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3Introduction

The interest in multirotors as platforms for both research and commercial Unmanned Aerial Vehicle 
(UAV) applications is steadily increasing:

 surveillance & security
 environment monitoring & remote sensing
 building & industrial plants monitoring
 photogrammetry

Some of the envisaged applications lead to tight performance requirements on the attitude control 
system  this calls for increasingly accurate dynamics models of the vehicle’s response to which 
advanced controller synthesis approaches can be applied

Advantages w.r.t. classical helicopter architecture:
 simpler rotor articulation (no swash plate, no cyclic command)
 weak DoFs coupling  easier to control
 possibility of rotors protection (shrouding)  safer

Possible quadrotor architectures:
 variable RPM (fixed blade pitch)  simple and light rotors hub
 variable pitch (fixed RPM)  avoid performance limitation due to bandwidth of motors 

dynamics
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4Motivations

Development of an integrated, highly automated, control design tool-chain aimed at fast 
and reliable deployment of vehicle’s attitude control system 

Identification experiments indoor on proper test-bed, 
avoiding risky and time consuming in-flight test campaign

Identification of LTI attitude 
response models

Attitude controller tuning solving 
structured H∞ robust design problem

ANTEOS P2-A2 prototype
 Variable collective pitch (fixed RPM)
 MTOW = 5 kg
 Rotors radius = 0.27 m
 Arms length = 0.415 m

GOAL: demonstrate that it guarantees acceptable 
performance also in flight near hover conditions 
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5Quadrotor control: basic principles

𝑇𝑇ℎ + ∆𝑇𝑇

𝑇𝑇ℎ + ∆𝑇𝑇

𝑇𝑇ℎ + ∆𝑇𝑇

𝑇𝑇ℎ + ∆𝑇𝑇 𝑇𝑇ℎ

𝑇𝑇ℎ

𝑇𝑇ℎ − ∆𝑇𝑇

𝑇𝑇ℎ + ∆𝑇𝑇

𝑇𝑇ℎ

𝑇𝑇ℎ

𝑇𝑇ℎ + ∆𝑇𝑇

𝑇𝑇ℎ − ∆𝑇𝑇 𝑇𝑇ℎ − ∆𝑇𝑇

𝑇𝑇ℎ − ∆𝑇𝑇

𝑇𝑇ℎ + ∆𝑇𝑇

𝑇𝑇ℎ + ∆𝑇𝑇

Vertical Roll → Lateral

YawPitch → Longitudinal

ℎ → hovering (fixed point flight)

Underactuated with respect to 6 DoFs
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•Yaw•Pitch/Roll•Collective

Quadrotor modeling: reference frame 6
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Basic aerodinamic model

Elementary aerodynamic model:
the thrust generated by each rotor is proportional to Ω2:

therefore the total thrust is given by

while the rolling/pitching moments are given by

and the yawing moment is
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• Collective

• Roll

• Pitch

• Yaw

Control variables

The control variables are commonly defined as:

with respect to which
• Collective

• Roll

• Pitch

• Yaw
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Dynamics of a quadrotor helicopter

Overall model which describes the behavior of a quadrotor helicopter

Gravity component

Damping component

Propellers thrust and torque

9
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Dynamics of a quadrotor helicopter
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Accelerometer and magnetometer

11Inertial Measurement Unit calibration
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12Inertial Measurement Unit calibration

Gyroscope
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TESTING PLATFORM
To measure the propeller's 
thrust against the rotational 
speed

 Sensors
• Load cell

-> Thrust
• Optical tachometer

-> Rotational speed

 Electronic board
• Arduino MEGA

13Actuator analysis
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STATIC RESPONSE ESTIMATION
Relationship between propeller's thrust and rotational speed

Relationship between the percentage of throttle and propeller's rotational 
speed

14Actuator analysis
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15Actuator analysis

Linear characteristic Quadratic characteristic
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DINAMIC RESPONSE ESTIMATION
• Assuming a first order dynamical 

relationship between the 
percentage of throttle as input 
and the rotational speed of the 
propeller as output

16Actuator analysis
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17



 Modelling and identification






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Attitude dynamics identification 
State of the art

18

 It is apparent from literature that quadrotor mathematical models are easy to establish as far 
the kinematics and dynamics of linear and angular rigid body motion are concerned

 Characterizing aerodynamic effects and additional dynamics such as, e.g., due to actuators 
and sensors, is far from trivial  increasing interest in experimental characterization of 
quadrotor dynamics response through system identification

 System identification is  actually a well established approach for the development of control-
oriented LTI models in the rotorcraft field: 
 Frequency-domain approaches (e.g. NASA CIFER tool)
 Iterative time-domain approaches (e.g. OE, EE, etc.)
 NON-iterative time-domain approaches (e.g. subspace methods)

 The application to full scale rotorcraft is fairly mature but less experience has been gathered 
on small-scale vehicles 
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Attitude dynamics identification 
Identification experiments (1)

 The identification experiments have been carried out in laboratory conditions, using a 
test-bed that constrains all DoFs except pitch rotation (rotors in OGE)

 Similar experiments have been carried out in flight to ensure that indoor  set-up is 
representative of actual attitude dynamics in near hovering

19

 Pseudo Random Binary Sequences 
(PRBS) were selected as excitation signal

 Experiments have been carried out in quasi 
open-loop conditions:
 nominal attitude and position 

controllers were disabled
 a supervision task enforcing attitude 

limits (±20°) was left active 
(inherently fast instability) 
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Attitude dynamics identification
Identification experiments (2)

20

Input signal (collective pitch difference between opposite rotor) in identification test

Closed-loop on nominal attitude controller
Imposed pitch angle set-point variations
Model validation dataset

Closed-loop on nominal attitude controller 
Pitch angle set-point null
Non-relevant informations

PRBS excitation + feedback action of supervision task , quasi open-loop 
Dataset used for identification
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Attitude dynamics identification: 
Identification experiments (3)

21

The parameters of the PRBS (signal amplitude and min/max switching interval) were 
tuned to obtain: 

 an excitation spectrum consistent with the expected dominant attitude 
dynamics (4 to 8 rad/s)

 a reduced second harmonic amplitude

Identification 
campaign

PRBS switching 
time range [s]

1 0.05 – 0.1

2 0.1 – 0.2

3 0.2 – 0.4

4 0.4 – 0.8

PRBS 
amplitude

Blade pitch difference 
between opposite rotor

angle [rad] / command [%] 

1 ± 0.012 / ± 7

2 ± 0.015 / ± 9

3 ± 0.019 / ± 11
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Attitude dynamics identification: 
Identification experiments (4)

22

Data logged during test @ 50Hz
Input: pitch attitude control variable
Output: 𝜃𝜃, 𝑞𝑞, 𝑞̇𝑞 from on-board IMU

Excitation spectrum

Estimate quality degradation caused by data 
concatenation is negligible due to large duration 
of PRBS and small n° of concatenations  

peak @ 7rad/s

Identification input signal obtained concatenating 3 excitation segments from different 
test in order to average out mild non-linearities
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Attitude dynamics identification 
Considered algorithms

23

BLACK-BOX METHODS: gives unstructured model, non-physically motivated state space

 Subspace Model Identification (SMI) algorithms, non-iterative (efficient computation):
• PI-MOESP (Past Inputs - Multivariable Output Error State sPace realization)
• PBSID (Predictor Based System IDentification)

both providing LTI SISO state space model of the pitch rate response to control input

 On-line implementation of the Least Mean Squares (LMS) algorithm:
• updates recursively on-board an estimate of the SISO impulse response of pitch 

angular velocity in the form of Finite Impulse Response (FIR) model
• state space model for the pitch dynamics recovered via Kung’s realization

GREY-BOX METHODS: structure imposed a-priori defining a first-principle model for pitch 
dynamics 

 Output Error (OE) Maximum Likelihood (ML) estimation
 H∞ approach (model matching problem, non-convex & non-smooth optimization)  

both determine the unknown physical parameter of structured LTI model via iterative (time 
consuming) procedure
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Attitude dynamics identification 
SMI algorithms

24

SMI was proposed about 25 years ago to handle black-box MIMO problems  
in a numerically stable and efficient way (numerical linear algebra tools) and  
has proved extremely successful in a number of industrial  applications

PI-MOESP (Verhaegen & Dewilde,1991) assumes feeding data gathered in 
open-loop operations

PBSID (Chiuso,2007) is a more advanced and recent algorithm respect to 
MOESP, suitable for dealing with data generated in closed-loop operations

Remark: time delay in system dynamics (from IMU measurements to servo 
actuation of rotors collective pitch), equal to 𝜏̂𝜏 = 0.06s = 3 samples, leads to a 
non-minimum phase zero in identified model via SMI → applied forward shift of 
3 samples on input signal before model identification and reintroduced as delay 
in model simulations  
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Black-box methods
PI-MOESP algorithm (1)

25

Consider the discrete time LTI state space model, with 𝑦𝑦𝑡𝑡 = �𝑦𝑦𝑡𝑡 + 𝑣𝑣𝑡𝑡
𝑥𝑥𝑡𝑡+1 = 𝐴𝐴𝑥𝑥𝑡𝑡 + 𝐵𝐵𝑢𝑢𝑡𝑡
�𝑦𝑦𝑡𝑡 = 𝐶𝐶𝑥𝑥𝑡𝑡 + 𝐷𝐷𝑢𝑢𝑡𝑡

 STEP1: estimation of coloumn space of extended observability matrix

Γ = 𝐶𝐶𝑇𝑇 𝐶𝐶𝐶𝐶 𝑇𝑇 𝐶𝐶𝐴𝐴2 𝑇𝑇 … 𝐶𝐶𝐴𝐴𝑖𝑖−1 𝑇𝑇 𝑇𝑇

from measured input-output samples 𝑢𝑢𝑡𝑡 ,𝑦𝑦𝑡𝑡 , through the data equation

𝑌𝑌𝑡𝑡,𝑖𝑖,𝑗𝑗 = Γ𝑋𝑋𝑡𝑡,𝑗𝑗 + 𝐻𝐻𝑈𝑈𝑡𝑡,𝑖𝑖,𝑗𝑗
relating (block) Hankel matrices constructed from I/O samples 

𝑌𝑌𝑡𝑡,𝑖𝑖,𝑗𝑗 =
𝑦𝑦𝑡𝑡 ⋯ 𝑦𝑦𝑡𝑡+𝑗𝑗−1
⋮ ⋱ ⋮

𝑦𝑦𝑡𝑡+𝑖𝑖−1 ⋯ 𝑦𝑦𝑡𝑡+𝑖𝑖+𝑗𝑗−2
𝑈𝑈𝑡𝑡,𝑖𝑖,𝑗𝑗 =

𝑢𝑢𝑡𝑡 ⋯ 𝑢𝑢𝑡𝑡+𝑗𝑗−1
⋮ ⋱ ⋮

𝑢𝑢𝑡𝑡+𝑖𝑖−1 ⋯ 𝑢𝑢𝑡𝑡+𝑖𝑖+𝑗𝑗−2
𝑋𝑋𝑡𝑡,𝑗𝑗 = [𝑥𝑥𝑡𝑡 𝑥𝑥𝑡𝑡+1 … 𝑥𝑥𝑡𝑡+𝑗𝑗−1 ]

and the block-Toeplitz matrix 

𝐻𝐻 =

𝐷𝐷 0 … 0
𝐶𝐶𝐶𝐶 𝐷𝐷 … 0
𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶 … 0
⋮ ⋮ ⋮ ⋮

𝐶𝐶𝐴𝐴𝑖𝑖−2𝐵𝐵 𝐶𝐶𝐴𝐴𝑖𝑖−3𝐵𝐵 … 𝐷𝐷
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Black-box methods
PI-MOESP algorithm (2)

26

From the data equation the PI-MOESP algorithm considers the RQ factorization

𝑈𝑈𝑡𝑡+1,𝑖𝑖,𝑗𝑗
𝑈𝑈𝑡𝑡,𝑖𝑖,𝑗𝑗
𝑌𝑌𝑡𝑡+1,𝑖𝑖,𝑗𝑗

=
𝑅𝑅11 0 0
𝑅𝑅21 𝑅𝑅22 0
𝑅𝑅31 𝑅𝑅32 𝑅𝑅33

𝑄𝑄1
𝑄𝑄2
𝑄𝑄3

and a consistent estimate of the coloumn space of Γ is obtained via SVD of 
matrix 𝑅𝑅32 under assumption that 𝑣𝑣𝑡𝑡 is Gaussian measurement noise, zero 
mean, uncorrelated with 𝑢𝑢𝑡𝑡

 STEP2: from the Γ estimate, matrices 𝐴𝐴 and 𝐶𝐶 of the model can be determined 
exploiting the invariance of observability subspace

 STEP3: solve a linear least square problem to determine 𝐵𝐵 and 𝐷𝐷 matrices
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Black-box methods
PBSID algorithm (1)

27

Consider the finite dimensional LTI state space model, where 𝑣𝑣(𝑘𝑘),𝑤𝑤(𝑘𝑘) are ergodic 
sequences of finite variance, possibly correlated with input 𝑢𝑢

𝑥𝑥 𝑘𝑘 + 1 = 𝐴𝐴𝐴𝐴 𝑘𝑘 + 𝐵𝐵𝐵𝐵 𝑘𝑘 + 𝑤𝑤(𝑘𝑘)
𝑦𝑦 𝑘𝑘 = 𝐶𝐶𝐶𝐶 𝑘𝑘 + 𝐷𝐷𝐷𝐷 𝑘𝑘 + 𝑣𝑣(𝑘𝑘)

and pass to innovation form through Kalman gain matrix 𝐾𝐾

𝑥𝑥 𝑘𝑘 + 1 = 𝐴̅𝐴𝑥𝑥 𝑘𝑘 + �𝐵𝐵𝑧𝑧 𝑘𝑘
𝑦𝑦 𝑘𝑘 = 𝐶𝐶𝐶𝐶 𝑘𝑘 + 𝐷𝐷𝐷𝐷 𝑘𝑘 + 𝑒𝑒(𝑘𝑘)

where 𝑧𝑧 𝑘𝑘 = 𝑢𝑢𝑇𝑇 𝑘𝑘 𝑦𝑦𝑇𝑇(𝑘𝑘) 𝑇𝑇 , 𝐴̅𝐴 = 𝐴𝐴 − 𝐾𝐾𝐾𝐾, �𝐵𝐵 = 𝐵𝐵 − 𝐾𝐾𝐾𝐾, �𝐵𝐵 = �𝐵𝐵 𝐾𝐾

 STEP1: Data equations derivation, propagating 𝑝𝑝 − 1 steps forward the state 
equation

𝑥𝑥 𝑘𝑘 + 2 = 𝐴̅𝐴2𝑥𝑥 𝑘𝑘 + 𝐴̅𝐴 �𝐵𝐵 �𝐵𝐵
𝑧𝑧(𝑘𝑘)

𝑧𝑧(𝑘𝑘 + 1)
⋮

𝑥𝑥 𝑘𝑘 + 𝑝𝑝 = 𝐴̅𝐴𝑝𝑝𝑥𝑥 𝑘𝑘 + 𝒦𝒦𝑝𝑝𝑍𝑍0,𝑝𝑝−1 ≅ 𝒦𝒦𝑝𝑝𝑍𝑍0,𝑝𝑝−1

where 𝒦𝒦𝑝𝑝 = 𝐴̅𝐴𝑝𝑝−1 �𝐵𝐵0 … �𝐵𝐵 is the system extended controllability matrix and

𝑍𝑍0,𝑝𝑝−1 =
𝑧𝑧(𝑘𝑘)
⋮

𝑧𝑧(𝑘𝑘 + 𝑝𝑝 − 1
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Black-box methods
PBSID algorithm (2)

28

As a consequence the input-output system behavior is 

𝑦𝑦 𝑘𝑘 + 𝑝𝑝 ≅ 𝐶𝐶𝒦𝒦𝑝𝑝𝑍𝑍0,𝑝𝑝−1 + 𝐷𝐷𝐷𝐷 𝑘𝑘 + 𝑝𝑝 + 𝑒𝑒 𝑘𝑘 + 𝑝𝑝
⋮

𝑦𝑦(𝑘𝑘 + 𝑝𝑝 + 𝑓𝑓) ≅ 𝐶𝐶𝒦𝒦𝑝𝑝𝑍𝑍𝑓𝑓,𝑝𝑝+𝑓𝑓−1 + 𝐷𝐷𝐷𝐷 𝑘𝑘 + 𝑝𝑝 + 𝑓𝑓 + 𝑒𝑒 𝑘𝑘 + 𝑝𝑝 + 𝑓𝑓

The data equations in matrix notation are given by 

𝑋𝑋𝑝𝑝,𝑓𝑓 ≅ 𝒦𝒦𝑝𝑝𝑍̅𝑍𝑝𝑝,𝑓𝑓

𝑌𝑌𝑝𝑝,𝑓𝑓 ≅ 𝐶𝐶𝒦𝒦𝑝𝑝𝑍̅𝑍𝑝𝑝,𝑓𝑓 + 𝐷𝐷𝑈𝑈𝑝𝑝,𝑓𝑓 + 𝐸𝐸𝑝𝑝,𝑓𝑓

 STEP2: considering 𝑝𝑝 = 𝑓𝑓 (called past and future windows length), estimates of 
matrices 𝐶𝐶𝒦𝒦𝑝𝑝 and 𝐷𝐷 are computed solving the LS problem

min
𝐶𝐶𝒦𝒦𝑝𝑝,𝐷𝐷

𝑌𝑌𝑝𝑝,𝑝𝑝 − 𝐶𝐶𝒦𝒦𝑝𝑝𝑍̅𝑍𝑝𝑝,𝑝𝑝 − 𝐷𝐷𝑈𝑈𝑝𝑝,𝑝𝑝
𝐹𝐹
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Black-box methods
PBSID algorithm (3)

29

 STEP3: an estimate of the state sequence 𝑋𝑋𝑝𝑝,𝑝𝑝 can be obtained computing the SVD

Γ𝑝𝑝𝑋𝑋𝑝𝑝,𝑝𝑝 ≅ Γ𝑝𝑝𝒦𝒦𝑝𝑝𝑍̅𝑍𝑝𝑝,𝑝𝑝 = 𝑈𝑈Σ𝑉𝑉𝑇𝑇

where Γ𝑝𝑝 is the extended observability matrix, from which an estimate of 𝐶𝐶 can be 
obtained solving the LS problem

min
𝐶𝐶

𝑌𝑌𝑝𝑝,𝑝𝑝 − �𝐷𝐷𝑈𝑈𝑝𝑝,𝑝𝑝 − 𝐶𝐶 �𝑋𝑋𝑝𝑝,𝑝𝑝
𝐹𝐹

 STEP4: estimation of the innovation data matrix 𝐸𝐸𝑝𝑝,𝑓𝑓 = 𝑌𝑌𝑝𝑝,𝑝𝑝 − 𝐶̂𝐶 �𝑋𝑋𝑝𝑝,𝑝𝑝 − �𝐷𝐷𝑈𝑈𝑝𝑝,𝑝𝑝 and the 
entire set of system state space matrices, solving the LS problem 

min
𝐴𝐴,𝐵𝐵,𝐾𝐾

�𝑋𝑋𝑝𝑝+1,𝑝𝑝 − 𝐴𝐴 �𝑋𝑋𝑝𝑝,𝑝𝑝−1 − 𝐵𝐵𝑈𝑈𝑝𝑝,𝑝𝑝−1 − 𝐾𝐾𝐸𝐸𝑝𝑝,𝑝𝑝−1
𝐹𝐹
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Black-box methods
LMS algorithm (1)

30

 Alternative black-box model identification method adopted: on-line implementation 
of the Least Mean Squares (LMS) algorithm 

 Updates recursively on board an estimate of the SISO impulse response of pitch 
angular velocity in the form of Finite Impulse Response (FIR) model

 State space model for the pitch dynamics recovered from estimated impulse 
response via suitable realization techniques (Kung's algorithm)
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Black-box methods
LMS algorithm (2)

31

An adaptive digital filter consists of two parts:
• digital filter (coefficients are called weights)
• an adaptive algorithm for adjusting the weights

Adaptive
Algorithm 

(LMS)

Digital 
Filter (FIR) -

+

𝑢𝑢(𝑛𝑛) 𝑦𝑦𝑀𝑀(𝑛𝑛)

𝑦𝑦(𝑛𝑛) 𝑒𝑒(𝑛𝑛)

 𝑢𝑢 𝑛𝑛 input signal

 𝑦𝑦𝑀𝑀 𝑛𝑛 desired response

 𝑦𝑦 𝑛𝑛 filter output

 𝑒𝑒 𝑛𝑛 error

Properties of the FIR filter:
• all the poles are inside the unit cycle (all in the origin): the filter is always stable
• small changes in the weights will give rise to small changes in the filter response
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Black-box methods
LMS algorithm (3)

32

The output of a digital FIR filter is a linear combination of the current and the past 
input values:

𝑦𝑦 𝑛𝑛 = 𝑤𝑤0𝑢𝑢 𝑛𝑛 + 𝑤𝑤1𝑢𝑢 𝑛𝑛 − 1 + ⋯+ 𝑤𝑤𝐿𝐿𝑢𝑢 𝑛𝑛 − 𝐿𝐿 + 1 = �
𝑙𝑙=0

𝐿𝐿−1

𝑤𝑤𝑙𝑙𝑢𝑢(𝑥𝑥 − 𝑙𝑙) = 𝒘𝒘𝑇𝑇𝒖𝒖 𝑛𝑛

where

• 𝒖𝒖 𝑛𝑛 = 𝑢𝑢(𝑛𝑛) 𝑢𝑢(𝑛𝑛 − 1) ⋯ 𝑢𝑢(𝑛𝑛 − 𝐿𝐿 + 1) 𝑇𝑇

• 𝒘𝒘 = 𝑤𝑤0 𝑤𝑤1 ⋯ 𝑤𝑤𝐿𝐿−1 𝑇𝑇

• 𝐿𝐿 is the length of the filter (number of weights)

The relationship can be represent more easily in the z-transform domain using the 
unit delay operator 𝑧𝑧−1 → 𝑧𝑧−1𝑢𝑢 𝑛𝑛 = 𝑢𝑢(𝑛𝑛 − 1) :

where
• 𝑊𝑊 𝑧𝑧 = 𝑤𝑤0𝑧𝑧𝐿𝐿−1+𝑤𝑤1𝑧𝑧𝐿𝐿−2+⋯+𝑤𝑤𝐿𝐿−1

𝑧𝑧𝐿𝐿−1
is the filter’s transfer function

• 𝑈𝑈 𝑧𝑧 is the z-transform of 𝑢𝑢 𝑛𝑛
• 𝑌𝑌 𝑧𝑧 is the z-transform of y 𝑛𝑛

𝑌𝑌 𝑧𝑧 = 𝑊𝑊 𝑧𝑧 𝑈𝑈(𝑧𝑧)
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LMS must adjust the filter weights so that the error signal

𝑒𝑒 𝑛𝑛 = 𝑦𝑦𝑀𝑀 𝑛𝑛 − 𝑦𝑦 𝑛𝑛 = 𝑦𝑦𝑀𝑀 𝑛𝑛 − 𝒘𝒘 𝑛𝑛 𝑇𝑇𝒖𝒖 𝑛𝑛
is minimized.

The criterion to minimize is

𝐽𝐽 𝑛𝑛 = 𝑒𝑒2 𝑛𝑛

LMS updates the weight vector using the following law:

𝒘𝒘 𝑛𝑛 + 1 = 𝒘𝒘 𝑛𝑛 +
𝜇𝜇
2
𝜕𝜕𝜕𝜕(𝑛𝑛)
𝜕𝜕𝒘𝒘(𝑛𝑛)

= 𝒘𝒘 𝑛𝑛 − 𝜇𝜇𝒖𝒖 𝑛𝑛 𝑒𝑒(𝑛𝑛)

where 𝜇𝜇 is the convergence factor.

 The gradient estimate is unbiased
 The expected value of the weight vector converges to 𝒘𝒘𝒐𝒐 obtained with the 

minimization of the Mean Square Error criterion.
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Grey-box model has structured parametrization derived from first principle approach:
 quadrotor is modeled as rigid body 
 rotors aerodynamic terms from combined Momentum and Blade Element Theory

Pitch attitude dynamics on test-bed (all other DoF’s constrained) is defined as

𝐼𝐼𝑦𝑦𝑦𝑦𝑞̇𝑞 𝑡𝑡 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑞𝑞 𝑡𝑡 +
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑢𝑢 𝑡𝑡 − 𝜏̂𝜏

𝜃̇𝜃 𝑡𝑡 = 𝑞𝑞(𝑡𝑡)
where stability derivative of pitch moment 𝑀𝑀 respect to angular rate 𝑞𝑞 in hovering trim is

𝜕𝜕𝑀𝑀
𝜕𝜕𝑞𝑞

= −2𝜌𝜌𝜌𝜌 Ω𝑅𝑅 2 𝜕𝜕𝐶𝐶𝑇𝑇
𝜕𝜕𝜕𝜕

𝑑𝑑

with 𝜕𝜕𝐶𝐶𝑇𝑇
𝜕𝜕𝜕𝜕

= ⁄𝐶𝐶𝑙𝑙 𝛼𝛼
8

𝜎𝜎
Ω𝑅𝑅

and control derivative of pitch moment (in hovering) is
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜌𝜌𝐴𝐴𝑏𝑏 Ω𝑅𝑅 2 𝜕𝜕 ⁄𝐶𝐶𝑇𝑇 𝜎𝜎
𝜕𝜕𝜃𝜃𝑅𝑅

𝑑𝑑

Black-box and grey-box model identification for a variable pitch quadrotor

Negative: aerodynamic damping 

Blade collective pitch
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Adding a rotational mass-spring-damper (𝐽𝐽,𝑘𝑘,𝑐𝑐) to modeling IMU vibration damping
system (not negligible dynamics) through which the measuring device is connected to
vehicle, equation become

𝐼𝐼𝑦𝑦𝑦𝑦𝑞̇𝑞 𝑡𝑡 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑞𝑞 𝑡𝑡 +
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑢𝑢 𝑡𝑡 − 𝜏̂𝜏 + 𝑘𝑘 𝜃𝜃𝑃𝑃 𝑡𝑡 − 𝜃𝜃(𝑡𝑡) + 𝑐𝑐 𝑞𝑞𝑃𝑃 𝑡𝑡 − 𝑞𝑞(𝑡𝑡)

𝐽𝐽𝑞̇𝑞𝑃𝑃 𝑡𝑡 = −𝑘𝑘 𝜃𝜃𝑃𝑃 𝑡𝑡 − 𝜃𝜃 𝑡𝑡 − 𝑐𝑐 𝑞𝑞𝑃𝑃 𝑡𝑡 − 𝑞𝑞(𝑡𝑡)
𝜃̇𝜃 𝑡𝑡 = 𝑞𝑞(𝑡𝑡)
𝜃̇𝜃𝑃𝑃 𝑡𝑡 = 𝑞𝑞𝑃𝑃(𝑡𝑡)

where 𝑃𝑃 subscript discern IMU from vehicle quantities.

Black-box and grey-box model identification for a variable pitch quadrotor
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Rewriting the equations in state space form, continuous time LTI model is obtained
𝑥̇𝑥 𝑡𝑡 = 𝐴𝐴𝐴𝐴 𝑡𝑡 + 𝐵𝐵𝐵𝐵 𝑡𝑡 − 𝜏̂𝜏

𝑦𝑦 𝑡𝑡 = 𝐶𝐶𝐶𝐶 𝑡𝑡 + 𝐷𝐷𝐷𝐷 𝑡𝑡 − 𝜏̂𝜏 + 𝑣𝑣 𝑡𝑡

where the state vector is 𝑥𝑥 𝑡𝑡 = 𝑞𝑞 𝑡𝑡 𝑞𝑞𝑃𝑃 𝑡𝑡 𝜃𝜃 𝑡𝑡 𝜃𝜃𝑃𝑃(𝑡𝑡) 𝑇𝑇 and matrices are

𝐴𝐴 =

⁄1 𝐼𝐼𝑦𝑦𝑦𝑦 ⁄𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕 − ⁄𝑐𝑐 𝐼𝐼𝑦𝑦𝑦𝑦 ⁄−𝑘𝑘 𝐼𝐼𝑦𝑦𝑦𝑦 ⁄𝑘𝑘 𝐼𝐼𝑦𝑦𝑦𝑦
⁄𝑐𝑐 𝐽𝐽 ⁄−𝑐𝑐 𝐽𝐽 ⁄𝑘𝑘 𝐽𝐽 ⁄−𝑘𝑘 𝐽𝐽
1 0 0 0
0 1 0 0

𝐵𝐵 =

⁄1 𝐼𝐼𝑦𝑦𝑦𝑦 ⁄𝜕𝜕𝜕𝜕 𝜕𝜕𝑢𝑢
0
0
0

𝐶𝐶 = 0 1 0 0 𝐷𝐷 = [0]

The quadrotor moment of inertia 𝐼𝐼𝑦𝑦𝑦𝑦 was obtained from previously dedicated 
identification procedure, then the unknown parameters of structured model are

Θ =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, 𝐽𝐽, 𝑘𝑘, 𝑐𝑐

Black-box and grey-box model identification for a variable pitch quadrotor

Grey-box methods
Model structure (3)

IMU damping system 
model param.Stability and control 

derivatives of pitch moment
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Given sampled I/O dataset 𝑢𝑢(𝑡𝑡𝑖𝑖), 𝑦𝑦𝑀𝑀(𝑡𝑡𝑖𝑖) , 𝑖𝑖 ∈ 1,𝑁𝑁
the ML estimate is equal to the value of Θ that  maximizes the likelihood function, defined
as the probability density function of 𝑦𝑦 given Θ, i.e.

𝕃𝕃 𝑦𝑦,Θ = 𝑃𝑃(𝑦𝑦|Θ)

�Θ = arg max
Θ

𝕃𝕃 𝑦𝑦,Θ

In the case of a Gaussian 𝑃𝑃(𝑦𝑦), as the measurement noise 𝑣𝑣 𝑡𝑡 , the ML estimator
reduces to a least squares estimator, namely the cost function is

𝐽𝐽 Θ =
1
𝑁𝑁
�
𝑘𝑘=1

𝑁𝑁

𝑒𝑒 𝑘𝑘,Θ 2

where 𝑒𝑒 𝑘𝑘,Θ = 𝑦𝑦𝑀𝑀 𝑘𝑘 − 𝑦𝑦(𝑘𝑘,Θ).

The cost function minimum search is carried out through an iterative Newton-Raphson
Method.
Black-box and grey-box model identification for a variable pitch quadrotor
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Attitude dynamics identification 
Grey-box H∞ approach: the rationale
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 SMI methods are more attractive than OE because of their non-iterative nature
 On SMI model is not possible to enforce a-priori knowledge of model structure, 

naturally allowed by grey-box approach

bridge the gap between structured 
and unstructured model

Novel identification procedure proposed by Bergamasco & Lovera 2013
H∞ model matching problem in frequency-domain, relating black-box unstructured 
model from SMI to structured one from first principle approach

Resulting non-convex, non-smooth optimization problem is solved explointing 
computational tool developed by Apkarian & Noll 2006 
(available in Matlab Robust Control Toolbox from R2012a → <hinfstruct>)
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Attitude dynamics identification 
Grey-box H∞ approach
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Unstructured LTI DT 
from SMI

convert to CT
(zero order hold)

𝑥̇𝑥 𝑡𝑡 = 𝐴𝐴𝑛𝑛𝑛𝑛𝑥𝑥 𝑡𝑡 + 𝐵𝐵𝑛𝑛𝑛𝑛𝑢𝑢 𝑡𝑡
𝑦𝑦 𝑡𝑡 = 𝐶𝐶𝑛𝑛𝑛𝑛𝑥𝑥 𝑡𝑡 + 𝐷𝐷𝑛𝑛𝑛𝑛𝑢𝑢 𝑡𝑡

𝐺𝐺𝑛𝑛𝑛𝑛(𝑠𝑠)

convert to tf in 
Laplace domain

Structured LTI CT 
from first principle

𝑥̇𝑥 𝑡𝑡 = 𝐴𝐴𝑠𝑠(Θ)𝑥𝑥 𝑡𝑡 + 𝐵𝐵𝑠𝑠(Θ)𝑢𝑢 𝑡𝑡
𝑦𝑦 𝑡𝑡 = 𝐶𝐶𝑠𝑠(Θ)𝑥𝑥 𝑡𝑡 + 𝐷𝐷𝑠𝑠(Θ)𝑢𝑢 𝑡𝑡 𝐺𝐺𝑠𝑠(𝑠𝑠,Θ)

𝐺𝐺𝑛𝑛𝑛𝑛(𝑠𝑠)

𝐺𝐺𝑠𝑠(𝑠𝑠,Θ)

𝐺𝐺𝑊𝑊(𝑠𝑠)+
-

�Θ = arg min
Θ

𝐺𝐺𝑊𝑊(𝑠𝑠) 𝐺𝐺𝑛𝑛𝑛𝑛 𝑠𝑠 − 𝐺𝐺𝑠𝑠(𝑠𝑠,Θ) ∞

𝐺𝐺𝑊𝑊 is a suitable filter to focus the matching in the frequency range where 
𝐺𝐺𝑛𝑛𝑛𝑛(𝑠𝑠) well describes the real system, then in PRBS exitation spectrum

Since the time delay in system dynamics was removed before SMI, in structured 
model was set 𝜏̂𝜏 = 0 for the model matching (and reintroduced later in validation)
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Attitude dynamics identification 
Results introduction
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 SMI algorithms parameter tuned to obtain higher VAF (Variance Accounted For) on 
cross-validation dataset
 PI-MOESP: model order n = 4 ; Hankel I/O matrices rows n° p = 40
 PBSID: model order n = 5 ; past / future window size p / f = 11 / 7

Two different datasets were used for validation and performance comparison:
 Normal closed-loop operation of pitch attitude control system, representing typical 

flight condition
 Cross-validation: single PRBS excitation phase not employed in the identification 

process (dataset also used for algorithms parameters tuning)

 H∞ approach
 filter 𝐺𝐺𝑊𝑊 was tuned to reach best VAF performance on cross-validation dataset: 

adopted a 15th order low pass Butterworth, cut-off 7rad/s (complies with 
excitation spectrum peak)

 OE ML approach does not offer specific parameters to be tuned



Identification and control of multirotor UAVs

Attitude dynamics identification 
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blue lines: measured pitch rate ; red dashed lines: models simulation
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Attitude dynamics identification 
Results on excitation cross-validation dataset
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blue lines: measured pitch rate ; red dashed lines: models simulation
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43

10
-1

10
0

10
1

10
2

10
3

-100

-50

0

50

[rad/s]
[d

B]

 

 

PBSID model
H∞ model

10
-1

10
0

10
1

10
2

10
3

-200

-150

-100

-50

0

[rad/s]

[D
eg

]

10
-1

10
0

10
1

10
2

10
3

-50

0

50

[rad/s]

[d
B]

 

 

PI-MOESP model
H∞ model

10
-1

10
0

10
1

10
2

10
3

-200

-150

-100

-50

0

[rad/s]

[D
eg

]

𝐺𝐺𝑊𝑊 cut-off = 7rad/s

In time domain:
 H∞ model vs. PI-MOESP, VAF = 96.9%
 H∞ model vs. PBSID VAF = 99.6%
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 Black-box models
 LMS provides the worst result on both considered dataset: VAF on excitation 

cross-validation downgrades significantly on normal operation dataset (the 
model has poor generalization capability)

 PI-MOESP guarantees the best VAF on both dataset : benchmark performance
 PBSID is the second in rank but close to PI-MOESP 

 Grey-box models
 it is well known in the literature that leads to inferior performance respect to 

black-box (also for full-scale rotorcraft)
 both OE ML and H∞ approach perform only slightly less satisfactorily than PBSID
 H∞ approach model matches accurately the two SMI algorithms both in 

frequency and time domain
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



 Robust attitude control




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Robust attitude control
Introduction

46

Quadrotor control synthesis has been studied extensively in the literature, adopting 
several approaches: 

 PID architecture and LQ synthesis
 Robust control design
 Backstepping and Sliding mode 
 Trajectory planning & tracking (e.g., adaptive control, dynamic inversion, 

flatness-based control, trajectory smoothing using motion primitives)

Concerning the control design part of the developed tool chain it was preferred to maintain 
the pre-existing on-board attitude controller scheme (cascade PID loops), in order to work 
in continuity and accelerating implementation process  structured H∞ synthesis

The work focuses on near hovering condition:
 quadrotors mainly operate in this regime during typical missions
 in this operating mode the tighter handling qualities performance are required
 the attitude dynamics in hover can be replicated operating on a proper test-bed  
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Robust attitude control
Adopted identified models
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Pitch angular velocity models comparison: 
on test-bed vs. in flight (near hover), PI-MOESP vs. PBSID

 PBSID: good agreement test-bed vs. flight
 PBSID close to PI-MOESP on test-bed data, when 

feedback action is less invasive (operations are 
nearest to be in open-loop)

PBSID on test-bed 
𝑞𝑞
𝑢𝑢

=
12.517(𝑠𝑠 + 2.906)
𝑠𝑠2 + 5.583𝑠𝑠 + 21.3

n=2, p=35, f=6

PBSID in-flight
𝑞𝑞
𝑢𝑢

=
13.8194(𝑠𝑠 + 2.761)
𝑠𝑠2 + 5.198𝑠𝑠 + 25.04

n=2, p=f=5

 PI-MOESP: poor agreement test-bed vs. flight
 Feedback action of supervision task added to PRBS 

is more invasive during in flight identification (quasi 
open-loop): avoid attitude angle limit overcoming in 
presence of wind disturbances

 PI-MOESP assumes feeding data gathered operating 
in open-loop

PBSID is able to deal with data 
generated in closed-loop

Test-bed set-up is representative of the 
pitch attitude dynamics in hovering flight

Algorithm 𝜈𝜈-gap metric 
test-bed vs. flight

VAF 
test-bed

VAF        
flight

PI-MOESP 0.3405 65.8% 20.1%

PBSID 0.0741 65.1% 21.4%
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Robust attitude control
Controller architecture & H∞ synthesis requirements  
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 Implemented accurate replica 
of pre-existing on-board 
controller in Simulink

 Cycle time 0.02 s

Pre-existing tuning from experimental trial & error manual process:
 guarantees adequate performance in terms of set-point tracking
 needs improvement in terms of wind gust rejection

Define proper requirements for H∞ synthesis on fixed-structure controller 

Performance channel
 Crossover frequency of each loop into specified bandwidth: 3.5→14 rad/s
 Set-point tracking target response time: 0.5 s
 Set-point tracking target maximum steady-state error: 0.001%

Robustness channel
 From process noise (wind gust) to control variable
 Disturbance rejection specified assigning maximum gain constraint function: high pass 

filter (gust is a low frequency noise), first order, gain 40 dB, cutting freq. 10 rad/s

q
PD(z) PID(z) delay

LPF

LPF

𝑞𝑞
𝑢𝑢

(𝑠𝑠)
θ0 q0 θu

- -
1
𝑠𝑠
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Structured H∞ synthesis formulation 

Given

𝑃𝑃(𝑠𝑠) : real rational transfer matrix, PLANT

𝐾𝐾(𝜗𝜗) : STRUCTURED controller depending smoothly on a design 
parameter vector 𝜗𝜗 varying in space ℝ𝑛𝑛

Solve the optimization program

minimize 𝑇𝑇𝑤𝑤→𝑧𝑧(𝑃𝑃,𝐾𝐾(𝜗𝜗)) ∞

subject to 𝜗𝜗 ∈ ℝ𝑛𝑛 ∶ 𝐾𝐾 𝜗𝜗 stabilizes 𝑃𝑃 internally

𝑇𝑇𝑤𝑤→𝑧𝑧(𝑃𝑃,𝐾𝐾(𝜗𝜗)) : closed loop transfer function on considered I/O channel w → z 
on which requirements (performance and robustness) are defined 

𝑃𝑃(𝑠𝑠) regroups the process and the filter functions in loop shaping context

Resulting non-convex, non-smooth optimization problem is solved explointing 
computational tool developed by Apkarian & Noll, 2006
Available in Matlab Robust Control Toolbox from R2012a → <looptune> 
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Robust attitude control
Optimal tuning parameters
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Controller
parameter

Standard 
tuning

Optimal tuning: 
test-bed model

Optimal tuning: 
flight model

Kp PD 9.26 5.4631 6.0491

Kd PD 1.11 0.9376 1.0320

Tf PD 0.03 0.0380 0.0377

Kp PID 0.257 0.3539 0.2986

Ki PID 0.643 1.8562 1.6150

Kd PID 0.0231 0.0084 0.0075

Tf PID 0.0225 0.0430 0.0415

Outer loop on θ

Inner loop on q

For the assigned controller structure, applied on identified models, the structured 
H∞ algorithm finds the locally optimal parameters 𝜗𝜗 of the PIDs to satisfy desired 
requirements

The standard tuning obtained through trial & error empirical procedure done 
manually was used as starting guess for the optimization procedure
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In-flight model

On test-bed model
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 Angular sp variation requested 
 No process/measures noise
 Optimal tuning guarantees control effort 

reduction with similar/better tracking 
respect to standard

 Process disturbance, typical wind gust
 Angular sp null
 Optimal tuning guarantees angular drift 

reduction

Pitch control variable saturation = ±30%
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Pitch control variable saturation = ±30%

 Angular sp variation requested 
 No process/measures noise
 Optimal tuning guarantees control effort 

reduction with similar/better tracking respect 
to standard

 Optimal tuning test-bed is close to flight one

 Process disturbance, typical wind gust
 Angular sp null
 Optimal tuning flight guarantees angular 

drift reduction
 Optimal tuning test-bed is close to flight one

Robust attitude control
Simulation results: in-flight model in the loop



Identification and control of multirotor UAVs

Robust attitude control
Experimental results on test-bed

54

Pitch control variable saturation = ±30%

Standard tuning

Optimal tuning test-bed

 Base throttle = 60% (hovering value)
 Angular sp variation requested
 Aerodynamic disturbances due to rotors 

wake recirculation in closed indoor test area

 Optimal tuning guarantees similar tracking 
performance with a reduction in control effort 
(confirming behavior from simulation)



Identification and control of multirotor UAVs

Robust attitude control
PBSID models uncertainty (1) 

55

On test-bed model

In flight model

 On test-bed attitude pitch dynamics 
captured with very good accuracy

 Limited uncertainty band on all 
considered frequency range

 Especially narrow around PRBS 
excitation cut-off (7 rad/s)

Bootstrap based approach, 1000 replications

 Identified model in flight presents a 
wider uncertainty band

 In design control bandwidth 
(3.5→14 rad/s) level of uncertainty 
can be considered acceptable

 The presence of wind gust implies a less repeatable test conditions w.r.t. identification in 
laboratory on test-bed

 In flight quadrotor attitude pitch dynamics is coupled with longitudinal one during the PRBS 
excitation, while on test-bed only the pitch rotation is allowed
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On test-bed model In flight model

Bootstrap scheme for SMI (Bittanti & Lovera, 2000)
1. Estimate finite dimensional LTI nominal model (in innovation form) applying PBSID on 

original I/O dataset 𝑢𝑢(𝑘𝑘),𝑦𝑦(𝑘𝑘)
2. Calculate the model prediction error
3. Compute the covariance of prediction error and assume for it a Gaussian distribution
4. Generate B replications of original dataset, with 𝑢𝑢∗ 𝑖𝑖 (𝑘𝑘) = 𝑢𝑢(𝑘𝑘) and 𝑦𝑦∗ 𝑖𝑖 (𝑘𝑘) obtained 

simulating the nominal model with input 𝑢𝑢(𝑘𝑘) and 𝑒𝑒∗ 𝑖𝑖 (𝑘𝑘), the latter generated re-sampling 
the Gaussian distribution of the residual

5. Estimate B replications of the nominal model applying PBSID to the B new dataset 
(𝑢𝑢∗ 𝑖𝑖 𝑘𝑘 ,𝑦𝑦∗ 𝑖𝑖 (𝑘𝑘))

The number of replications required to obtain standard error convergence is usually very large, 
so the application of bootstrap is viable only for efficient identification algorithm

 Higher dispersion of real zero 
replicas w.r.t. to complex conjugate 
pole replications for both models

 Uncertainty of zero position is more 
significant because its nominal 
frequency is farther from excitation 
cut-off w.r.t. to nominal pole 
frequency
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Additive uncertainty
𝒢𝒢 ≔ 𝐺𝐺 𝑠𝑠 = 𝐺𝐺𝑁𝑁𝑁𝑁𝑁𝑁 𝑠𝑠 + 𝑊𝑊

∆
𝑠𝑠 ∆ 𝑠𝑠 , ∆ ∞ < h

∆ 𝑠𝑠 : uncertainty LTI SISO random dynamics (with assigned peak gain)

𝑊𝑊
∆
𝑠𝑠 : stable, minimum phase, shaping filter, order 3

On test-bed model In flight model

𝑖𝑖𝑖𝑖 Δ ∞ < 1, 𝐺𝐺 𝑗𝑗𝜔𝜔 − 𝐺𝐺𝑁𝑁𝑁𝑁𝑁𝑁(𝑗𝑗𝑗𝑗) = Δ(𝑗𝑗𝑗𝑗)𝑊𝑊Δ(𝑗𝑗𝑗𝑗) < 𝑊𝑊Δ(𝑗𝑗𝜔𝜔) ,∀𝜔𝜔

The control system can be represented by the two level scheme

𝑇𝑇𝜗𝜗𝜗𝜗 𝑠𝑠 =
𝑊𝑊Δ 𝑠𝑠 𝑅𝑅(𝑠𝑠)

1 + 𝑅𝑅(𝑠𝑠)𝐺𝐺𝑁𝑁𝑁𝑁𝑁𝑁(𝑠𝑠)
= 𝑊𝑊Δ 𝑠𝑠 𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁 𝑠𝑠

Tuning Process ℎ𝑙𝑙𝑙𝑙𝑙𝑙

Standard
test-bed 0.370

flight 0.114

Optimal on 
test-bed

test-bed 0.600

flight 0.189

Optimal in 
flight flight 0.173

𝑒𝑒
𝐺𝐺𝑁𝑁𝑁𝑁𝑁𝑁 𝑠𝑠

𝑊𝑊
∆
𝑠𝑠 Δ 𝑠𝑠

𝑅𝑅 𝑠𝑠 𝑢𝑢 𝑦𝑦

𝜗𝜗 𝜓𝜓

-

Δ 𝑠𝑠

𝑇𝑇𝜗𝜗𝜗𝜗 𝑠𝑠

𝜗𝜗

𝜓𝜓

From small gain theorem the c.l.s. is stable ∀ Δ 𝑠𝑠 ∈ ℋ∞ (i.e. a stable t.f) with ∆ ∞ < 𝑇𝑇𝜗𝜗𝜗𝜗 ∞

−1
, hence

ℎ𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑊𝑊Δ 𝑠𝑠 𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁 𝑠𝑠 ∞
−1 where 𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁 𝑠𝑠 is the nominal control sensitivity
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Uncertainty block with imposed peak gain equal to robust stability limit ℎ𝑙𝑙𝑙𝑙𝑙𝑙,
randomly sampled to generate 1000 Monte Carlo simulations

Standard tuning Optimal tuning test-bed

Set-point change

Standard tuning Optimal tuning test-bed

Load change

Magenta line: nominal model
Blue lines: uncertain models
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Standard tuning

Set-point change

Optimal tuning test-bed Optimal tuning flight

Load change

Standard tuning Optimal tuning test-bed Optimal tuning flight
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

 Control design procedure test case
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 The proposed attitude control design procedure (and the relative tool-chain), from 
identification conducted indoor on single DoF test-bed, to the structured H∞
synthesis, was applied to the production Aermatica quadrotor

 It is a tight test case, aimed to strengthen procedure validity, considering the 
significant increment in quadrotor size/weight w.r.t. adopted prototype for the 
development

ANTEOS A2-MINI/B
 Variable collective pitch
 MTOW = 9 kg (+80%)
 Rotors radius = 0.375 m (+39%)
 Arms length = 0.629 m (+51%)
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 Single DoF (pitch) test-bed (rotors in OGE)
 PRBS excitation signal
 Experiments carried out in quasi open-loop conditions
 None in flight identification campaign was conducted
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PRBS parameters tuning:
 expected dominant attitude dynamics range: 3 to 7 rad/s         

(lower w.r.t. to P2-A2 prototype)
 necessary greater pitch control command % w.r.t. to P2-A2

Identification 
campaign

PRBS switching 
time range [s]

1 0.05 – 0.1

2 0.1 – 0.2

3 0.2 – 0.4

4 0.4 – 0.8

PRBS 
amplitude

Blade pitch command 
difference between opposite 

rotor [%] 

1 ± 11

2 ± 13

3 ± 15
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Data logged during test @ 50Hz
Input: pitch attitude control variable
Output: 𝜃𝜃, 𝑞𝑞, 𝑞̇𝑞 from on-board IMU

Excitation spectrum

Identification input signal obtained concatenating 2 excitation segments from different 
test in order to average out mild non-linearities

peak @ 5-6rad/s
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Adopted the black-box approach → subspace method → PI-MOESP algorithm

SISO model from ctrl input 𝑢𝑢 to pitch angular rate 𝑞𝑞 →  𝑞𝑞
𝑢𝑢

= 10.29𝑠𝑠+33.68
𝑠𝑠2+5.112𝑠𝑠+14.72

(𝑛𝑛 = 2, 𝑝𝑝 = 39)

Model order fixed, block-size 𝑝𝑝 of Hankel data matrices tuned to obtain higher VAF on 
cross-validation dataset

System dynamics time delay (𝜏̂𝜏 = 0.06s) in SMI properly considered 

As expected dominant dynamics 
become slower increasing the vehicle 
dimensions: 
 complex conjugate poles frequency 

decreases from 4.09 to 3.67 rad/s 
 poles damping factor increases 

from 0.567 to 0.697 
 real zero frequency moves from 2 to 

2.4 rad/s
passing from P2-A2 to A2-MINI/B
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A2-MINI/B identified pitch model performance:

 Cross-validation dataset (PRBS not used for identification) → VAF = 83.13%

 Validation dataset (normal control, pitch angle sp variation) → VAF = 61.22%
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The A2-MINI/B has the same attitude ctrl architecture of the P2-A2, based on decoupled 
cascaded PID loops for the pitch, roll and yaw axes (cycle time 0.02 s)

Instead of standard PIDs, A2-MINI/B adopts PIDs 2 dof, with the additional parameters:
 proportional set-point weight b : varying from 0 to 1 (std PID b=1)
 derivative set-point weight c : flag equal to 0 or 1 (std PID c=1)

The pre-existing attitude tuning (from experimental trial & error manual process) was 
extensively tested in flight hence the desired qualitative performance improvements are:

 better set-point tracking: response time is almost adequate while a reduction of 
settling time and oscillation amplitude around the angular sp is needed

 better wind gust rejection capability in terms of maximum angular drift and 
reduction of oscillation in recovery the desired angular sp



Identification and control of multirotor UAVs

Control design procedure test case
H∞ synthesis requirements for pitch attitude ctrl (2)  

68

From qualitative to quantitative requirements for H∞ synthesis on assigned 
fixed-structure controller 

Performance channel
 Crossover frequency of each loop into specified bandwidth: 4→16 rad/s
 Set-point tracking target response time: 0.3 s
 Set-point tracking target maximum steady-state error: 0.001%

Robustness channel
Disturbance rejection specified assigning a gain constraints as function of 
frequency → high pass filter 

 maximum gain of -3 dB above the cutting frequency (at 0.5 rad/s)
 60 dB/decade roll-off below 0.5 rad/s
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Controller
parameter

Standard 
tuning

Optimal 
tuning

Kp PD 15.1515 19.8566

Kd PD 1.9697 1.5331

Tf PD 0.0325 0.0723

b PD 1 0.9986

c PD 0 0

Kp PID 0.3691 0.5253

Ki PID 2.0504 1.7525

Kd PID 0.0183 0.0144

Tf PID 0.0124 0.0206

b PID 0.46 0.5787

c PID 1 1

Outer loop on θ

Inner loop on q

The standard tuning was used as starting guess for the optimization procedure

c flag NOT optimized, set 
equal to standard tuning 
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Complementary sensitivity

Control sensitivity
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 Angular sp variation requested 
 No process/measures noise
 Pitch control variable saturation = ±30%

Opti tuning shows w.r.t. std one:
 reduced settling time (less oscillation on sp)
 response time slightly lower with non 

significant overshoot increment
 control effort increase (of an acceptable 

amount)
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 Process disturbance, typical wind gust
 No measures noise
 Angular sp null
 Pitch control variable saturation = ±30%

Opti tuning shows w.r.t. std one:
 reduced drift from null angular sp due to gust
 pitch angle oscillations in sp recovery 

eliminated 
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 On test-bed attitude pitch dynamics captured with 
very good accuracy (limited uncertainty band 
throughout considered freq. range)

 Thanks to higher test repeatability and pitch 
attitude dynamics decoupling w.r.t. longitudinal 
one assured by operating on test-bed in 
comparison with flight identification

Bootstrap based approach applied on PI-MOESP 
model (1000 replications)
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Uncertainty block peak gain equal to robust 
stability limit ℎ𝑙𝑙𝑙𝑙𝑙𝑙 (worst case), randomly sampled 
to generate 1000 Monte Carlo simulations

𝑒𝑒
𝐺𝐺𝑁𝑁𝑁𝑁𝑁𝑁 𝑠𝑠

𝑊𝑊
∆
𝑠𝑠 Δ 𝑠𝑠

𝑅𝑅 𝑠𝑠
𝑢𝑢 𝑦𝑦

𝜗𝜗 𝜓𝜓

-
Additive uncertainty

𝒢𝒢 ≔ 𝐺𝐺 𝑠𝑠 = 𝐺𝐺𝑁𝑁𝑁𝑁𝑁𝑁 𝑠𝑠 + 𝑊𝑊
∆
𝑠𝑠 ∆ 𝑠𝑠 , ∆ ∞ < h

∆ 𝑠𝑠 : uncertainty LTI SISO random dynamics

𝑊𝑊
∆
𝑠𝑠 : stable, minimum phase, shaping filter, order 3

Robust stability limit
ℎ𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑊𝑊Δ 𝑠𝑠 𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁 𝑠𝑠 ∞

−1

 = 0.0880 for standard tuning
 = 0.0347 for optimal tuning
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Standard 
tuning

Optimal 
tuning

Magenta line: 
nominal model
Blue lines: 
uncertain models
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Standard 
tuning

Optimal 
tuning
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 Base throttle = 60% (hovering value)
 Angular sp variation requested
 Pitch control variable saturation = ±30%
 Rotors in OGE
 Aerodynamic disturbances due to rotors 

wake recirculation in closed indoor test area

Opti tuning shows w.r.t. std one:
 reduced oscillations around angular sp
 remarkable amplitude lowering of the high 

frequency control variable oscillation
 smoothing of control action can be appreciate 

also on angular velocity 

Standard tuning

Optimal tuning
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 To simulate the effect of an heavy wind gust, 
at the tip of the front arm was fixed a rope, 
pulled manually to impose a pitch angle of 
about 20°, maintained for a couple of sec. 
and hence suddenly released, 

 Required null angular sp during the operation
 Pitch control variable saturation = ±40%
 Angular rate sp saturation = ±150°/s

 pitch angle overshoot and oscillations in sp 
recovery occurring when imposed angular 
drift is released are eliminated adopting the 
optimal tuning

Standard tuning

Optimal tuning
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 Results logged during an OGE 
hovering at MTOW (height = 5m) 

 Mean wind measured on ground 
of 2.5 m/s

 Position control is active, in the 
task of hold the desired x, y, z 

 No pilot actions on commands
 Pitch (roll) angle sp requested to 

attitude controller is determined 
by longitudinal (lateral) position 
controller

 The switch from standard tuning 
to optimal one was commanded 
in flight

 The presence of wind disturbance determines a non-zero mean value of pitch angular sp to 
assure the position hold

 Switching to optimal tuning is evident a huge amplitude lowering of high frequency ctrl variable 
oscillation and as consequence a reduction of pitch angle oscillation amplitude around sp
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 Thanks to the geometrical and 
inertial symmetry of quadrotor 
the pitch controller tuning was 
applied also to roll

 The results correspond to the 
same flight portion considered in 
previous slide

 Analogous evidences can be 
observed 
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 The proposed integrated attitude control design procedure (from model identification to 
control synthesis), specifically addressed to near hovering condition, was developed and 
successfully applied to the considered quadrotor prototype pitch DoF

 Simulations demonstrate that structured H∞ optimal tuning obtained with test-bed model in 
the loop can be applied also in flight with a non-significant loss in control performance, 
hence the attitude controller tuning can be achieved using models obtained in safe, faster 
and more repeatable identification experiments executed indoor

 In order to strengthen procedure validity, the entire tool chain was successfully applied to 
the production Aermatica quadrotor (with significant increment in size/weight w.r.t. 
prototype): flight test results confirm the expected simulation evidences

 In order to complete the tool chain the work will be naturally extended to yaw DoF

 As future work extension, a similar integrated procedure may be developed for the 
translational quadrotor DoFs
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