log(1 − 𝑔 𝑥𝑛|𝑤 )

𝑡𝑛 ∼ 𝐵𝑒 𝑔 𝑥𝑛|𝑤

Crossentropy
−  𝑛

𝑁 𝑡𝑛
𝑇 log𝑔 𝑥𝑛|𝑤
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Regardless of what function we are learning, a single layer can do it …

• … but it doesn’t mean we can find the necessary weights!

• … but an exponential number of hidden units may be required

• … but it might be useless in practice if it does not generalize!

Neural Networks are Universal Approximators

“A single hidden layer feedforward neural network 
with S shaped activation functions can approximate 
any measurable function to any desired degree of 

accuracy on a compact set ”

Universal approximation theorem (Kurt Hornik, 1991)

“Entia non sunt multiplicanda praeter necessitatem”

William of Ockham (c 1285 – 1349)
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Model Complexity

Inductive Hypothesis: A solution approximating the target function over a sufficiently large set of 

training examples will also approximate it over unobserved examples

Too complex models 
Overfit the data and do 

not Generalize

Too simple models 
Underfit the data ...
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How to Measure Generalization?

Training error/loss is not a good indicator of performance on future data:

• The classifier has been learned from the very same training data, 

any estimate based on that data will be optimistic

• New data will probably not be exactly the same as training data

• You can find patterns even in random data

We need to test on an independent new test set

• Someone provides you a new dataset

• Split the data and hide some of them for later evaluation

• Perform random subsampling (with replacement) of the dataset 

In classification you should preserve class distribution, i.e., stratified sampling!

Done for training on 
small datasets
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Cross-validation Variations

Cross-validation uses training data itselves to estimate the error on new data

• When enough data available use an hold out set and perform validation

54
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Cross-validation Variations

Cross-validation uses training data itselves to estimate the error on new data

• When enough data available use an hold out set and perform validation

• When not too many data available use leave-one-out cross-validation (LOOCV)

55
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Cross-validation Variations

Cross-validation uses training data itselves to estimate the error on new data

• When enough data available use an hold out set and perform validation

• When not too many data available use leave-one-out cross-validation (LOOCV)

• Use k-fold cross-validation for a good trade-off (sometime better than LOOCV)

56

 𝑒𝑘 =
1

𝑁
 

𝑛𝑘∈𝑁𝑘

𝐸 𝑥𝑛𝑘
|𝑤

 𝐸 =
1

𝐾
 

𝑘

𝐾

 𝑒𝑘

What do I do with all 
these models?
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Early Stopping: Limiting Overfitting by Cross-validation

Overfitting networks show a monotone training error trend (on average with SGD) as the 

number of gradient descent iterations 𝑘, but they lose generalization at some point ...

• Hold out some data

• Train on the training set

• Perform cross-validation

on the hold out set

• Stop the train when 

validation error increases

𝑘

𝐸(𝑥|𝑤)

Training set error

Validation set error

𝑘𝐸𝑆

𝐸𝐸𝑆(𝑥|𝑤)

Online estimate of the 
generalization error
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Cross-validation and Hyperparameters Tuninig 

Model selection and evaluation happens at different levels:

• Parameters level, i.e, when we learn the weights 𝑤 for a neural network

• Hyperparameters level, i.e., when we chose the number of layers 𝐿 or

the number of hidden neurons 𝐽(𝑙) or a give layer

• Meta-learning, i.e., when we learn from data a model to chose hyperparameters

𝑘

𝐸(𝑥|𝑤)

Training set error

Validation set error

𝑘𝐸𝑆

𝐸𝐸𝑆
𝐽(1)

(𝑥|𝑤)

Generalization error 
with J neurons in 1 layer

𝐸(𝑥|𝑤)

𝐽(1)1

𝐸𝐸𝑆
1 (𝑥|𝑤)

2

𝐸𝐸𝑆
2 (𝑥|𝑤)

... 5

𝐸𝐸𝑆
5 (𝑥|𝑤)

9...

Chose model with 
best validation error
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Weight Decay: Limiting Overfitting by Weights Regularization

Regularization is about constraining the model «freedom», based on a-priori 

assumption on the model, to reduce overfitting. 

So far we have maximized the data likelihood:

We can reduce model «freedom» by using a Bayesian approach:

Small weights have been observed to improve generalization of neural networks: 

Make  assumption
on parameters

(a-priori) distribution

𝑤𝑀𝐿𝐸 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑤 𝑃(𝐷|𝑤)

𝑤𝑀𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑤 𝑃 𝑤 𝐷

= 𝑎𝑟𝑔𝑚𝑎𝑥𝑤 𝑃 𝐷 𝑤 ⋅ 𝑃(𝑤)
Maximum 

A-Posteriori

Maximum 
Likelihood

𝑃 𝑤 ∼ 𝑁 0, 𝜎𝑤
2
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Weight Decay: Limiting Overfitting by Weights Regularization

 𝑤 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑤 𝑃 𝑤|𝐷 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑤 𝑃 𝐷 𝑤 𝑃 𝑤

= 𝑎𝑟𝑔𝑚𝑎𝑥𝑤  

𝑛=1

𝑁
1

2𝜋𝜎
𝑒

−
𝑡𝑛−𝑔 𝑥𝑛|𝑤

2

2𝜎2  

𝑞=1

𝑄
1

2𝜋𝜎𝑤

𝑒
−

𝑤𝑞
2

2𝜎𝑤
2

= 𝑎𝑟𝑔𝑚𝑖𝑛𝑤  

𝑛=1

𝑁
𝑡𝑛 − 𝑔 𝑥𝑛|𝑤

2

2𝜎2
+  

𝑞=1

𝑄
𝑤𝑞

2

2𝜎𝑤
2

= 𝑎𝑟𝑔𝑚𝑖𝑛𝑤  

𝑛=1

𝑁

𝑡𝑛 − 𝑔 𝑥𝑛|𝑤
2

+ 𝛾  

𝑞=1

𝑄

𝑤𝑞
2

Fitting Regularization

Here it comes 
another loss 
function!!!
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Recall Cross-validation and Hyperparameters Tuninig 

You can use cross-validaton to select the proper 𝛾:

• Split data in training and validation sets

• Minimize for different values of 𝛾

• Evaluate the model

• Chose the 𝛾∗ with the best validation error

• Put back all data together and minimize

𝐸(𝑥|𝑤)

𝛾0.1

𝐸0.1
𝑉𝐴𝐿

1

𝐸1
𝑉𝐴𝐿

... 5

𝐸5
𝑉𝐴𝐿

100...

Chose 𝛾∗ = 5 with 
best validation error

𝐸𝛾
𝑇𝑅𝐴𝐼𝑁 =  

𝑛=1

𝑁𝑇𝑅𝐴𝐼𝑁

𝑡𝑛 − 𝑔 𝑥𝑛|𝑤
2

+ 𝛾  

𝑞=1

𝑄

𝑤𝑞
2

𝐸𝛾∗ =  

𝑛=1

𝑁

𝑡𝑛 − 𝑔 𝑥𝑛|𝑤
2

+ 𝛾∗  

𝑞=1

𝑄

𝑤𝑞
2

𝐸𝛾
𝑉𝐴𝐿 =  

𝑛=1

𝑁𝑉𝐴𝐿

𝑡𝑛 − 𝑔 𝑥𝑛|𝑤
2



63

Dropout: Limiting Overfitting by Stochastic Regularization

By turning off randomly some neurons we force them to learn an independent feature 

preventing hidden units to rely on other units (co-adaptation):

• Each hidden unit is set to zero with 𝑝𝑗
(𝑙)

probability, e.g., 𝑝𝑗
(𝑙)

= 0.3 

x
1

xI

xi

… 

… 

1

𝑔1 𝑥 w
𝑤𝑗𝑖

𝑤11

𝑤𝐽𝐼

𝑤10

… … … 

… 

1 1

𝑔𝐾 𝑥 w

1 𝑚(𝑙) = [𝑚1
(𝑙)

, …𝑚
𝐽(𝑙)
(𝑙)

]

𝑚𝑗
(𝑙)

∼ 𝐵𝑒 𝑝𝑗
(𝑙)

ℎ(𝑙)(𝑊 𝑙 ℎ(𝑙−1)⨀ 𝑚 𝑙 )
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Dropout: Limiting Overfitting by Stochastic Regularization

By turning off randomly some neurons we force them to learn an independent feature 

preventing hidden units to rely on other units (co-adaptation):

• Each hidden unit is set to zero with 𝑝𝑗
(𝑙)

probability, e.g., 𝑝𝑗
(𝑙)

= 0.3 

x
1

xI

xi

… 

… 

1

𝑔1 𝑥 w
𝑤𝑗𝑖

𝑤11

𝑤𝐽𝐼

𝑤10

… … … 

… 

1 1

𝑔𝐾 𝑥 w

1 𝑚(𝑙) = [𝑚1
(𝑙)

, …𝑚
𝐽(𝑙)
(𝑙)

]

𝑚𝑗
(𝑙)

∼ 𝐵𝑒 𝑝𝑗
(𝑙)

ℎ(𝑙)(𝑊 𝑙 ℎ(𝑙−1)⨀ 𝑚 𝑙 )
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Dropout: Limiting Overfitting by Stochastic Regularization

By turning off randomly some neurons we force them to learn an independent feature 

preventing hidden units to rely on other units (co-adaptation):

• Each hidden unit is set to zero with 𝑝𝑗
(𝑙)

probability, e.g., 𝑝𝑗
(𝑙)

= 0.3 

x
1

xI

xi

… 

… 

1

𝑔1 𝑥 w
𝑤𝑗𝑖

𝑤11

𝑤𝐽𝐼

𝑤10

… … … 

… 

1 1

𝑔𝐾 𝑥 w

1 𝑚(𝑙) = [𝑚1
(𝑙)

, …𝑚
𝐽(𝑙)
(𝑙)

]

𝑚𝑗
(𝑙)

∼ 𝐵𝑒 𝑝𝑗
(𝑙)

ℎ(𝑙)(𝑊 𝑙 ℎ(𝑙−1)⨀ 𝑚 𝑙 )
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Dropout: Limiting Overfitting by Stochastic Regularization

By turning off randomly some neurons we force them to learn an independent feature 

preventing hidden units to rely on other units (co-adaptation):

• Each hidden unit is set to zero with 𝑝𝑗
(𝑙)

probability, e.g., 𝑝𝑗
(𝑙)

= 0.3 

x
1

xI

xi

… 

… 

1

𝑔1 𝑥 w
𝑤𝑗𝑖

𝑤11

𝑤𝐽𝐼

𝑤10

… … … 

… 

1 1

𝑔𝐾 𝑥 w

1 𝑚(𝑙) = [𝑚1
(𝑙)

, …𝑚
𝐽(𝑙)
(𝑙)

]

𝑚𝑗
(𝑙)

∼ 𝐵𝑒 𝑝𝑗
(𝑙)

ℎ(𝑙)(𝑊 𝑙 ℎ(𝑙−1)⨀ 𝑚 𝑙 )



67

Dropout: Limiting Overfitting by Stochastic Regularization

In Dropout we train a number of weaker classifiers, on the different mini- batch and then 

at test time we use them by averaging the responses of all ensemble members.

x
1

xI

xi

… 

… 

1

𝑔1 𝑥 w
𝑤𝑗𝑖

𝑤11

𝑤𝐽𝐼

𝑤10

… … … 

… 

1 1

𝑔𝐾 𝑥 w

1 Behaves as an 
ensemble method
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Dropout: Limiting Overfitting by Stochastic Regularization

In Dropout we train a number of weaker classifiers, on the different mini- batch and then 

at test time we use them by averaging the responses of all ensemble members.

At testing time we remove the masks and we average the output (by weight scaling)

x
1

xI

xi

… 

… 

1

𝑔1 𝑥 w
𝑤𝑗𝑖

𝑤11

𝑤𝐽𝐼

𝑤10

… … … 

… 

1 1

𝑔𝐾 𝑥 w

1 Behaves as an 
ensemble method
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Better Activation Functions

Activation functions such as Sigmoid or Tanh saturate

• Gradient is close to zero

• Backprop. requires gradient multiplications

• Gradient faraway from the output vanishes

• Learning in deep networks does not happen

This is a well known problem in Recurrent Neural Networks, but it affects also deep 

networks, and it has hindered neural network training since ever ...

Saturation

Zero Gradient

𝜕𝐸(𝑤𝑗𝑖
(1)

))

𝜕𝑤𝑗𝑖
(1)

= −2  

𝑛

𝑁

𝑡𝑛 − 𝑔1 𝑥𝑛, 𝑤 ⋅ 𝑔1
′ 𝑥𝑛, 𝑤 ⋅ 𝑤1𝑗

2
⋅ ℎ𝑗

′  

𝑗=0

𝐽

𝑤𝑗𝑖
(1)

⋅ 𝑥𝑖,𝑛 ⋅ 𝑥𝑖
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The ReLU activation function has been introduced

It has several advantages:

• Faster SGD Convergence (6x w.r.t sigmoid/tanh)

• Sparse activation (only part of hidden units are activated)

• Efficient gradient propagation (no vanishing or exploding gradient problems), 

and Efficient computation (just thresholding at zero)

• Scale-invariant:

Rectified Linear Unit

71

𝑔 𝑎 = 𝑅𝑒𝐿𝑢 𝑎 = max 0, 𝑎

𝑔′ 𝑎 = 1𝑎>0

max 0, 𝑎𝑥 = 𝑎 max 0, 𝑥
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The ReLU activation function has been introduced

It has potential sisadvantages:

• Non-differentiable at zero: however it is differentiable anywhere else

• Non-zero centered output

• Unbounded: Could potentially blow up

• Dying Neurons: ReLU neurons can sometimes be pushed into states in which 

they become inactive for essentially all inputs. No gradients flow backward 

through the neuron, and so the neuron becomes stuck and "dies".

Rectified Linear Unit

𝑔 𝑎 = 𝑅𝑒𝐿𝑢 𝑎 = max 0, 𝑎

𝑔′ 𝑎 = 1𝑎>0

Decreased model 
capacity, it happens with 

high learning rates
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Rectified Linear Unit (Variants)

Leaky ReLU: fix for the “dying ReLU” problem

ELU: try to make the mean activations closer to zero

which speeds up learning. Alpha is tuned by handby hand
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Weights Initialization

The final result of gradient descent is highly affected by weight initialization:

• Zeros: it does not work! All gradient would be zero, no learning will happen

• Big Numbers: bad idea, if unlucky might take very long to converge

• 𝑤 ∼ 𝑁 0, 𝜎2 = 0.01 : good for small networks, but it might be a problem for 

deeper neural networks

In deep networks:

• If weights start too small, then gradient shrinks as it passes through each layer

• If the weights in a network start too large, then gradient grows as it passes 

through each layer until it’s too massive to be useful

Some proposal to solve this Xavier initialization or He initialization …
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Xavier Initialization

Suppose we have an input 𝑥 with 𝐼 components and a linear neuron with random 

weights 𝑤. Its output is

We can derive that 𝑤𝑗𝑖𝑥𝑖 is going to have variance

Now if our inputs and weights both have mean 0, that simplifies to

If we assume all 𝑤𝑖 and 𝑥𝑖 are i.i.d. we obtain

The variance of the output is the variance of the input, but scaled by 𝑛𝑉𝑎𝑟(𝑤𝑖).

ℎ𝑗 = 𝑤𝑗1𝑥1 + ⋯+𝑤𝑗𝑖𝑥𝐼 + ⋯+ 𝑤𝑗𝐼 𝑥𝐼

𝑉𝑎𝑟(𝑤𝑗𝑖𝑥𝑖) = 𝐸 𝑥𝑖
2𝑉𝑎𝑟(𝑤𝑗𝑖) + 𝐸 𝑤𝑗𝑖

2
𝑉𝑎𝑟(𝑥𝑖) + 𝑉𝑎𝑟(𝑤𝑗𝑖)𝑉𝑎𝑟(𝑥𝑖)

𝑉𝑎𝑟(𝑤𝑗𝑖𝑥𝑖) = 𝑉𝑎𝑟(𝑤𝑗𝑖)𝑉𝑎𝑟(𝑥𝑖)

𝑉𝑎𝑟 ℎ𝑗 = 𝑉𝑎𝑟 𝑤𝑗1𝑥1 + ⋯ +𝑤𝑗𝑖𝑥𝐼 + ⋯ + 𝑤𝑗𝐼 𝑥𝐼 = 𝑛𝑉𝑎𝑟 𝑤𝑖 𝑉𝑎𝑟 𝑥𝑖
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Xavier Initialization

If we want the variance of the input and the out to be the same

For this reason Xavier proposes to initialize 𝑤 ∼ 𝑁 0,
1

𝑛𝑖𝑛

Performing similar reasoning for the gradient Glorot & Bengio found

To accommodate for this and for the Xavier constraint they propose 𝑤 ∼ 𝑁 0,
2

𝑛𝑖𝑛+𝑛𝑜𝑢𝑡

More recently He proposed, for rectified linear units, 𝑤 ∼ 𝑁 0,
2

𝑛𝑖𝑛

𝑛𝑉𝑎𝑟 𝑤𝑗 = 1

𝑛𝑜𝑢𝑡𝑉𝑎𝑟 𝑤𝑗 = 1

Linear assumption 
seem too much, but 
in practice it works!
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𝑤

𝐸(𝑤)

Recall about Backpropagation

Finding the weighs of a Neural Network is a non linear minimization process

We iterate from a initial configuration

To avoid local minima can use momentum

𝑎𝑟𝑔𝑚𝑖𝑛𝑤 𝐸 𝑤 =  

𝑛=1

𝑁

𝑡𝑛 − 𝑔(𝑥𝑛, 𝑤) 2

𝑤0 𝑤1 𝑤2𝑤3𝑤4

𝑤𝑘+1 = 𝑤𝑘 − 𝜂  
𝜕𝐸 𝑤

𝜕𝑤
𝑤𝑘

𝑤𝑘+1 = 𝑤𝑘 − 𝜂  
𝜕𝐸 𝑤

𝜕𝑤
𝑤𝑘

− 𝛼  
𝜕𝐸 𝑤

𝜕𝑤
𝑤𝑘−1

Several variations 
exists beside these two 

…
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More about Gradient Descent

Nesterov Accelerated gradient: first make a jump as the momentum, then adjust

𝑤𝑘+1 = 𝑤𝑘 − 𝜂  
𝜕𝐸 𝑤

𝜕𝑤
𝑤

𝑘+
1
2

𝑤𝑘+
1
2 = 𝑤𝑘 − 𝛼  

𝜕𝐸 𝑤

𝜕𝑤
𝑤𝑘−1
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Adaptive Learning Rates

Neurons in each layer learn differently

• Gradient magnitudes vary across layers

• Early layers get “vanishing gradients”

• Should ideally use separate adaptive learning rates

Several algoritm proposed:

• Resilient Propagation (Rprop – Riedmiller and Braun 1993)

• Adaptive Gradient (AdaGrad – Duchi et al. 2010)

• RMSprop (SGD + Rprop – Teileman and Hinton 2012)

• AdaDelta (Zeiler et at. 2012)

• Adam (Kingma and Ba, 2012)

• …
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Learning Rate Matters


