: : F " 8 - i R 8 e = £,
] | : | g .’. = < i £
- ?—;5" - el =Y Gty ) L =

Identification and control of multirotor UAVS

Marco Lovera

Aerospace Systems and Control Laboratory
Department of Aerospace Science and Technology




Outline

Introduction and motivations

Modelling and identification

Robust attitude control

Control design procedure test case

Concluding remarks

Identification and control of multirotor UAVsS

- I POLITECNICO DI MILANO




Introduction

The interest in multirotors as platforms for both research and commercial Unmanned Aerial Vehicle
(UAV) applications is steadily increasing:

v surveillance & security

v/ environment monitoring & remote sensing
v building & industrial plants monitoring

v' photogrammetry

Advantages w.r.t. classical helicopter architecture:
v'simpler rotor articulation (no swash plate, no cyclic command)
v'weak DoFs coupling - easier to control
v possibility of rotors protection (shrouding) - safer

Possible quadrotor architectures:
. (fixed blade pitch) - simple and light rotors hub
. (fixed RPM) - avoid performance limitation due to bandwidth of motors
dynamics

Some of the envisaged applications lead to tight performance requirements on the attitude control
system - this calls for increasingly accurate dynamics models of the vehicle’s response to which
advanced controller synthesis approaches can be applied

Identification and control of multirotor UAVsS
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Motivations

Development of an integrated, highly automated, control design tool-chain aimed at fast
and reliable deployment of vehicle’s attitude control system

|dentification experiments indoor on proper test-bed,
avoiding risky and time consuming in-flight test campaign

|dentification of LTI attitude
response models

Attitude controller tuning solving
structured H., robust design problem

GOAL: demonstrate that it guarantees acceptable
performance also in flight near hover conditions

8\ Aermatica .
| / - -

- ANTEOS P2-A2 prototype
v' Variable collective pitch (fixed RPM)
v MTOW =5 kg
v Rotors radius = 0.27 m
v' Arms length = 0.415 m

Identification and control of multirotor UAVsS
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|Quadrotor control: basic principles
||

h — hovering (fixed point flight)

A '\
LEFT 7 FRONT LEFT o FRONT
Th+AT .\_/ e /‘Th+AT Th+AT Th
&
REAR RIGHT REAR RIGHT
T, + AT \\ _A R__)T; + AT T}, o Th—AT
Vertical Roll — Lateral
FRONT LEFT = FRONT
T,, — AT T, + AT g T,, — AT
.
RIGHT REAR - RIGHT
T, T,, — AT T, + AT
Pitch — Longitudinal Yaw

Underactuated with respect to 6 DoFs
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N|Quadrotor modeling: reference frame

eCollective (Ucol) ePitch/Roll (Ugon/U[at> *Yaw (U’ped)
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Basic aerodinamic model

Elementary aerodynamic model:
the thrust generated by each rotor is proportional to QZ:

Fy =007, i=1,...,4

3 e ey

therefore the total thrust is given by
= Zf:l by = bZL Q;

while the rolling/pitching moments are given by
My = I(Fy — F») = 1(Q — Q3)

M, = 1(F3 — Fy) = 1b(Q3 — QF)
and the yawing moment is

M, =Fy | F —F) — F3=d(Q3 | Q7 — Q% —Q3)

Identification and control of multirotor UAVs
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Control variables

The control variables are commonly defined as:

e Collective
Ucol :Q%‘FQ%‘FQ%—FQE
e Roll
Uige — Qi — Q%

e Pitch [, = Q% —Q?

e Yaw U, = Q5+ Q5 —QF — Q3F )

with respect to which - ~
e Collective F = bU,,;

o Roll M, = blUp

L P|tCh Mq — bZUlon

* Yaw M, = dUpeq )

Identification and control of multirotor UAVs
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Dynamics of a quadrotor helicopter

Overall model which describes the behavior of a quadrotor helicopter

m Vb +wp X (mVy) = Fg + Fprops
I n Ln.;‘g;. +wp X (In.'i'-f‘b) — f'r'irdamp + ﬂ"irp?"ﬂpﬂ

Gravity component

0 —Se
Fy=Tge(®,0,¥)| 0 = | 53Co | mg.
mg CsCo

: 9L o 0 -

Damping component p P

Magmp=| 0 2L 0 q

o o & ;
0 Krds (2 - 03 - 03 + 2})
Fprops = — 0 Miprops = | K55 (0F + 05 — 25 — 2})
K (23 + 023 + 025 + 27) Ko (—22 + 22 — 22 + 22
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| Dynamics of a quadrotor helicopter

ﬂ — p + sin(¢) tan(8) g + cos(¢) tan(t’»’m
0 = cos(¢) g — sin(¢p) r

. sin(¢) cos(¢)
V= cos(0) 1 cos(0)

7

Z=—g -+ (cos(0) cos(op)) %F

D= yLE QT'JFEMP
I, —1I; 1
. EY,
q T, p’f‘+Iy q
Iy — I, 1
. M
\ =T g -
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Inertial Measurement Unit calibration

Nz
|| .
Accelerometer and magnetometer

Accelerometer calibration
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Inertial Measurement Unit calibration

Gyroscope

Gyroscope calibration - Y axis

[rad],[rad/s]

Angular velocity
Angular position
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Actuator analysis

TESTING PLATFORM

To measure the propeller's
thrust against the rotational
speed

» Sensors
« Load cell
-> Thrust

« Optical tachometer
-> Rotational speed

» Electronic board
e Arduino MEGA

Identification and control of multirotor UAVsS
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Actuator analysis

STATIC RESPONSE ESTIMATION
Relationship between propeller's thrust and rotational speed

_ Kt
Cr =
= AR?
T = Kp0° ~3/2
. > Op_ CT
K = CrpAR® V2
Co=Cp

Relationship between the [ , MThy +

@;lrottle and propeller's rotational
speed
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Actuator analysis

Omega vs Throttle

10 20 30 40 50 &0 70 80 90 100

LS

Linear characteristic
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Thrust vs Omega
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O Daa Ls|

Quadratic characteristic
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Actuator analysis

DINAMIC RESPONSE ESTIMATION

* Assuming a first order dynamical Throttle
relationship between the
percentage of throttle as input

—

and the rotational speed of the = %
propeller as output
DD 0.5 1 15 2 25
Time [s]
500 Omega
o~ 600
G(s) = f2(s) =K — %400
Th(s) 14 sT £

— — — Data estimated
ldentified model

W] 0.5 1 15 2 25
Time [s]
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» Modelling and identification
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Attitude dynamics identification
State of the art

Q Itis apparent from literature that quadrotor mathematical models are easy to establish as far
the kinematics and dynamics of linear and angular rigid body motion are concerned

O Characterizing aerodynamic effects and additional dynamics such as, e.g., due to actuators
and sensors, is far from trivial = increasing interest in experimental characterization of
guadrotor dynamics response through system identification

0 System identification is actually a well established approach for the development of control-
oriented LTI models in the rotorcratft field:

v Frequency-domain approaches (e.g. NASA CIFER tool)
v Iterative time-domain approaches (e.g. OE, EE, etc.)
v NON-iterative time-domain approaches (e.g. subspace methods)

O The application to full scale rotorcraft is fairly mature but less experience has been gathered
on small-scale vehicles

- I POLITECNICO DI MILANO
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Attitude dynamics identification
|dentification experiments (1)

O The identification experiments have been carried out in laboratory conditions, using a
test-bed that constrains all DoFs except pitch rotation (rotors in OGE)

O Similar experiments have been carried out in flight to ensure that indoor set-up is
representative of actual attitude dynamics in near hovering

U Pseudo Random Binary Sequences
(PRBS) were selected as excitation signal

- 1 Experiments have been carried out in quasi
open-loop conditions:
= pnominal attitude and position
controllers were disabled

= a supervision task enforcing attitude
limits (£20°) was left active
(inherently fast instability)

Identification and control of multirotor UAVsS
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[rad]

Attitude dynamics identification
|dentification experiments (2)

||
Input signal (collective pitch difference between opposite rotor) in identification test

PRBS excitation + feedback action of supervision task , quasi open-loop
Dataset used for identification

. %

Closed-loop on nominal attitude controller

o H B v Imposed pitch angle set-point variations
0.02- | | Model validation dataset
0.01 -
H
-0.01+

_0.02 - | | | i
| \ |
K Closed-loop on nominal attitude controller
! | ! ! ! ! S
\ I

0.03 I | L ! l =~ Pitch angle set-point null
0

20 40 60 80 100 120 140 160 180 . .
[s] Non-relevant informations
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Attitude dynamics identification:

|dentification experiments (3)

The parameters of the PRBS (signal amplitude and min/max switching interval) were
tuned to obtain:

v’ an excitation spectrum consistent with the expected dominant attitude
dynamics (4 to 8 rad/s)

v' a reduced second harmonic amplitude

Identification [ PRBS switching
campaign time range [s]
1 0.05-0.1
2 0.1-0.2
3 0.2-04
4 0.4-0.8
PRBS Blade pitch difference

amplitude between opposite rotor
angle [rad] / command [%0]
1 +0.012/+7
+0.015/+9

+0.019/+11

[dB]

10H

-10

70T

-l

= = = campaign 1 -ampli2| ' S A R
----- campaign 1—ampli3| - @ o
campaign 2 —ampli 1) ©
= = = campaign 2 -ampli 2| . ::
----- campaign 2 —ampli 3|
campaign 3 —ampli 1| -
= = = campaign 3 —ampli 2| . ::
----- campaign 3 —ampli 3| * *:
campaign 4 — ampli 1] *":
= = = campaign 4 —ampli 2| @ .
----- campaign 4 —ampli 3| ©:

Identification and control of multirotor UAVs

10'
[rad/s]

POLITECNICO DI MILANO




N Attitude dynamics identification:
Identification experiments (4)

Identification input signal obtained concatenating 3 excitation segments from different
test in order to average out mild non-linearities

0.02

Estimate quality degradation caused by data

oorsr M | concatenation is negligible due to large duration
0.01| ’ of PRBS and small n° of concatenations
0.005 | 1 70
B 0 ’ 60 - 3
-0.005 ’ 50r -
| 401 - 5 % ] S
—0.01 ] i / P oot
| _ aof peak @ 7rad/s
-0.015 uutt bl E ; =it B
oL _ 1
-0.02 ' : : : : : : : St
0 10 20 30 40 50 60 70 80 9a foksi
g _
0F 2
-0} :
Excitation spectrum o e 0 e

[rad/s]

Data logged during test @ 50Hz
Input: pitch attitude control variable
Output: 6, g, g from on-board IMU
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Attitude dynamics identification
Considered algorithms

BLACK-BOX METHODS: gives unstructured model, non-physically motivated state space

O Subspace Model Identification (SMI) algorithms, non-iterative (efficient computation):
* PI-MOESP (Past Inputs - Multivariable Output Error State sPace realization)
« PBSID (Predictor Based System IDentification)

both providing LTI SISO state space model of the pitch rate response to control input

O On-line implementation of the Least Mean Squares (LMS) algorithm:

» updates recursively on-board an estimate of the SISO impulse response of pitch
angular velocity in the form of Finite Impulse Response (FIR) model

» state space model for the pitch dynamics recovered via Kung’s realization

GREY-BOX METHODS: structure imposed a-priori defining a first-principle model for pitch
dynamics

Q Output Error (OE) Maximum Likelihood (ML) estimation
Q H, approach (model matching problem, non-convex & non-smooth optimization)

both determine the unknown physical parameter of structured LTI model via iterative (time
consuming) procedure

Identification and control of multirotor UAVsS
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Attitude dynamics identification
SMI algorithms

SMI was proposed about 25 years ago to handle black-box MIMO problems
in a numerically stable and efficient way (numerical linear algebra tools) and
has proved extremely successful in a number of industrial applications

PI-MOESP (Verhaegen & Dewilde,1991) assumes feeding data gathered in
open-loop operations

PBSID (Chius0,2007) is a more advanced and recent algorithm respect to
MOESP, suitable for dealing with data generated in closed-loop operations

Remark: time delay in system dynamics (from IMU measurements to servo
actuation of rotors collective pitch), equal to 7 = 0.06s = 3 samples, leads to a
non-minimum phase zero in identified model via SMI — applied forward shift of

3 samples on input signal before model identification and reintroduced as delay
in model simulations

Identification and control of multirotor UAVsS
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Black-box methods
PI-MOESP algorithm (1)

||
Consider the discrete time LTI state space model, with y, = y; + v,
xt+1 == Axt + But
57t - Cxt + Dut

s STEPI1: estimation of coloumn space of extended observability matrix
_ T
[= [CT (CA)T (CADT ... (CAH)T]

from measured input-output samples {u,, y;}, through the data eqguation

Yt,i,j == FXt,j + HUt,i,j
relating (block) Hankel matrices constructed from 1/O samples
YVt Tt YVi+j-1 Ut o Upgj—q
Yt,i,j = Ut,i,j == : . :
Ve+i-1 " Vt+i+j-2 Ut+i-1 " Utti+j-2
Xej = |Xe X1 o Xegj-1]

and the block-Toeplitz matrix

D 0 . 0

CB D . 0

H=| CAB CB .. 0
lCA'™2B CA“ 3B .. D

Identification and control of multirotor UAVsS
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Black-box methods
PI-MOESP algorithm (2)

||
From the data equation the PI-MOESP algorithm considers the RQ factorization

Ut+1,i,j Rll
Utij | = [R21 Rzz
Yiva,ij R31  R3 R33

and a consistent estimate of the coloumn space of I' is obtained via SVD of
matrix R;, under assumption that v; is Gaussian measurement noise, zero
mean, uncorrelated with u;

<+ STEPZ2: from the T' estimate, matrices 4 and C of the model can be determined
exploiting the invariance of observability subspace

s STEP3: solve a linear least square problem to determine B and D matrices

Identification and control of multirotor UAVsS
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Black-box methods
PBSID algorithm (1)

||
Consider the finite dimensional LTI state space model, where {v(k),w(k)} are ergodic
sequences of finite variance, possibly correlated with input u
x(k +1) = Ax(k) + Bu(k) + w(k)
y(k) = Cx(k) + Du(k) + v(k)

and pass to innovation form through Kalman gain matrix K
x(k +1) = Ax(k) + Bz(k)
y(k) = Cx(k) + Du(k) + e(k)
where z(k) = [uT(k) yT(k)]", A=A—KC, B=B—KD, B=[B K]

« STEP1: Data equations derivation, propagating p — 1 steps forward the state
equation
z(k)

z(k + 1)

x(k +2) = (k) + [iB B [

x(k +p) = APx(k) + KPZ0P~1 = gcp70p-1

where X?P = [AP~1B, .. B]is the system extended controllability matrix and
z(k)
ZO,p—l —
z(k+p—1

Identification and control of multirotor UAVs
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Black-box methods
PBSID algorithm (2)

As a consequence the input-output system behavior is

y(k +p) = CKPZ%~1 + Du(k + p) + e(k + p)
yk+p+f)=CKPZIPH 1t Dulk+p+f)+elk+p+f)

The data equations in matrix notation are given by

xXbf ~ rzv.f
y»l = cxvrzrS + pyrsS + EPS

s STEP2: considering p = f (called past and future windows length), estimates of
matrices CKX'P and D are computed solving the LS problem

min ||YPP — CKPZPP — DUPP||,
CKP,D

Identification and control of multirotor UAVsS
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Black-box methods
PBSID algorithm (3)

s STEP3: an estimate of the state sequence XPP can be obtained computing the SVD
[PXPP = PEPZPP = JEVT

where I'P is the extended observability matrix, from which an estimate of C can be
obtained solving the LS problem

mcin”Yp'p — Duyrr — C)?p'p”F

< STEP4: estimation of the innovation data matrix EP// = YPP — CXPP — DUPP? and the
entire set of system state space matrices, solving the LS problem

min || XP*+1P — AXPP-1 _ pypP-1 _ KEPPL||
ABK e

Identification and control of multirotor UAVsS
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Black-box methods
LMS algorithm (1)

Alternative black-box model identification method adopted: on-line implementation
of the Least Mean Squares (LMS) algorithm

Updates recursively on board an estimate of the SISO impulse response of pitch
angular velocity in the form of Finite Impulse Response (FIR) model

State space model for the pitch dynamics recovered from estimated impulse
response via suitable realization techniques (Kung's algorithm)

Identification and control of multirotor UAVsS
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Black-box methods
LMS algorithm (2)

An adaptive digital filter consists of two parts:
» digital filter (coefficients are called weights)
» an adaptive algorithm for adjusting the weights

u(n) o ym(n)
j = u(n) input signal
/! = y,(n) desired response
Digital y(n) & e(n)
Filter (FIR) -'< ) = y(n) filter output
4 _ = ¢(n) error
Adaptive
»  Algorithm «
(LMS)

Properties of the FIR filter:
« all the poles are inside the unit cycle (all in the origin): the filter is always stable
« small changes in the weights will give rise to small changes in the filter response

Identification and control of multirotor UAVsS
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Black-box methods
LMS algorithm (3)

The output of a digital FIR filter is a linear combination of the current and the past
input values:

L-1
y(n) = wou(n) + wyun—1) +-+wun—L+1) = wiu(x — 1) = wlu(n)
1=0
where
e u)=[u® umn-1) - um-L+1)]"
e we[w, wy v W]

» L is the length of the filter (number of weights)

The relationship can be represent more easily in the z-transform domain using the
unit delay operator z71 — z7lu(n) = u(n — 1) :

Y(z) =W(2)U(2)
where
¢ W(z) ==

zE w2l =2 w4

IS the filter’s transfer function

 U(z) is the z-transform of u(n)
 Y(2) is the z-transform of y(n)

Identification and control of multirotor UAVsS
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Black-box methods
LMS algorithm (4)

LMS must adjust the filter weights so that the error signal

e(m) = yy(m) —y(m) = yy(m) — wn) u(n)
IS minimized.
The criterion to minimize is

J) = e*(n)

LMS updates the weight vector using the following law:

B u aJ(n)
wn+1) =w(n) + an(n)

=w(n) — pu(n)e(n)

where u is the convergence factor.

v' The gradient estimate is unbiased

v" The expected value of the weight vector converges to w° obtained with the
minimization of the Mean Square Error criterion.

Identification and control of multirotor UAVsS
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Grey-box methods
Model structure (1)

|
Grey-box model has structured parametrization derived from first principle approach:

v quadrotor is modeled as rigid body
v'rotors aerodynamic terms from combined Momentum and Blade Element Theory

Pitch attitude dynamics on test-bed (all other DoF’s constrained) is defined as

Lyae) = 20 + e — )
yy4 _aqq ou - t

o(t) = q(t)
where stability derivative of pitch moment M respect to angular rate g in hovering trim is

oM aCr
3 2pA(QR) 5 d

cr Ci/a o Negative: aerodynamic damping

.
with 34 T OR

and control derivative of pitch moment (in hovering) is

— = pA;, (QR)?
AN

Blade collective pitch
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Grey-box methods
Model structure (2)

|
Adding a rotational mass-spring-damper (J,k,c) to modeling IMU vibration damping
system (not negligible dynamics) through which the measuring device is connected to
vehicle, equation become

, oM oM
Lyq(t) = %q(t) + %u(t — 1) + k(0p(t) — 0(1)) + c(qp(t) — q(¥))

Jap(®) = —k(8p(t) — 8(t)) — c(gp(t) — q (1))
80 =q(t)
0p(t) = qp(t)
where P subscript discern IMU from vehicle quantities.
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Grey-box methods
Model structure (3)

|
Rewriting the equations in state space form, continuous time LTI model is obtained
x(t) = Ax(t) + Bu(t — 1)
y(t) = Cx(t) + Du(t — ) + v(t)

where the state vector is x(t) = [q(t) gp(t) 8(t) 0p(t)]" and matrices are

1/1,, 0M/dq —c/lL,, —k/L,, k/I,] 1/1,,, OM /O
A= c/] —c/]  k/]  -k/]| p= 0
1 0 0 0 0
0 1 0 0 | L0

c=[0 1 0 0] D=[0]

The guadrotor moment of inertia I, was obtained from previously dedicated
identification procedure, then the unknown parameters of structured model are

o oM oM I
= ) ) J) ) C

dq " du, (l—l .

N ~Z{_ IMU damping system
Stability and control ~___— model param.

derivatives of pitch moment
Black-box and grey-box model identification for a variable pitch quadrotor - I POLITECNICO DI MILANO




Grey-box methods
Output Error Maximum Likelihood

||
Given sampled I/O dataset {u(t;), yu(t;)},i € [1,N]
the ML estimate is equal to the value of ® that maximizes the likelihood function, defined
as the probability density function of y given 0, i.e.

L(y,0) = P(y|0)

0 = arg max L(y, )

In the case of a Gaussian P(y), as the measurement noise v(t), the ML estimator
reduces to a least squares estimator, namely the cost function is

N
1
J(0) = Nz e(k, ©)?
k=1

where e(k,0) = yy (k) — y(k, ©).

The cost function minimum search is carried out through an iterative Newton-Raphson

Method.
Black-box and grey-box model identification for a variable pitch quadrotor - I POLITECNICO DI MILANO




Attitude dynamics identification

Grey-box H., approach: the rationale _

d SMI methods are more attractive than OE because of their non-iterative nature

O On SMI model is not possible to enforce a-priori knowledge of model structure,
naturally allowed by grey-box approach

bridge the gap between structured
and unstructured model

Novel identification procedure proposed by Bergamasco & Lovera 2013

H.. model matching problem in frequency-domain, relating black-box unstructured
model from SMI to structured one from first principle approach

Resulting non-convex, non-smooth optimization problem is solved explointing
computational tool developed by Apkarian & Noll 2006

(available in Matlab Robust Control Toolbox from R2012a — <hinfstruct>)

Identification and control of multirotor UAVsS
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Attitude dynamics identification
Grey-box H., approach

| L I
Unstructured LTI DT x(t) = Apsx(t) + B u(t) G..(s)
from SMI y(t) = Cnsx(t) + Dnsu(t) s
convertto CT convert to tf in
(zero order hold) Laplace domain

Structured LTI CT ~ x(t) = A5(©)x(t) + Bs(©)u(t) (s 0
from first principle  y(t) = Cs(0©)x(t) + Dg(©)u(t) s(s,0)

Gns(5)

> Gy(s) > 0 =argmin|lGy(s)(Grs(s) — Gs(s,0))lloo

Gs(s,0)

Gy, is a suitable filter to focus the matching in the frequency range where
G,.s(s) well describes the real system, then in PRBS exitation spectrum

Since the time delay in system dynamics was removed before SMI, in structured
model was set T = 0 for the model matching (and reintroduced later in validation)

- I POLITECNICO DI MILANO
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Attitude dynamics identification
Results introduction

O SMI algorithms parameter tuned to obtain higher VAF (Variance Accounted For) on
cross-validation dataset

v PI-MOESP: model order n = 4 ; Hankel I/O matrices rows n° p = 40
v PBSID: model order n =5 ; past / future window size p/f=11/7

O OE ML approach does not offer specific parameters to be tuned

d H., approach

v filter Gy, was tuned to reach best VAF performance on cross-validation dataset:
adopted a 15™ order low pass Butterworth, cut-off 7rad/s (complies with
excitation spectrum peak)

Two different datasets were used for validation and performance comparison:

= Normal closed-loop operation of pitch attitude control system, representing typical
flight condition

= Cross-validation: single PRBS excitation phase not employed in the identification
process (dataset also used for algorithms parameters tuning)

- I POLITECNICO DI MILANO
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Attitude dynamics identification
Results on closed-loop validation dataset

blue lines: measured pitch rate ; red dashed lines: models simulation

[rad/s]

[rad/s]

[rad/s]

[rad/s]

[rad/s]

[rad/s]

——==-H _onPBSID
0

] VAF=59.9%
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Attitude dynamics identification
Results on excitation cross-validation dataset

blue lines: measured pitch rate ; red dashed lines: models simulation

[rad/s]
o

A
~y NN

VAF=55.4%

[rad/s]

N

Ry~ RS Pou

[rad/s]

1
0| ----PBSID 5
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Attitude dynamics identification
Results: structured vs. unstructured models
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Attitude dynamics identification
Results discussion

J Black-box models

= LMS provides the worst result on both considered dataset: VAF on excitation
cross-validation downgrades significantly on normal operation dataset (the
model has poor generalization capability)

= PI-MOESP guarantees the best VAF on both dataset : benchmark performance
= PBSID is the second in rank but close to PI-MOESP

O Grey-box models

= itis well known in the literature that leads to inferior performance respect to
black-box (also for full-scale rotorcraft)

= both OE ML and H., approach perform only slightly less satisfactorily than PBSID

= H_ approach model matches accurately the two SMI algorithms both in
frequency and time domain
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> Robust attitude control
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Robust attitude control
Introduction

Quadrotor control synthesis has been studied extensively in the literature, adopting
several approaches:

O PID architecture and LQ synthesis
O Robust control design
O Backstepping and Sliding mode

O Trajectory planning & tracking (e.g., adaptive control, dynamic inversion,
flatness-based control, trajectory smoothing using motion primitives)

Concerning the control design part of the developed tool chain it was preferred to maintain
the pre-existing on-board attitude controller scheme (cascade PID loops), in order to work
in continuity and accelerating implementation process - structured H., synthesis

The work focuses on near hovering condition:
v quadrotors mainly operate in this regime during typical missions
v" in this operating mode the tighter handling qualities performance are required
v’ the attitude dynamics in hover can be replicated operating on a proper test-bed
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Robust attitude control
Adopted identified models

Pitch angular velocity models comparison:

~

-
——‘—

Magnitude (dB)
)

model on test-bed PI-MOESP
= = = = model in flight PI-MOESP

----- hEe model on test-bed PBSID
0 \| = = = model in flight PBSID
\

Phase (deg)

Frequency (rad/s)

PBSID on test-bed PBSID in-flight
q 12.517(s + 2.906) ¢ B 13.8194(s + 2.761)

on test-bed vs. in flight (near hover), PI-MOESP vs. PBSID

v" PI-MOESP: poor agreement test-bed vs. flight

' v Feedback action of supervision task added to PRBS

IS more invasive during in flight identification (quasi
open-loop): avoid attitude angle limit overcoming in
presence of wind disturbances

| v PI-MOESP assumes feeding data gathered operating

in open-loop

PBSID is able to deal with data
generated in closed-loop

PBSID: good agreement test-bed vs. flight

v" PBSID close to PI-MOESP on test-bed data, when
feedback action is less invasive (operations are
nearest to be in open-loop)

u s2+4+5583s+21.3 u s2+5.198s + 25.04
n=2, p=35, =6 n=2, p=f=5

Test-bed set-up is representative of the
pitch attitude dynamics in hovering flight

: v-gap metric VAF VAF
ALY, test-bed vs. flight | test-bed flight
PI-MOESP 0.3405 65.8% 20.1%
PBSID 0.0741 65.1% 21.4%
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Robust attitude control
Controller architecture & H,, synthesis requirements

delay = |mplemented accurate replica
of pre-existing on-board
controller in Simulink

= Cycle time 0.02 s

LPF

Pre-existing tuning from experimental trial & error manual process:
v' guarantees adequate performance in terms of set-point tracking
v" needs improvement in terms of wind gust rejection

Define proper requirements for H,, synthesis on fixed-structure controller

Performance channel
= Crossover frequency of each loop into specified bandwidth: 3.5—14 rad/s

= Set-point tracking target response time: 0.5 s
»  Set-point tracking target maximum steady-state error: 0.001%

Robustness channel
= From process noise (wind gust) to control variable

= Disturbance rejection specified assigning maximum gain constraint function: high pass
filter (gust is a low frequency noise), first order, gain 40 dB, cutting freq. 10 rad/s
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Robust attitude control
Structured H., synthesis formulation

||
Given

P(s) : real rational transfer matrix, PLANT

K(¥9) : STRUCTURED controller depending smoothly on a design
parameter vector 9 varying in space R"

Solve the optimization program

minimize ||T,y—, (P, K ()|«

subject to ¥ € R" : K(19) stabilizes P internally

T,,-,(P,K(19)) : closed loop transfer function on considered I/O channelw — z
on which requirements (performance and robustness) are defined

P(s) regroups the process and the filter functions in loop shaping context

Resulting non-convex, non-smooth optimization problem is solved explointing
computational tool developed by Apkarian & Noll, 2006

Available in Matlab Robust Control Toolbox from R2012a — <looptune>
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Robust attitude control
Optimal tuning parameters

For the assigned controller structure, applied on identified models, the structured
H.. algorithm finds the locally optimal parameters 9 of the PIDs to satisfy desired
requirements

Controller | Standard Optimal tuning: Optimal tuning:
parameter tuning test-bed model flight model
| K,PD 9.26 5.4631 6.0491
Outer loop on 6 Kq PD 1.11 0.9376 1.0320
- T, PD 0.03 0.0380 0.0377
. K, PID 0.257 0.3539 0.2986
K, PID 0.643 1.8562 1.6150
Inner loop on g
K4 PID 0.0231 0.0084 0.0075
- T; PID 0.0225 0.0430 0.0415

The standard tuning obtained through trial & error empirical procedure done
manually was used as starting guess for the optimization procedure

Identification and control of multirotor UAVs
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Robust attitude control -
Closed-loop functions

||
Complementary sensitivity
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Robust attitude control
Simulation results: on test-bed model in the loop

|
S ; | : ‘ Pitch control variable saturation = +30%

v' Angular sp variation requested
v" No process/measures noise

v' Optimal tuning guarantees control effort
0 2 4 6 8 10 12 14 . . . . .
opi funing test-bed on model test-bed reduction with similar/better tracking

sp

20~ _ - std tuning on model test-bed . . _ respect to Standard

pitch angle [deg]

ctrl variable u [%]
o

pitch angle [deg]

time [s]

0 2 4 6 8 10 12 14

- - - opti tuning test-bed on model test-bed
v" Process disturbance, typical wind gust ‘ load disturbance
Angular sp null

std tuning on model test-bed
v' Optimal tuning guarantees angular drift
reduction

S

ctrl variable u [%]

time [s]
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pitch angle [deg]

ctrl variable u [%]

Robust attitude control
Simulation results: in-flight model in the loop

opti tuning test-bed on model in flight 12 14
sp

std tuning on model in flight
opti tuning flight on model flight

time [s]

Process disturbance, typical wind gust
Angular sp null

Optimal tuning flight guarantees angular
drift reduction

Optimal tuning test-bed is close to flight one

Identification and control of multirotor UAVsS

pitch angle [deg]

ctrl variable u [%]

Pitch control variable saturation = +30%

Angular sp variation requested
No process/measures noise

Optimal tuning guarantees control effort
reduction with similar/better tracking respect
to standard

Optimal tuning test-bed is close to flight one

|
0 2 4 6 8 10 12 14

opti tuning test-bed on model in flight
load disturb

std tuning on model in flight

opti tuning flight on model in flight

time [s]
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Robust attitude control
Experimental results on test-bed '

! ! ' Pitch control variable saturation = +30%

20 T T T T T T

pitch angle [deg]

| S | |v Base throttle = 60% (hovering value)
oo - = . . | |=el ¥ Angularsp variation requested

. / . .
Standard tuning Aerodyngmlc d!sturbances d_ue to rotors
wake recirculation in closed indoor test area

20 T T T T T T

20 T T T T

15

10

ctrl variable u [%]

pitch angle [deg]
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tme [s Y S S S
v' Optimal tuning guarantees similar tracking Optimal tuning test-bed
performance with a reduction in control effort = | T | | |

(confirming behavior from simulation)
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Magnitude

Robust attitude control
PBSID models uncertainty (1)

|| .
Bootstrap based approach, 1000 replications

bootstrap replica
—— nominal model

On test-bed attitude pitch dynamics
captured with very good accuracy

Limited uncertainty band on all
considered frequency range

Especially narrow around PRBS
excitation cut-off (7 rad/s)

Phase [deg]
I | 1

-15H bootstrap replica
nominal model : . N
= = =bound +2a b -80r-

bound 3¢

Frequency [rad/s] Frequency [rad/s]

bootstrap replica
nominal model

bootstrap replica
—— nominal model
= = =bound +2¢
bound £3a

v |dentified model in flight presents a
' wider uncertainty band

v In design control bandwidth
(3.5—14 rad/s) level of uncertainty
can be considered acceptable

Phase [deg]
B
5

In flight model

20 ; . SRR . : -100
107 10° 10’ 10° 107"
Frequency [rad/s] Frequency [rad/s]

v' The presence of wind gust implies a less repeatable test conditions w.r.t. identification in
laboratory on test-bed

v In flight quadrotor attitude pitch dynamics is coupled with longitudinal one during the PRBS

Identification and control of multirotor UAVsS

excitation, while on test-bed only the pitch rotation is allowed
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Robust attitude control
PBSID models uncertainty (2)

v Higher dispersion of real zero
| replicas w.r.t. to complex conjugate

- On test-bed model |+ Inflight model , 1 pole replications for both models

© w o o=x: | 5ok o oo comm =0 o | ¥ Uncertainty of zero position is more
significant because its nominal
frequency is farther from excitation

% bootstrap replica poles
©  bootstrap replica zeros

&

% bootstrap replica poles
©  bootstrap replica zeros

nominal model poles
nominal model zeros
T

x | cut-off w.r.t. to nominal pole
" frequency

nominal model poles
nominal model zeros

T I L _ T T I I I L
-7 -6 -5 -4 -3 -2 =12 -1 -10 -9 -8 -7 -6 -5 -4 -3 -2
Real axis Real axis

Bootstrap scheme for SMI (Bittanti & Lovera, 2000)

1.

Estimate finite dimensional LTI nominal model (in innovation form) applying PBSID on
original I/O dataset (u(k),y(k))

Calculate the model prediction error
Compute the covariance of prediction error and assume for it a Gaussian distribution
Generate B replications of original dataset, with u*® (k) = u(k) and y*® (k) obtained

simulating the nominal model with input u(k) and e*®(k), the latter generated re-sampling
the Gaussian distribution of the residual

Estimate B replications of the nominal model applying PBSID to the B new dataset
WOk, y* D (k)

The number of replications required to obtain standard error convergence is usually very large,
so the application of bootstrap is viable only for efficient identification algorithm

Identification and control of multirotor UAVsS
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Robust attitude control
Robust stability analysis

R(s) > Grnom (S) >

(s)] [dB]

W () 3] As)

s) = Gyou

magnitude [G(s) - GNDM(S)] [dB]

-80f- L . A(S) < 9
. Ontest-bed model | In flight model
-100 . . -90 . . lp
1o o’ Frequency [rad/s] o' 1 1o o’ Frequency [rad/s] o' o’ > Tﬁw (S)
Additive uncertainty
G =1G(s) = Gnou(s) + W (s)A(s), Al < 4} ;
: . . . . Tuning Process hiim
A(s): uncertainty LTI SISO random dynamics (with assigned peak gain)
. L test-bed | 0.370
WA(S): stable, minimum phase, shaping filter, order 3 Standard
, , _ _ _ _ flight 0.114
if 1Al < 1, 1G(jw) — Gyom ()| = [AJw)Wr(w)| < [Wa(w)|, Vo
Op“mal on test'bed 0.600
test-bed flight 0.189
The control system can be represented by the two level scheme Optimal in
Wa(s)R(s) flight 0.173
Ty (s) = = WA(S)Vnom(s) flight '
oY 1+ R(s)Gnom(S) a(s)Vnou J

-1
From small gain theorem the c.l.s. is stable V A(s) € H,, (i.e. a stable t.f) with [|A[l, < (||T19¢||00) , hence

Riim = (IWA(S)Vyom (S)lleo) ™t Where Vo (s) is the nominal control sensitivity
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Robust attitude control
Monte Carlo simulation results — on test-bed model

Uncertainty block with imposed peak gain equal to robust stability limit h;;,,,,
randomly sampled to generate 1000 Monte Carlo simulations

Set-point change

5 T T T T T T 5

pitch angle [deg]
pitch angle [deg]
o

L L L
10 12 14 0 12 14
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- I
0 2
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0
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304

-40
0

Load change

4 T
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o

I L
10 12 14

Optimal tuning test-bed

- I I L L L -
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Standard tuning

Magenta line: nominal model
Blue lines: uncertain models

time [s]
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pitch angle [deg]

ctrl variable u [%]

Robust attitude control
Monte Carlo simulation results — in flight model

Set-point change

I
2
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I
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Standard tuning
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t

ctrl variable u [%]
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Optimal tuning flig
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time [s]
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» Control design procedure test case
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Control design procedure test case
Introduction

O The proposed attitude control design procedure (and the relative tool-chain), from
identification conducted indoor on single DoF test-bed, to the structured H.,
synthesis, was applied to the production Aermatica quadrotor

O It is a tight test case, aimed to strengthen procedure validity, considering the

significant increment in quadrotor size/weight w.r.t. adopted prototype for the
development

4\ Aermatica

ANTEOS A2-MINI/B

v" Variable collective pitch

v' MTOW = 9 kg (+80%)

v" Rotors radius = 0.375 m (+39%)
v' Arms length = 0.629 m (+51%)

Identification and control of multirotor UAVs
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Control design procedure test case
N |dentification experiments (1)

v" Single DoF (pitch) test-bed (rotors in OGE)

v" PRBS excitation signal

v Experiments carried out in quasi open-loop conditions
v None in flight identification campaign was conducted

Identification and control of multirotor UAVsS
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Control design procedure test case
|dentification experiments (2)

PRBS parameters tuning:

v expected dominant attitude dynamics range: 3 to 7 rad/s
(lower w.r.t. to P2-A2 prototype)

v' necessary greater pitch control command % w.r.t. to P2-A2

70 SRR T
Identification | PRBS switching e Sttt w i s
campaign time range [s] '
50
1 0.05-0.1
2 0.1-0.2 40 o Coor :
3 0.2-04 wof o oNSY
4 0.4-0.8 5 R SRR S | HEEESE
20 e o R SRLEE HRE SRE Bt I SRR SRREREEE | TS IS
- - —campaign f-ampii2| i
PRBS Blade pitch command 107 == Campalgn;-amp:'?
. . . campaign 2 — ampli -
amplitude | difference between opposite o= =-campagn2-ampiz X
rotor[%] | @ C[|== campaign 2 — ampli 3
campaign 3 —ampli 1) - oo SR SR
1 +11 10| = = =campaign3-ampli2| . i EEEE R S
campaign4 —ampli1| = . o SRR (R
+13 campaign 4 — ampli 2 f i
_20 ! I I | L i L L 1 H |
+15 107" 10° 10’ 10°
Frequency [rad/s]
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ctrl variable [%]

Control design procedure test case
|dentification experiments (3)

||
Identification input signal obtained concatenating 2 excitation segments from different
test in order to average out mild non-linearities

15

[ A-

Data logged during test @ 50Hz
Input: pitch attitude control variable
I Output: 6, g, g from on-board IMU

_15 | | 1 | 1
0 10 20 30 40 50 60 30 :
fime [s]

(dB]

Excitation spectrum

i P SR | L L P i L P
107" 10° 10" 10°

Frequency [rad/s]
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Control design procedure test case

|dentification results (1)

Adopted the black-box approach — subspace method — PI-MOESP algorithm

q 10.295+33.68

SISO model from ctrl input u to pitch angular rate g —» = = (n=2,p=39)

U S2+51125+14.72

Model order fixed, block-size p of Hankel data matrices tuned to obtain higher VAF on

cross-validation dataset

System dynamics time delay (7 = 0.06s) in SMI properly considered

As expected dominant dynamics
become slower increasing the vehicle
dimensions:

v' complex conjugate poles frequency
decreases from 4.09 to 3.67 rad/s

v' poles damping factor increases
from 0.567 to 0.697

v" real zero frequency moves from 2 to
2.4 rad/s

passing from P2-A2 to A2-MINI/B

Magnitude (dB)

Phase (deg)

1

0

A2-MINI/B
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Control design procedure test case
|dentification results (2)

A2-MINI/B identified pitch model performance:
v Cross-validation dataset (PRBS not used for identification) — VAF = 83.13%

v Validation dataset (normal control, pitch angle sp variation) — VAF = 61.22%

80 ! ! I I T I T I
: | : ' ‘ Normal control—> :
oof | S R R
o 0 eV EEKYEL AR ]
. q. a
Q) o )
g’ 20 s ALL B B B l,
=] I | .
- 1 f
o l M.
CE .
E B
3 i}l {h h
c 1 |
2—20 1Y Sl I
2 h o b
E o oo
40-1-IH- B K B8 8 RUE8 HUEg &k 80 NRl - e S S
_60 .................... e CECERRRp—
measured
‘ = = = model simulation
_80 | | | | | I [ I
0 5 10 15 20 25 30 35 40 45 50

time [s]
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Control design procedure test case
H. synthesis requirements for pitch attitude ctrl (1)

The A2-MINI/B has the same attitude ctrl architecture of the P2-A2, based on decoupled
cascaded PID loops for the pitch, roll and yaw axes (cycle time 0.02 s)

Instead of standard PIDs, A2-MINI/B adopts PIDs 2 dof, with the additional parameters:
v’ proportional set-point weight b : varying from 0 to 1 (std PID b=1)
v' derivative set-point weight ¢ : flag equal to 0 or 1 (std PID c=1)

The pre-existing attitude tuning (from experimental trial & error manual process) was
extensively tested in flight hence the desired qualitative performance improvements are:

v’ better set-point tracking: response time is almost adequate while a reduction of
settling time and oscillation amplitude around the angular sp is needed

v’ better wind gust rejection capability in terms of maximum angular drift and
reduction of oscillation in recovery the desired angular sp

Identification and control of multirotor UAVsS
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Control design procedure test case
H. synthesis requirements for pitch attitude ctrl (2)

From qualitative to quantitative requirements for H., synthesis on assigned
fixed-structure controller

Performance channel
= Crossover frequency of each loop into specified bandwidth: 4—16 rad/s
=  Set-point tracking target response time: 0.3 s
= Set-point tracking target maximum steady-state error: 0.001%

Robustness channel

Disturbance rejection specified assigning a gain constraints as function of
frequency — high pass filter

= maximum gain of -3 dB above the cutting frequency (at 0.5 rad/s)
= 60 dB/decade roll-off below 0.5 rad/s

Identification and control of multirotor UAVsS
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Control design procedure test case

Optimal tuning parameters (pitch attitude controller)

Outer loop on 6

Inner loop on g

|

Controller | Standard Optimal

parameter tuning tuning
K, PD 15.1515 19.8566
Kq PD 1.9697 1.5331
T, PD 0.0325 0.0723
b PD 1 0.9986
c PD 0 0
K, PID 0.3691 0.5253
K PID 2.0504 1.7525
Kq PID 0.0183 0.0144
T: PID 0.0124 0.0206
b PID 0.46 0.5787
c PID 1 1

c flag NOT optimized, set
equal to standard tuning

The standard tuning was used as starting guess for the optimization procedure

Identification and control of multirotor UAVs
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Control design procedure test case
Closed-loop functions

|
std tuning
opti tuning | |

70

Magnitude (dB)

40

std tuning
opti tuning
20

Control sensitivity -
107 10° 10" 10° 10° 10*
Frequency (rad/s)

-20 |

Magnitude (dB)

40 -

_60 L

Complementary sensitivity
_80 i bd il [ il i il bk i
10" 10° 10 10? 10° 10* 10%

Frequency (rad/s)
- I POLITECNICO DI MILANO

Identification and control of multirotor UAVsS




ctrl variable u [%)]

pitch angle [deg]

Control design procedure test case
Simulation results (set-point tracking)

1
]
(=]

4 6 8 10
time [s]

Opti tuning shows w.r.t. std one:

v
v

reduced settling time (less oscillation on sp)
response time slightly lower with non

significant overshoot increment
control effort increase (of an acceptable

amount)

12

14

angular velocity set-point [deg/s]

angular velocity [deg/s]

Identification and control of multirotor UAVsS

Angular sp variation requested
NoO process/measures noise
Pitch control variable saturation = +30%

opti tuning |-
sid tuning |-

=20
0

2 4 6 8 10 12 14
time [s]
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Control design procedure test case
Simulation results (load disturbance)

= Process disturbance, typical wind gust
= NoO measures noise

= Angular sp null

= Pitch control variable saturation = +30%

pitch angle [deg]

: opti tuning 0

- 20 load disturbance 3
2 _ : =
= std tuning : =
o : a
@ . L
g O @
z | >
S -0 g
. || g

_20 | 1 | | I\ |I | E
2 4 6 8 10 12 14 E:

time [s] =

Opti tuning shows w.r.t. std one:
v reduced drift from null angular sp due to gust

v’ pitch angle oscillations in sp recovery
eliminated

angular velocity [deg/s]

time [s]
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Magnitude [dB]

Control design procedure test case
Model uncertainty analysis

L -
(=] (=} o
T

Phase [deg]
T G
[=] o o o
T T T T

bootstrap replica
nominal model ||

o 160 Frequency [rad/s] 1‘01 o 79?0_1 160 Frequency [rad/s] 1I01 o
Bootstrap based approach applied on PI-MOESP
model (1000 replications) i
v On test-bed attitude pitch dynamics captured with |
very good accuracy (limited uncertainty band g
throughout considered freq. range) E
v Thanks to higher test repeatability and pitch B
attitude dynamics decoupling w.r.t. longitudinal S —
one assured by operating on test-bed in “l x romnaimodelpos

comparison with flight identification EE
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Control design procedure test case

Robust stability analysis

Additive uncertainty

G =1{G(s) = Gyomu(s) + WA(S)A(S);

A(s): uncertainty LTI SISO random dynamics A >

WA(S): stable, minimum phase, shaping filter, order 3

=20

-30
—40E8

-50 2

-60F"

_TO -

magnitude [G(s) - G,,,(s)] [dB]

_80 -

_90 -

-100-
10

Frequency [rad/s]

?99 R(s) > Gnom (S) —>
Al < 4) ——
(s) P2 AGs)

V

Robust stability limit

hiim = (IIWa()Vnom () lleo) ™

= =0.0880 for standard tuning
= =0.0347 for optimal tuning

Y Uncertainty block peak gain equal to robust

tability limit h;;,,, (worst case), randomly sampled
0 generate 1000 Monte Carlo simulations
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pitch angle [deg]

100

ctrl variable u [%]

-100
0

Control design procedure test case
Monte Carlo simulation results (set-point tracking)

pitch angle [deg]

ctrl variable u [%]

- 6 8 10 12 14
time [s]

angular velocity setpoint [deg/s]

angular velocity [deg/s]

angular velocity setpoint [deg/s]

angular velocity [deg/s]

Magenta line:
nominal model
= Blue lines:
uncertain models

Standard

tuning

time [s]

i Optimal

tuning

-20 L I I L
0

2 4 6 8
time [s]
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ctrl variable u [%)] pitch angle [deg]

pitch angle [deg]

ctrl variable u [%]

Control design procedure test case
Monte Carlo simulation results (load disturbance)

time [s]

time [s]

angular velocity setpoint [deg/s]

angular velocity [deg/s]

angular velocity setpoint [deg/s]

angular velocity [deg/s]

-50
0

1 Standard

tuning

time [s]

Optimal

tuning

4 6
time [s]
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ctrl variable [%] pitch angle [deg]

angular velocity [deg/s]

Control design procedure test case
Experimental results on test-bed (set-point tracking)

1
sp
measure [

I I i i | | I
10

Standard tuning

time []

Opti tuning shows w.r.t. std one:

v
v

v

reduced oscillations around angular sp

remarkable amplitude lowering of the high
frequency control variable oscillation

smoothing of control action can be appreciate
also on angular velocity

pitch angle [deg]

ctrl variable [%]

angular velocity [deg/s)
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|
[
o
(=]

40

Base throttle = 60% (hovering value)
Angular sp variation requested

Pitch control variable saturation = £30%
Rotors in OGE

Aerodynamic disturbances due to rotors
wake recirculation in closed indoor test area

! ' ! ! ! T ' ! . J

sp
measure

1O

20k A NN

measure ]
I

10 1"

time [s]
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Control design procedure test case
Experimental results on test-bed (load disturbance)

|
20 ! | ‘ | " | ; = To simulate the effect of an heavy wind gust,
10 ﬂ /_\ /\ /\ at the tip of the front arm was fixed a rope,
0 LA | LA LA—t A~ pulled manually to impose a pitch angle of

[— i i about 20°, maintained for a couple of sec.

0 2 4 12 14 16 18

pitch angle [deg]

measure

and hence suddenly released,
= Required null angular sp during the operation
= Pitch control variable saturation = +40%
= Angular rate sp saturation = £150°/s

6 8 10,
Standard tuning
40 T T T T 1

ctrl variable [%)]
1
(=] (=]
o ’_,‘I-'-}

5] 8 10 30 . . : . : : ; :
= [ sp measure| : : : : : '
‘E 150 | | g 20 ........
g sp o : : : ' :
% 122 me‘asure r_c:: 10 e
£ 50 * o i l i i . . 'l |
3—100 ] 0 2 4 5] . 8 . 10 12 14 16
§ -150 . y . : . . | Optlmal 1tun|ngl | |
time [s) _ 5 ! : ! !
% 0_..........;.......... :
- . . . §_20_ Y
v pitch angle overshoot and oscillations in sp : M\

recovery occurring when imposed angular 0% 2
drift is released are eliminated adopting the
optimal tuning

1
10

angular velocity [deg/s]

measure |
| —

0 2 4 6 8 10 12 14 16
time [s)
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pitch rate [deg/s]

Control design procedure test case
Experimental results in flight (pitch axis)

|

? ’ (?—STDtuning OPTI tumng—;)

%:_2 Y A A N Ly aA = Results logged during an OGE

g ap o) PV ALLIRAR A A RN : hovering at MTOW (height = 5m)

B 5 i | i l = Mean wind measured on ground

0 5 10 15 20 25 30 Of 25 m/S

z 10 ; 3 | | = Position control is active, in the

s Ofa o e ) SR IR task of hold the desired x, y, z

§‘10 AR 4T PRINT L it VAL AR ARA o No pilot actions on commands

5-20* """"""" 1 SN A L A R | R | A = Pitch (roll) angle sp requested to

= =30, 5 0 15 20 2 w  attitude controller is determined
by longitudinal (lateral) position

controller

» The switch from standard tuning
to optimal one was commanded
in flight

5 10 15 20 25 30
time [s]

The presence of wind disturbance determines a non-zero mean value of pitch angular sp to
assure the position hold

Switching to optimal tuning is evident a huge amplitude lowering of high frequency ctrl variable
oscillation and as consequence a reduction of pitch angle oscillation amplitude around sp
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roll ctrl variable [%)] roll angle [deg]

roll rate [deg/s]

10

L
o

|
o]
(=]

I
(a8 ]
o

[\e]
O

O

|
h
O

|
B
(=]

Control design procedure test case
Experimental results in flight (roll axis)

(—STD tuning

sp
measure

OPTI tuning —)

"""""""""""
""""""""""""""""" m\
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Thanks to the geometrical and
inertial symmetry of quadrotor
the pitch controller tuning was
applied also to roll

The results correspond to the
same flight portion considered in
previous slide

Analogous evidences can be
observed
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Concluding remarks

The proposed integrated attitude control design procedure (from model identification to
control synthesis), specifically addressed to near hovering condition, was developed and
successfully applied to the considered quadrotor prototype pitch DoF

Simulations demonstrate that structured H,, optimal tuning obtained with test-bed model in
the loop can be applied also in flight with a non-significant loss in control performance,
hence the attitude controller tuning can be achieved using models obtained in safe, faster
and more repeatable identification experiments executed indoor

In order to strengthen procedure validity, the entire tool chain was successfully applied to
the production Aermatica quadrotor (with significant increment in size/weight w.r.t.
prototype): flight test results confirm the expected simulation evidences

In order to complete the tool chain the work will be naturally extended to yaw DoF

As future work extension, a similar integrated procedure may be developed for the
translational quadrotor DoFs

Identification and control of multirotor UAVsS
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