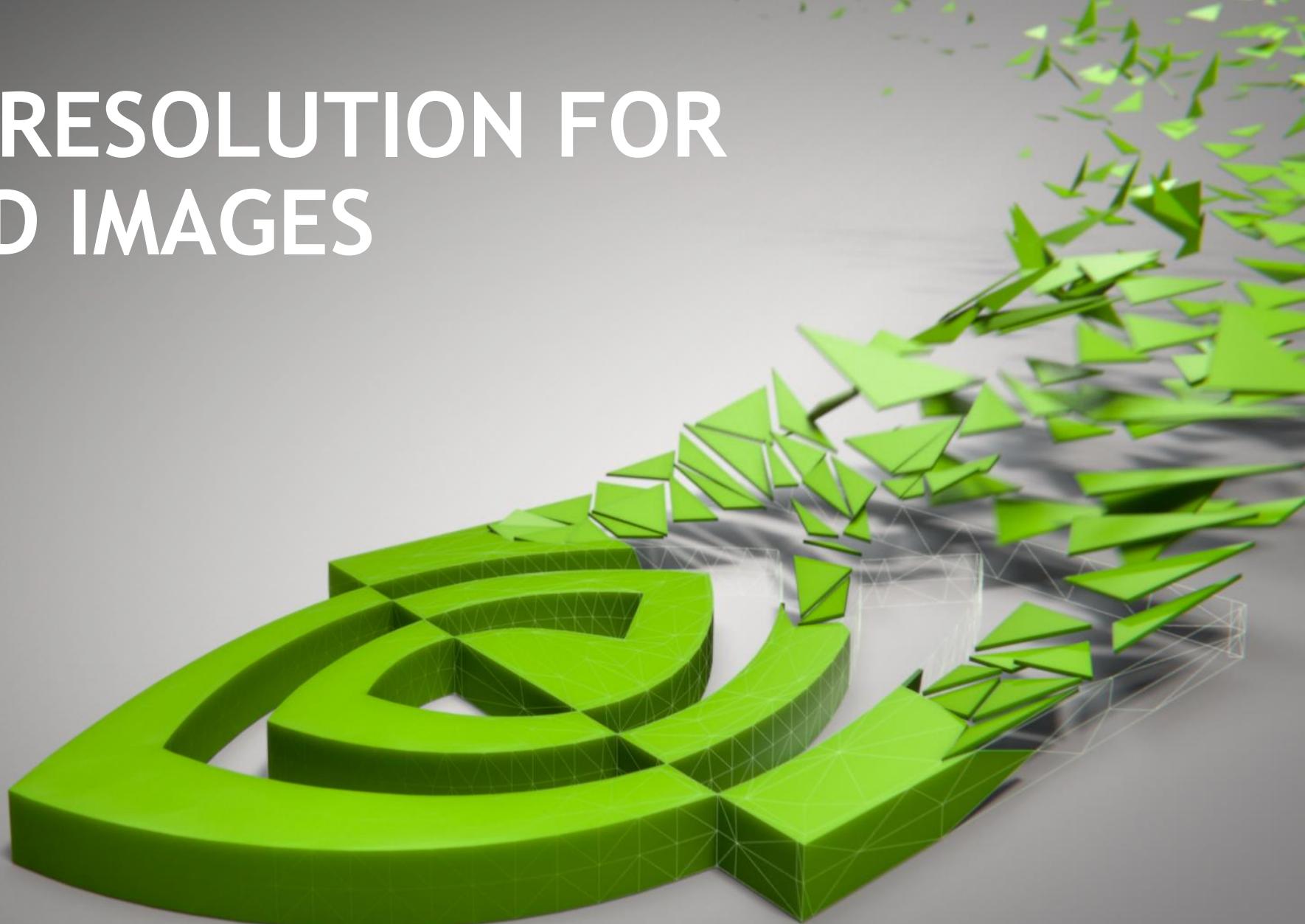


SUPER-RESOLUTION FOR ALIASED IMAGES

Marco Foco



WHAT IS SUPERRESOLUTION

SUPERRESOLUTION

Build a high resolution version of a given low resolution image

ZOOM! ENHANCE!

Sure!

Can you
enhance that? Zoom on the
license plate

EVEN THE INTERNET KNOWS...

ONE DOES NOT SIMPLY

ENHANCE THE IMAGE

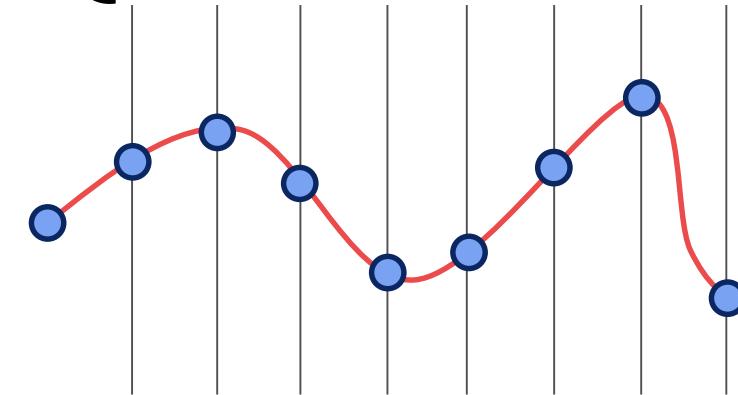
EXISTING TECHNIQUES

Interpolation (bilinear, bicubic, lanczos, etc.)

Interpolation + Sharpening (and other filtration)

Such methods are data-independent

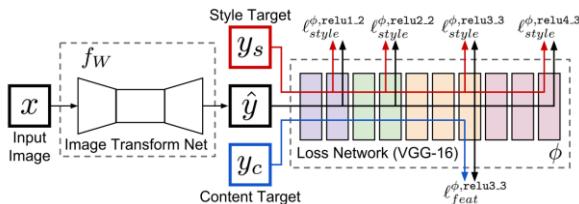
Very rough estimation of the data behavior



interpolation

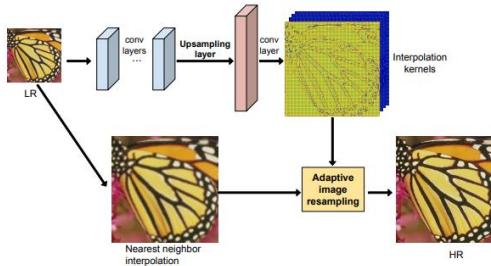
filter-based sharpening

EXISTING TECHNIQUES (DEEP)

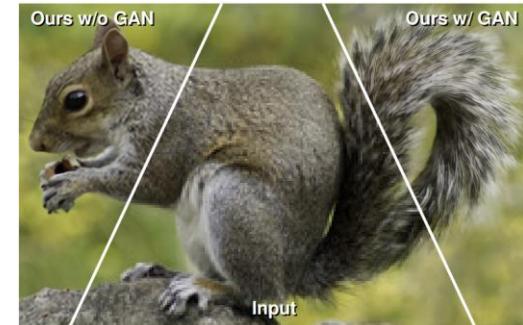


Perceptual Losses for Real-Time
Style Transfer and Super-Res:
2016

EnhanceNet: Mehdi et al.
2017



Super-Res with Deep
Adaptive Image Resampling:
Jia et al. 2017



A Fully Progressive Approach
to Single-Image Super-Res:
Wang 2018

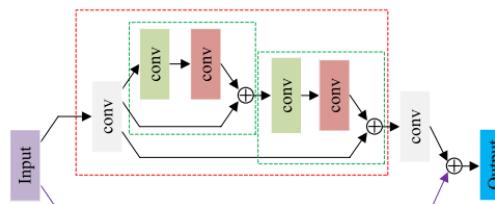


Image Super-Res via
Deep Recursive ResNets:
2018

OUR SOLUTION

TRAINING PIPELINE

TRAINING PIPELINE

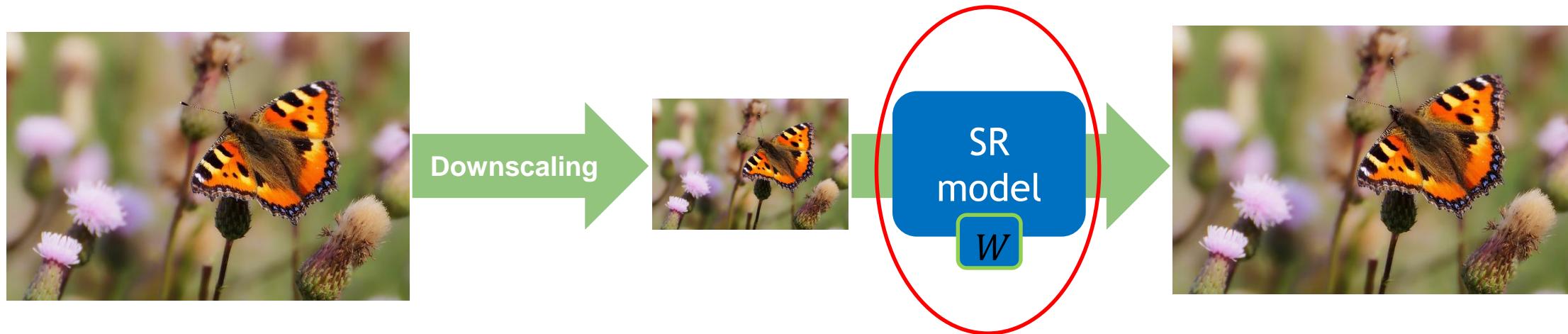
Model Input

Downscaling = Filtering + Decimation

cutoff frequency at
(or below) nyquist

TRAINING PIPELINE

Model optimization



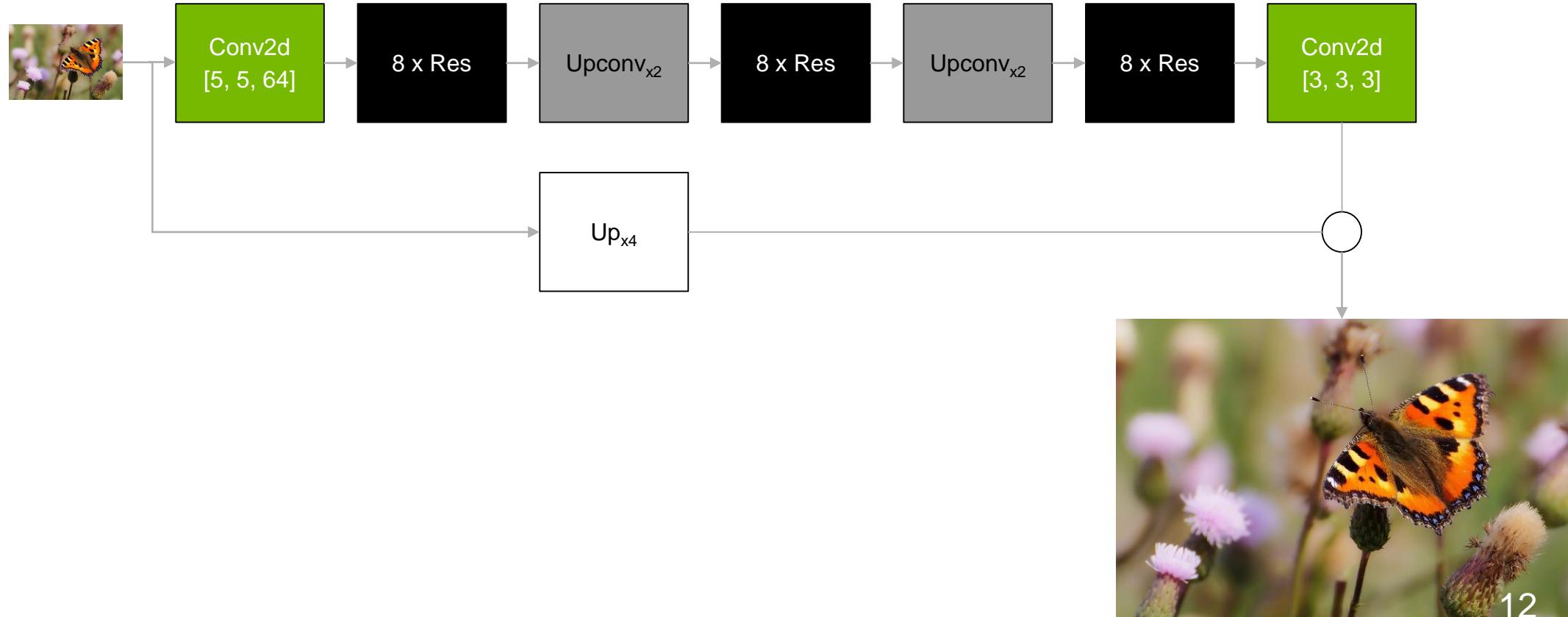
Solve the optimization problem:

$$W = \operatorname{argmin} \sum_i \operatorname{Dist}(x_i, F_W(D(x_i)))$$

$\{x_i\}$ - training set

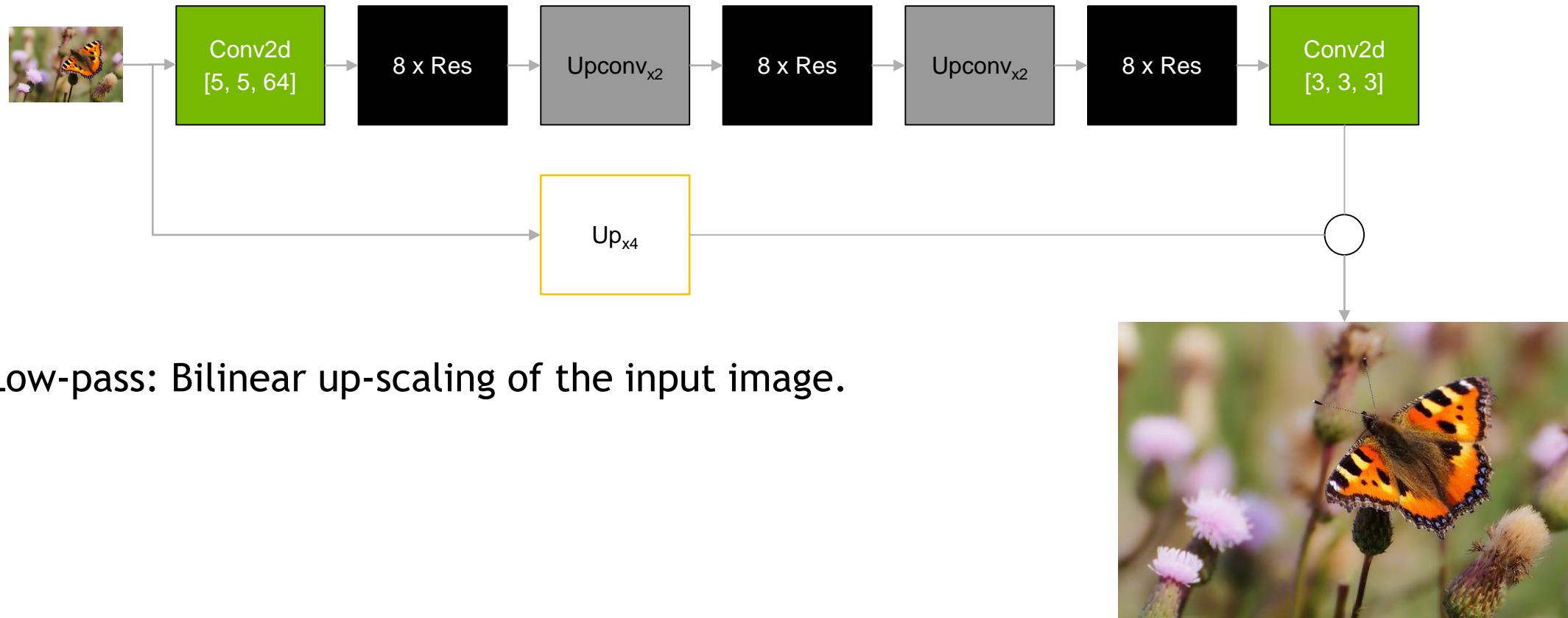
MODEL (GWMT)

4x upscaling model



MODEL (GWMT)

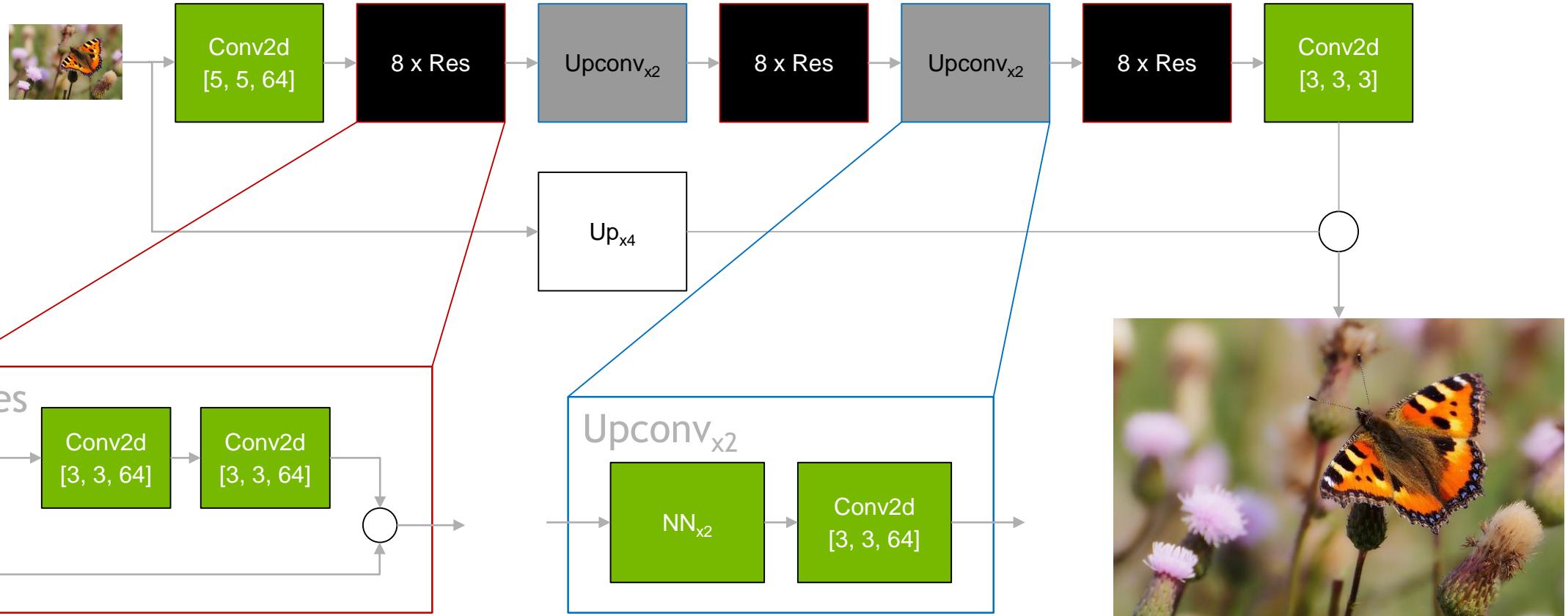
4x upscaling model



Low-pass: Bilinear up-scaling of the input image.

MODEL (GWMT)

4x upscaling model



DATASET

OpenImagesV4*

Training on fixed-size random crops

Input data issues

JPEG compression artifacts

Raw

JPEG (over-compressed)

* <https://storage.googleapis.com/openimages/web/index.html>

LOSS FUNCTION

MSE

HFEN

VGG

TV

GAN

LOSS FUNCTION

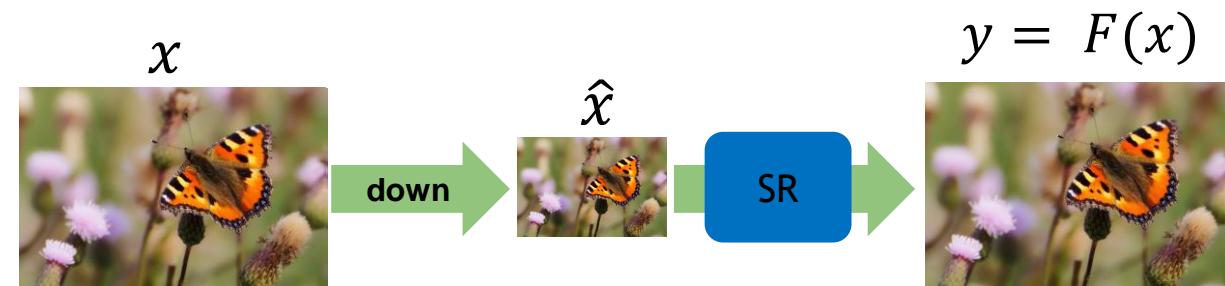
MSE

HFEN

VGG

TV

GAN



MSE loss: $L = \frac{1}{N} \|x - F(x)\|^2$

PSNR
Peak Signal-to-Noise Ratio

$$10 * \log_{10} \left(\frac{\text{MAX}^2}{\text{MSE}} \right)$$

LOSS FUNCTION

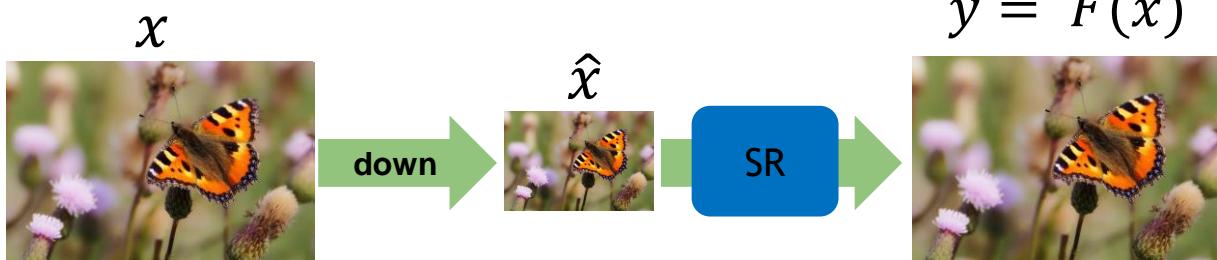
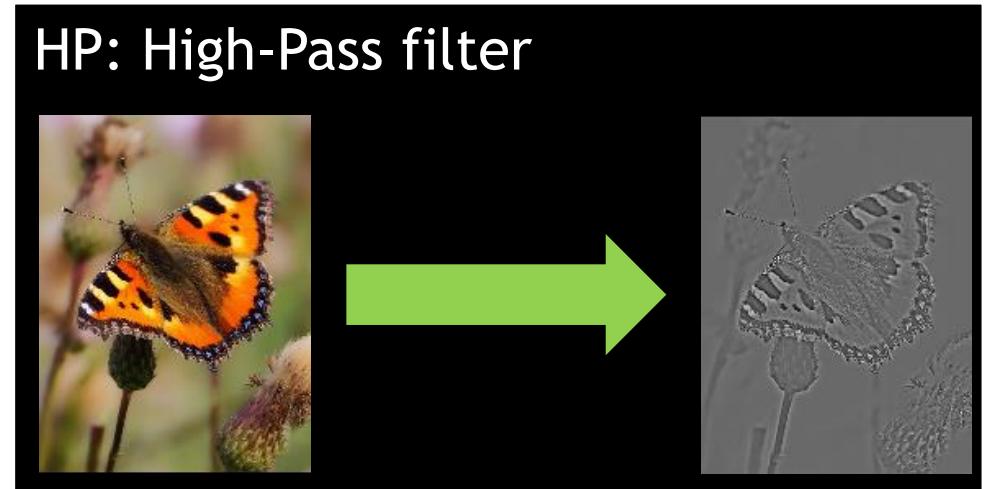
MSE

HFEN

VGG

TV

GAN



HFEN* loss: $L = \alpha_1 \|HP(x - F(x))\|^2$

- HFEN*: High Frequency Error Norm

<http://ieeexplore.ieee.org/document/5617283/>

LOSS FUNCTION

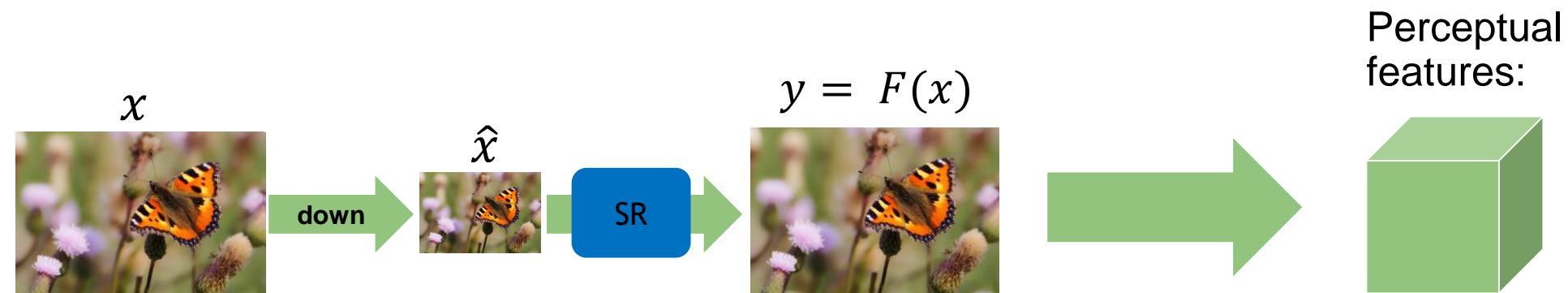
MSE

HFEN

VGG

TV

GAN



VGG* loss: $L = \alpha_2 \|G(x) - G(F(x))\|^2$

- VGG19 features taken after the 4th convolutional layer (before 5th max-pooling)

<https://arxiv.org/abs/1409.1556>

LOSS FUNCTION

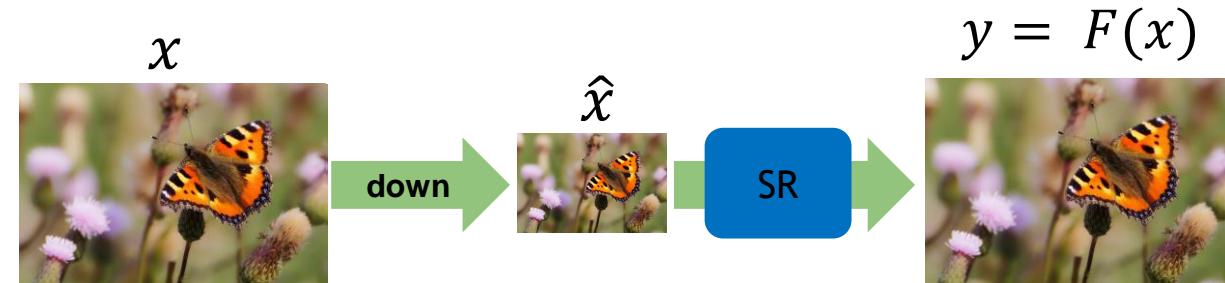
MSE

HFEN

VGG

TV

GAN



TV loss: $L = \alpha_3 \int_{\Omega} |\nabla F(x)|$

- Serves as a regularizer and has little influence on the optimization

LOSS FUNCTION

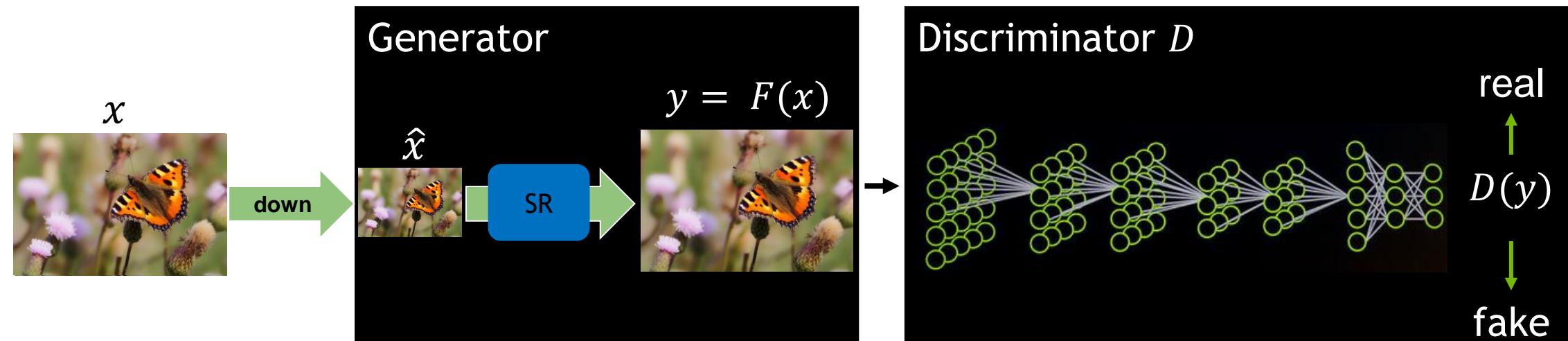
MSE

HFEN

VGG

TV

GAN



$$\text{GAN loss} = -\alpha_4 \ln D(F(x))$$

RESULTS

ONE DOES NOT SIMPLY

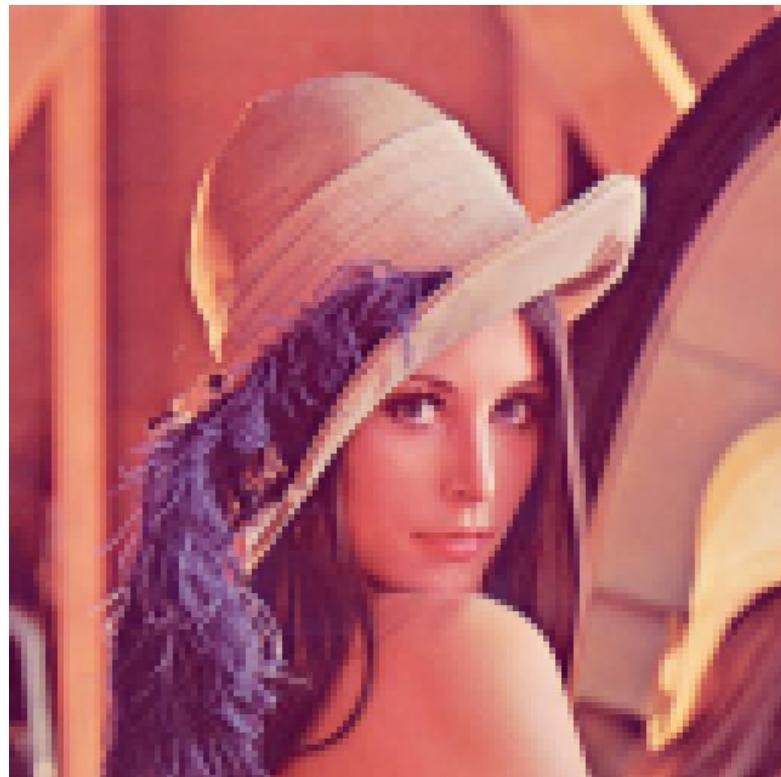
ENHANCE THE IMAGE

ONE DOES NOT SIMPLY

ENHANCE THE IMAGE

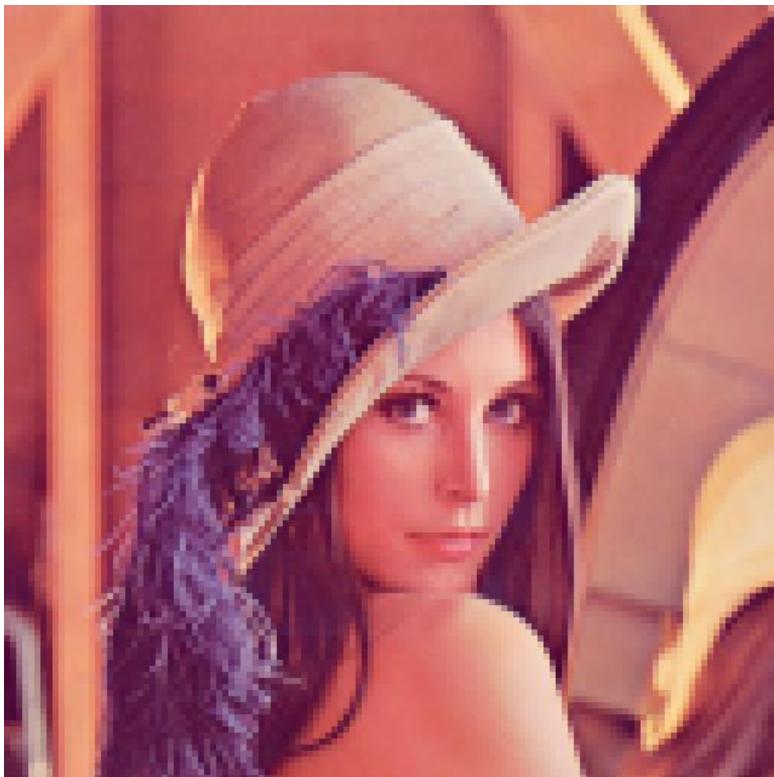
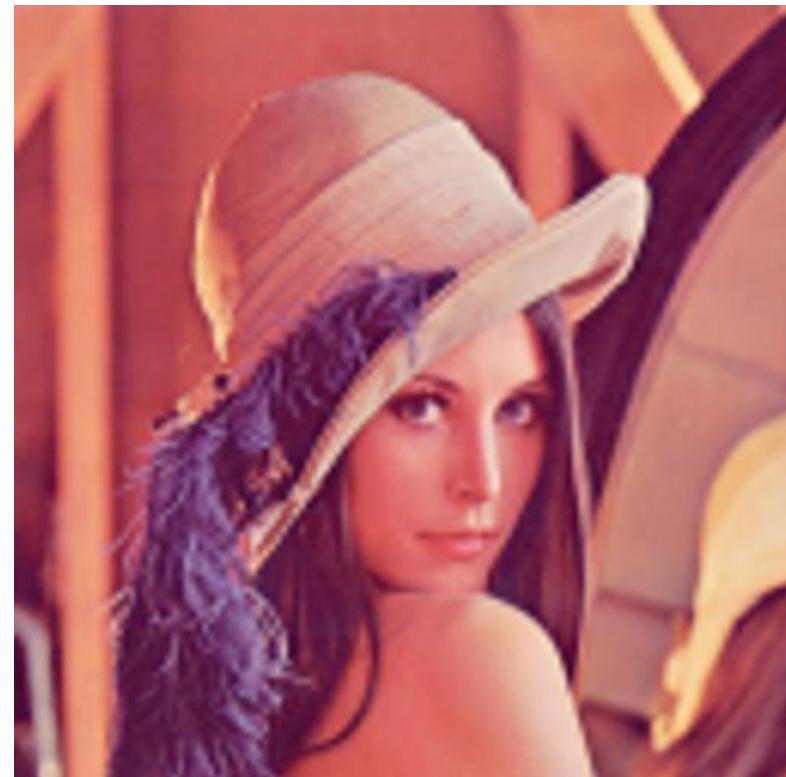
COMPARISON

Original vs downscaled



COMPARISON

downscaled vs bicubic

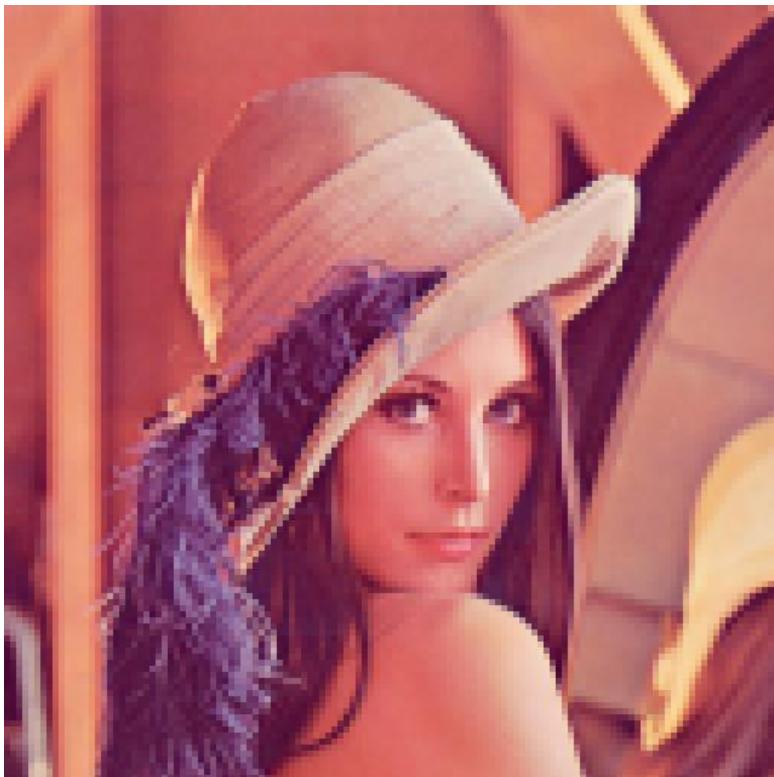


COMPARISON

downscaled vs perceptual

COMPARISON

downscaled vs perceptual+GAN



COMPARISON

original vs bicubic

COMPARISON

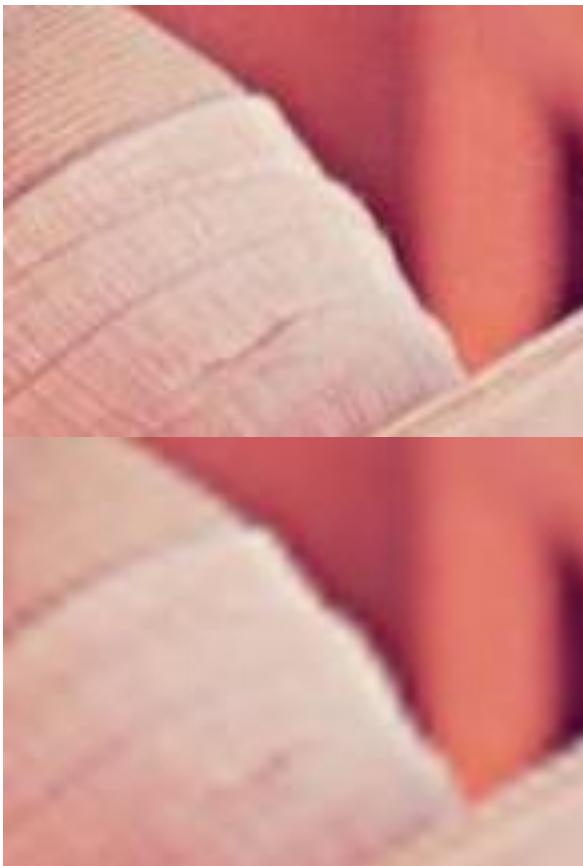
original vs perceptual

COMPARISON

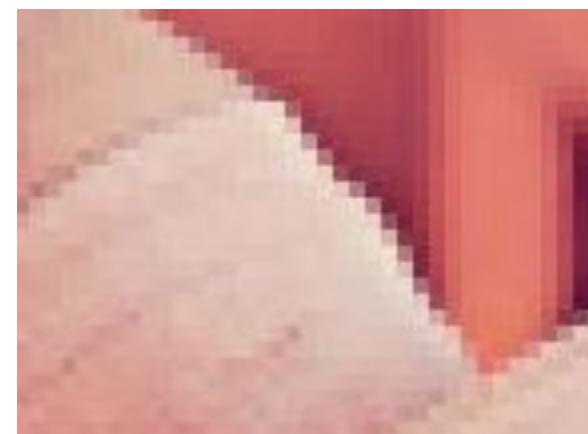
original vs perceptual+GAN

COMPARISON

easy details (hat)

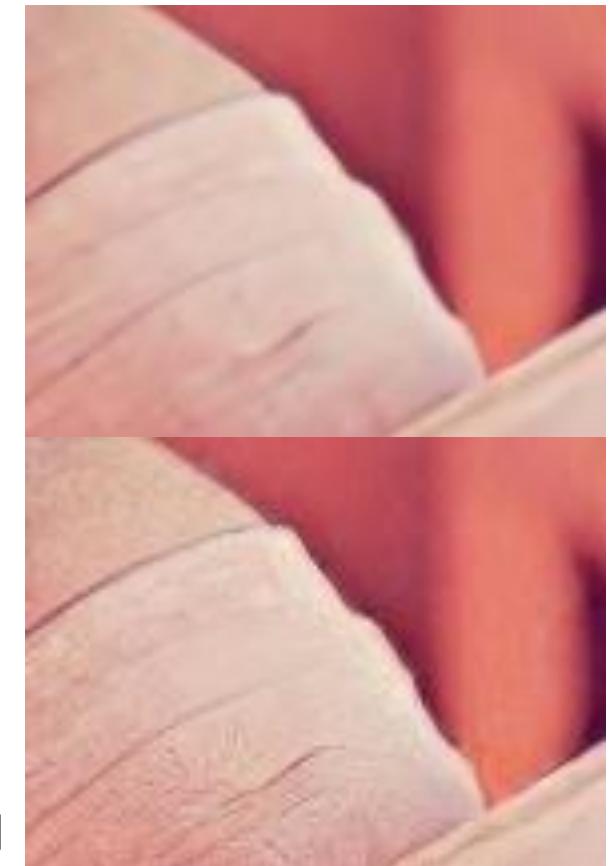


Original



Downscaled (input)

Perceptual

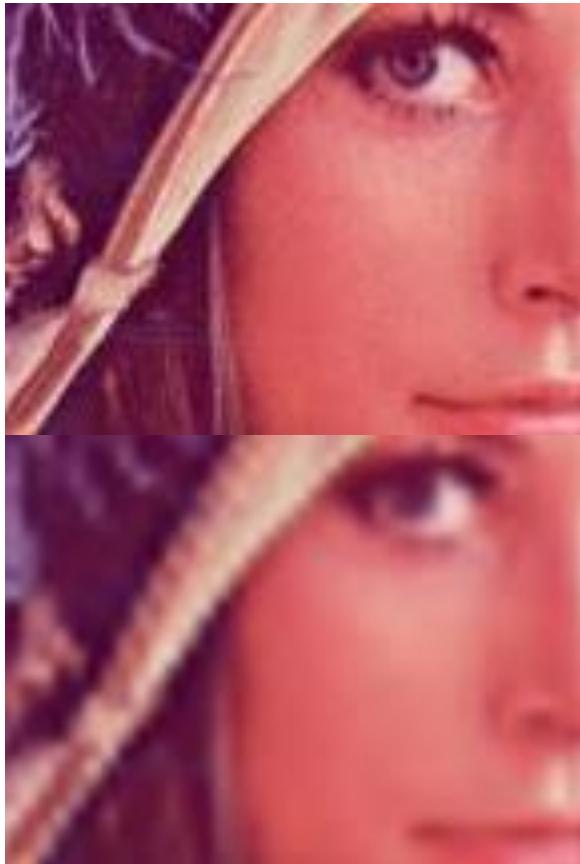


Bicubic

Perceptual + GAN

COMPARISON

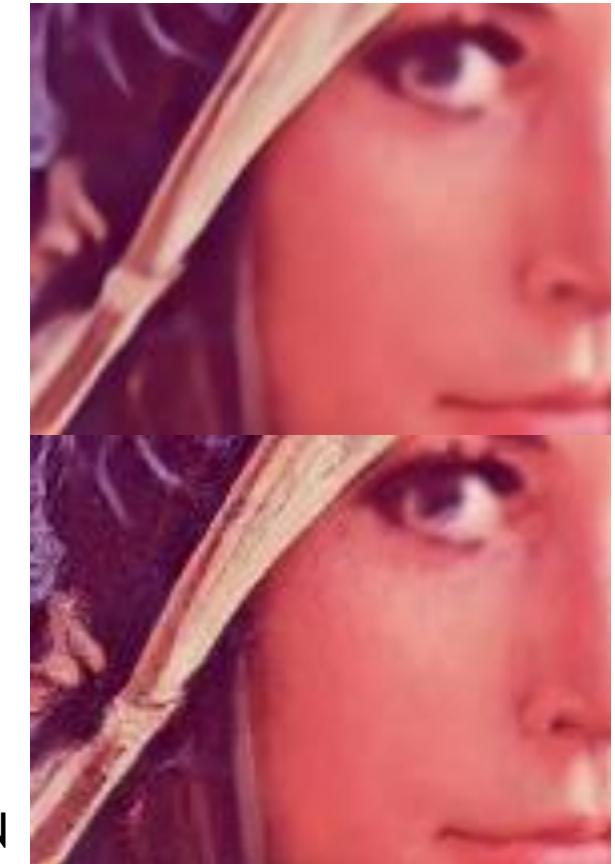
details (eye)



Original

Downscaled (input)

Perceptual



Bicubic

Perceptual + GAN

COMPARISON

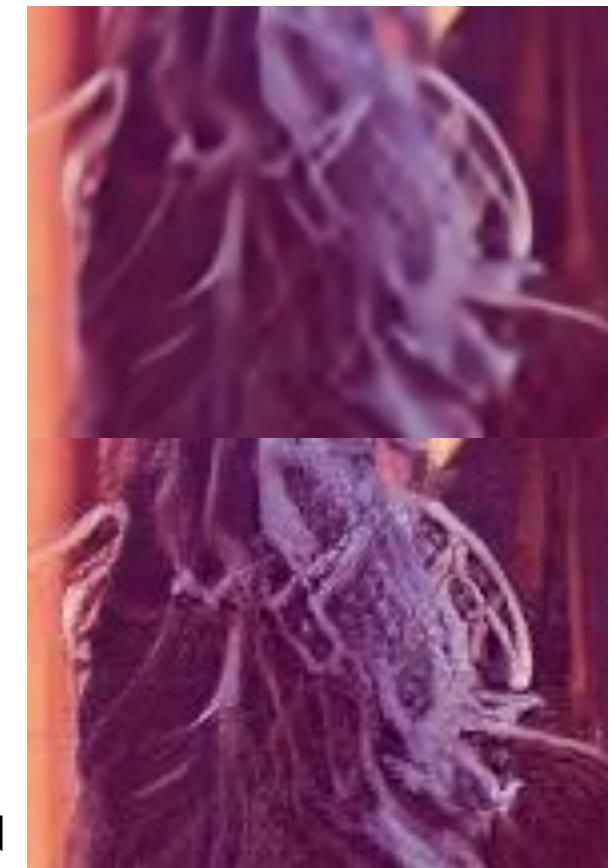
hard details (feathers plume)

Original



Downscaled (input)

Perceptual



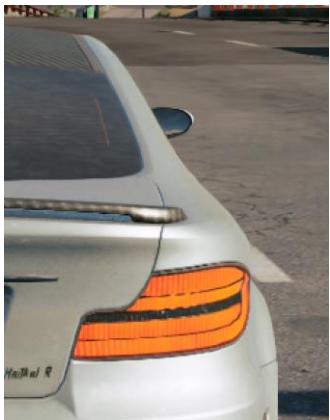
Bicubic

Perceptual + GAN

WHAT ABOUT SYNTHETIC IMAGES?

COMPARISON

Synthetic Images

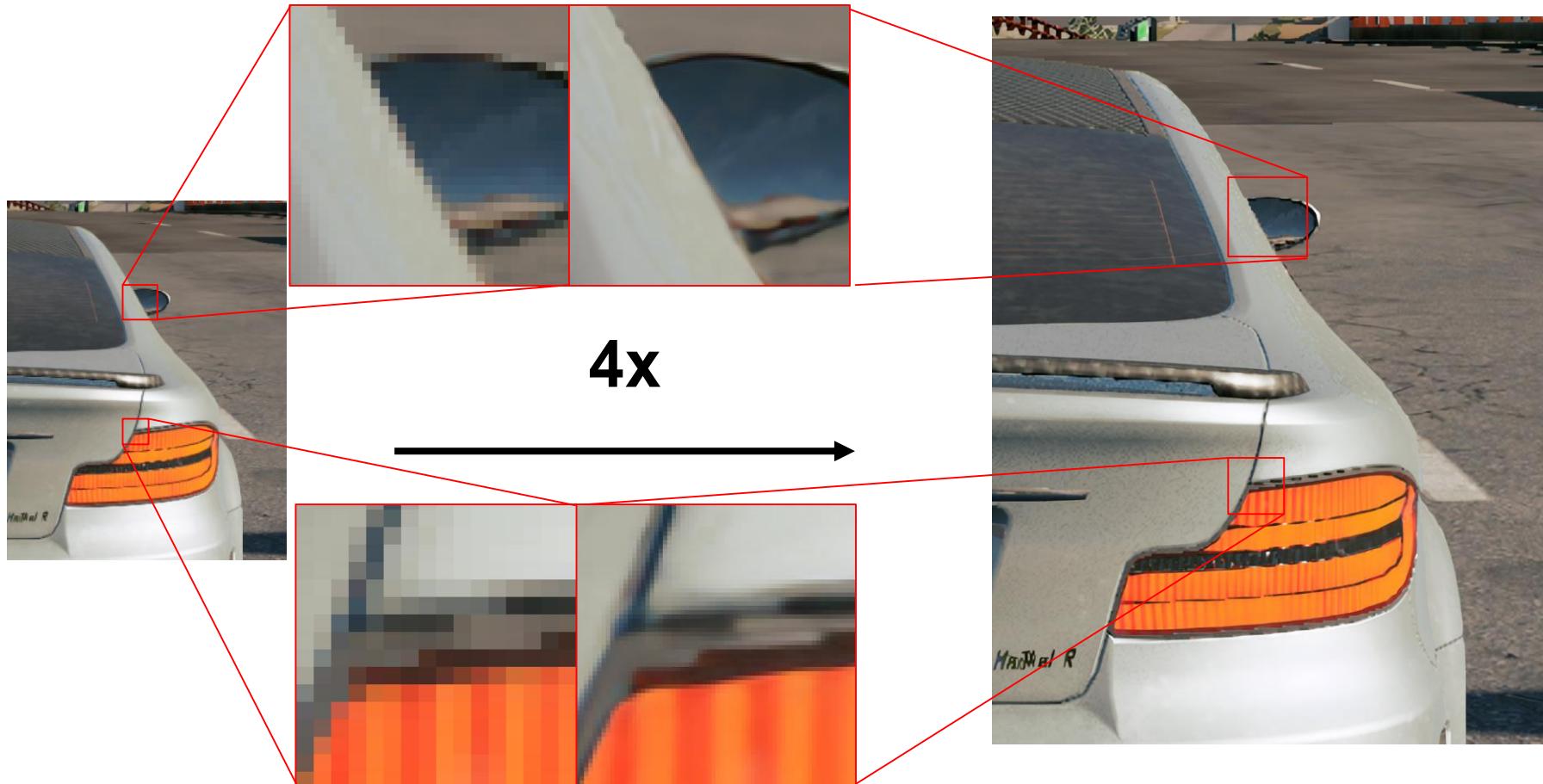


4x

→

COMPARISON

Synthetic Images



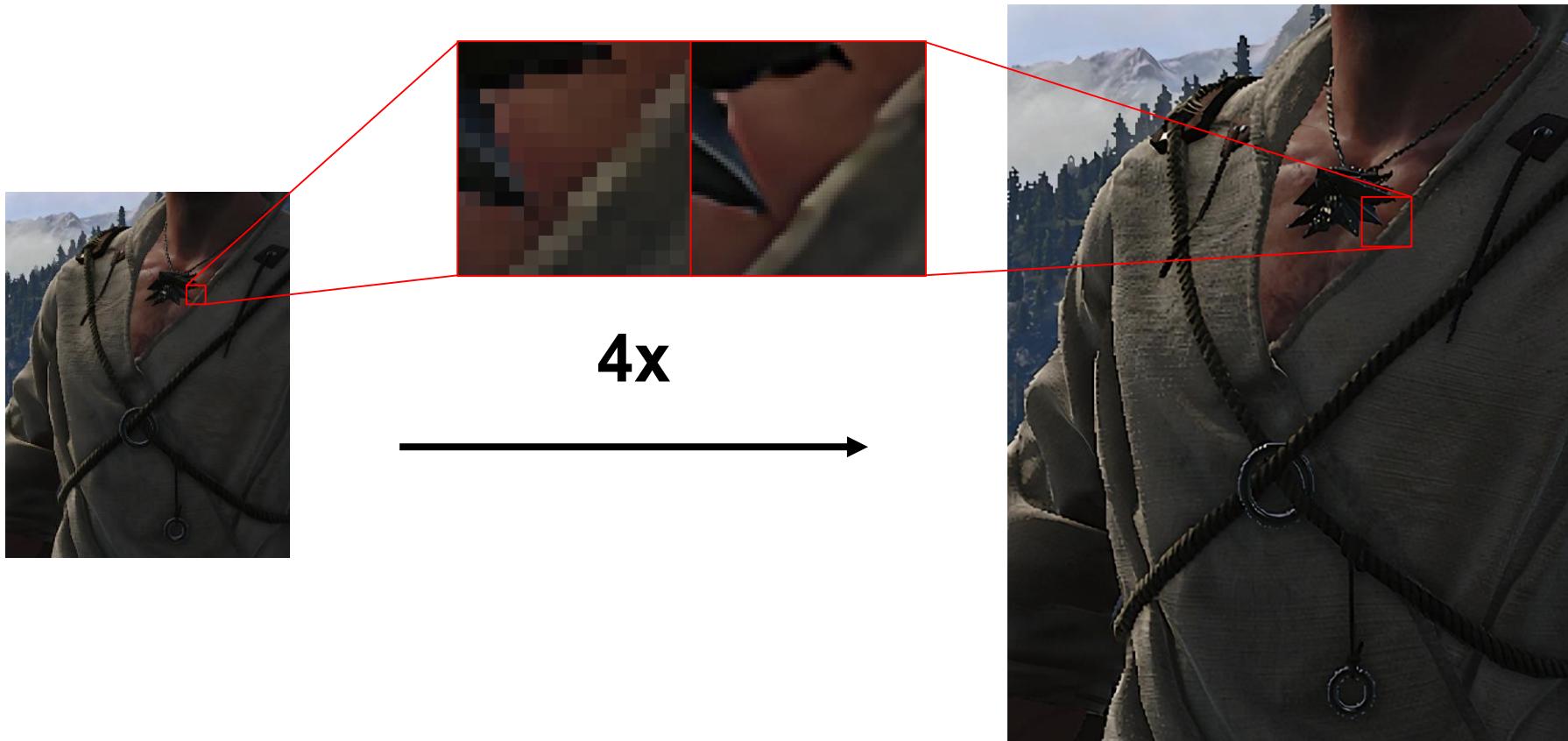
COMPARISON

Synthetic Images

4x

COMPARISON

Synthetic Images



OBSERVATIONS

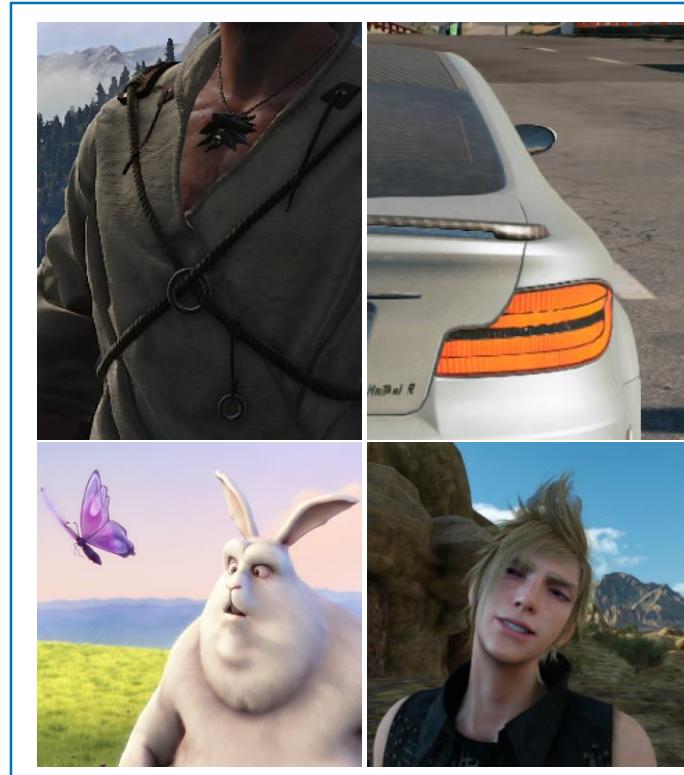
On synthetic image upscaling

- Synthetic images have more high frequency details
- Synthetic images with dithering contains noise-like artifacts
- The Network has never seen synthetic images during trainings
- Presence of artifacts in training image is reflected into upscaling artifact
 - Especially with GANs
- We can probably improve these results

UPSCALING SYNTHETIC IMAGES

GOAL

Train Super Resolution for synthetic images



SOLUTION?

Train on game images!

SOLUTION?

Train on game images!

- Difficult to produce

SOLUTION?

Train on game images!

- Difficult to produce
- Extremely biased dataset

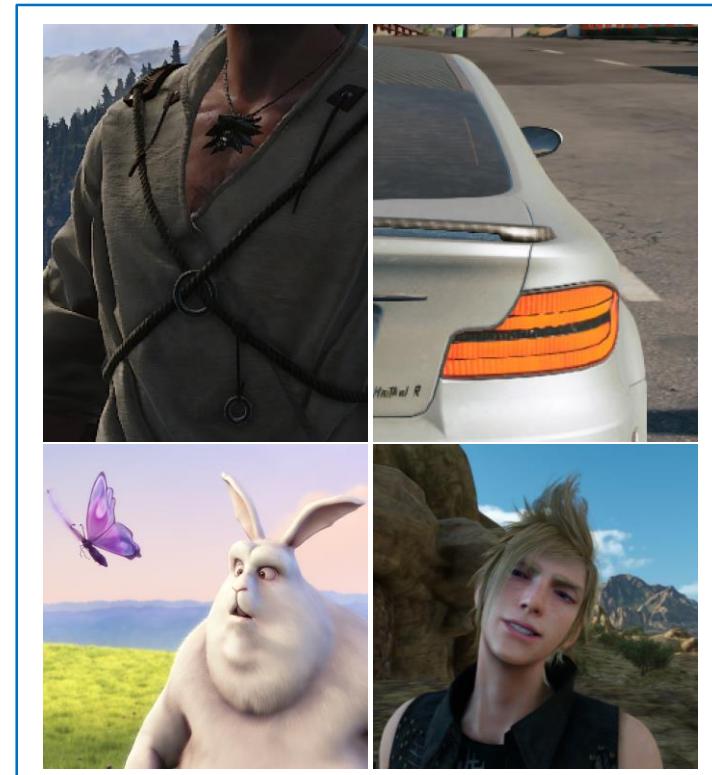
SOLUTION?

Train on game images!

- Difficult to produce
- Extremely biased dataset
- License issues?

NEW GOAL

Train SuperRes with natural images and apply to synthetic images

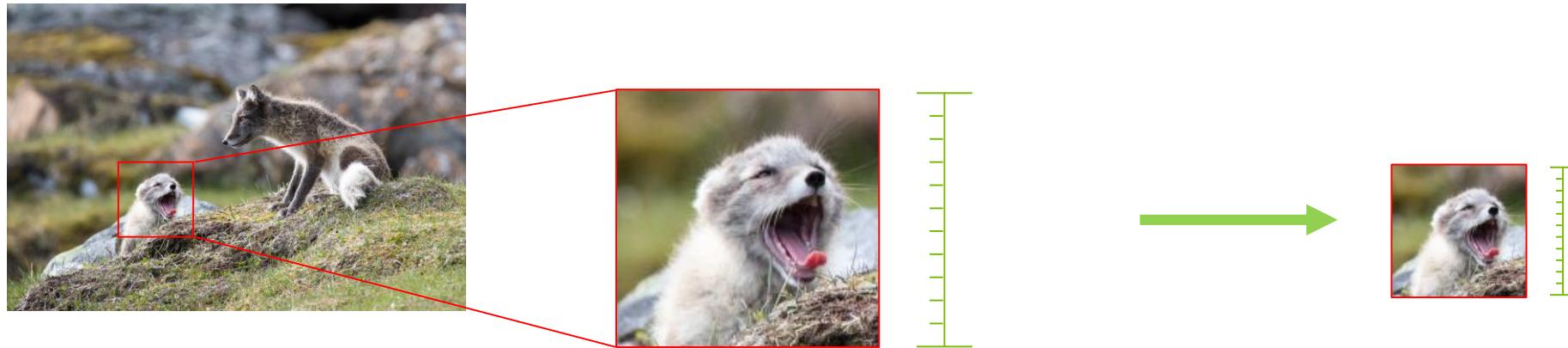


AUGMENTATION

SOLUTION

Augment photographic images

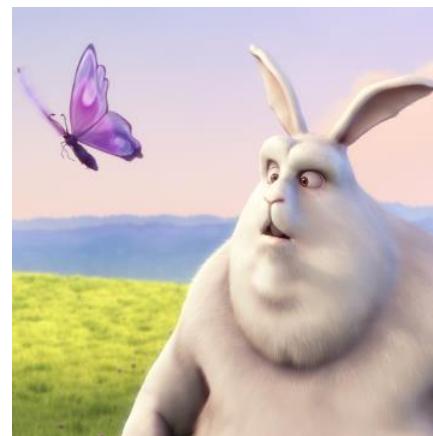
To reduce the compression artifacts, we will extract random crops and downscale them to our training crop size



SOLUTION

Downscale with aliasing

Filter the image with a cutoff above Nyquist limit

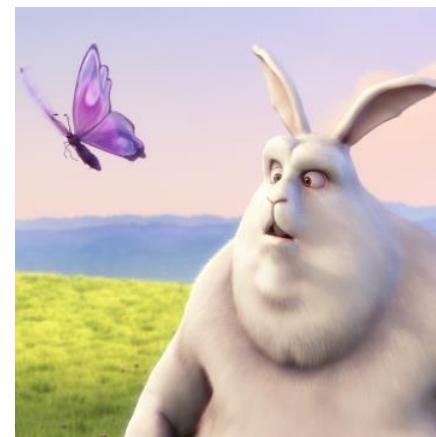


$\times 1/4$

SOLUTION

Downscale with variable aliasing

Use different cutoff limits above Nyquist



$\times 1/4$

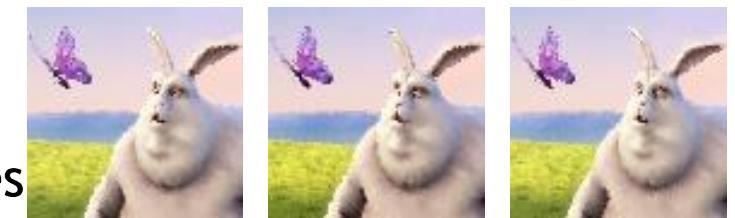
Every downscaling now generates examples with different aliasing features.

SOLUTION

Stochastic decimation

After filtering, instead of sampling on a regular grid, jitter each sampling point

$\times 1/4$



Every downscaling now generate very different examples

SOLUTION

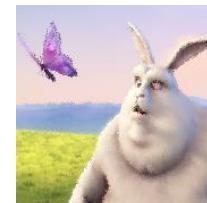
Variable stochastic decimation

Full control over introduced
noise/ aliasing effect

$\times 1/4$

$\sigma = 0.1$

0.5



1.0

5.0

10

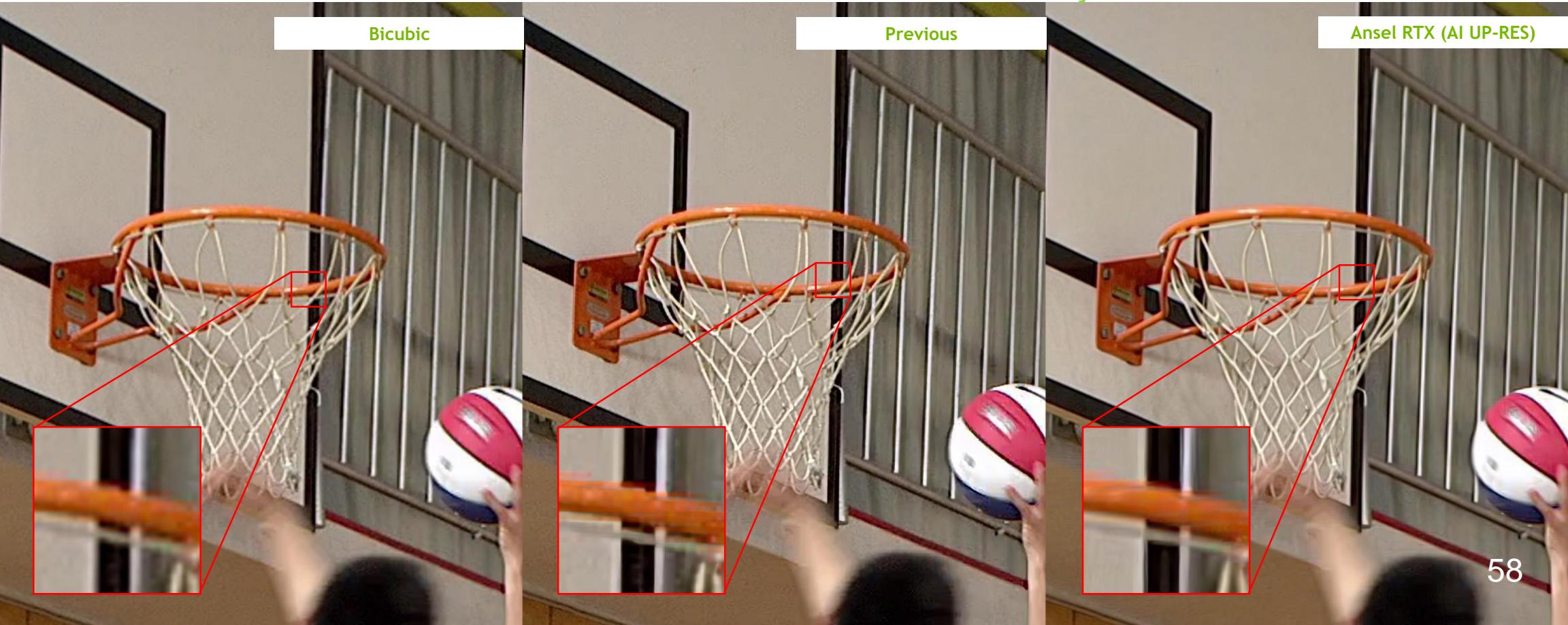
COMPARISON WITH PREVIOUS METHOD

EVALUATION

EVALUATION

EVALUATION

Note. Not only unaliased but also denoised!



COMPARISON WITH INPUT IMAGES

INPUT VS OUTPUT

Note. The input images are interpolated by Nearest Neighbor algorithm to make it same size with upscaled image

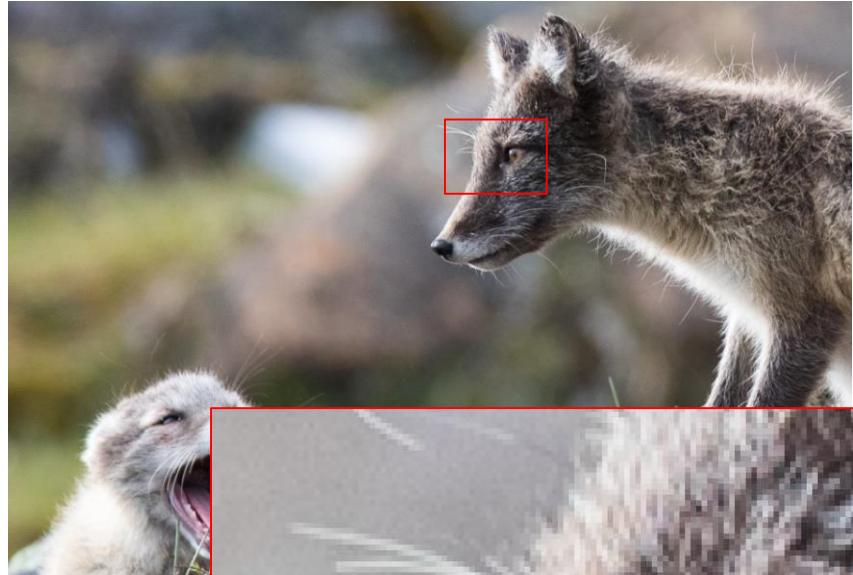
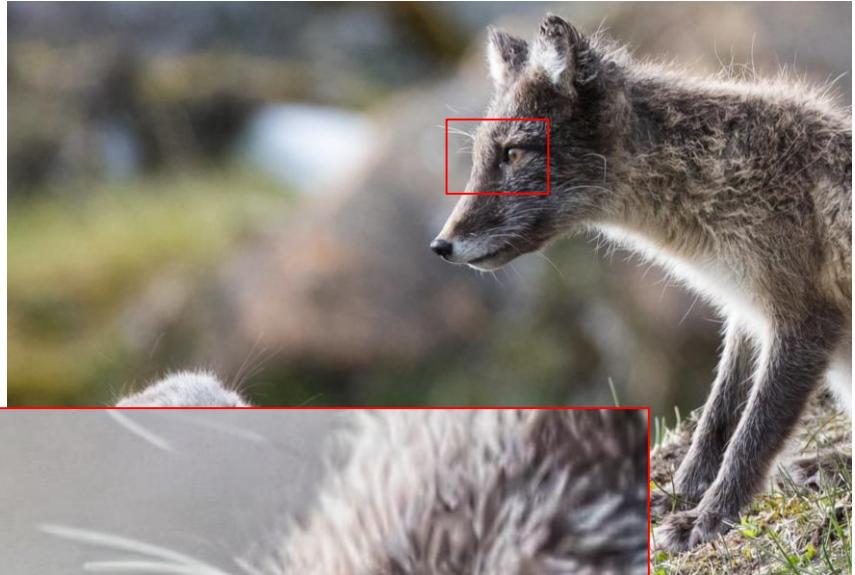
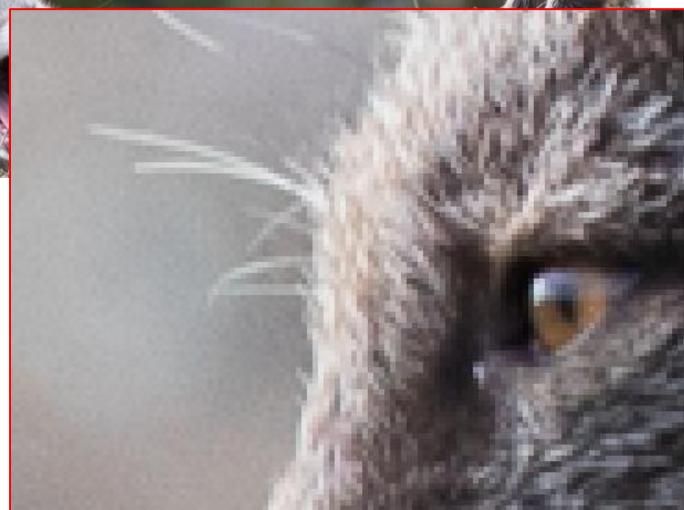
INPUT VS OUTPUT



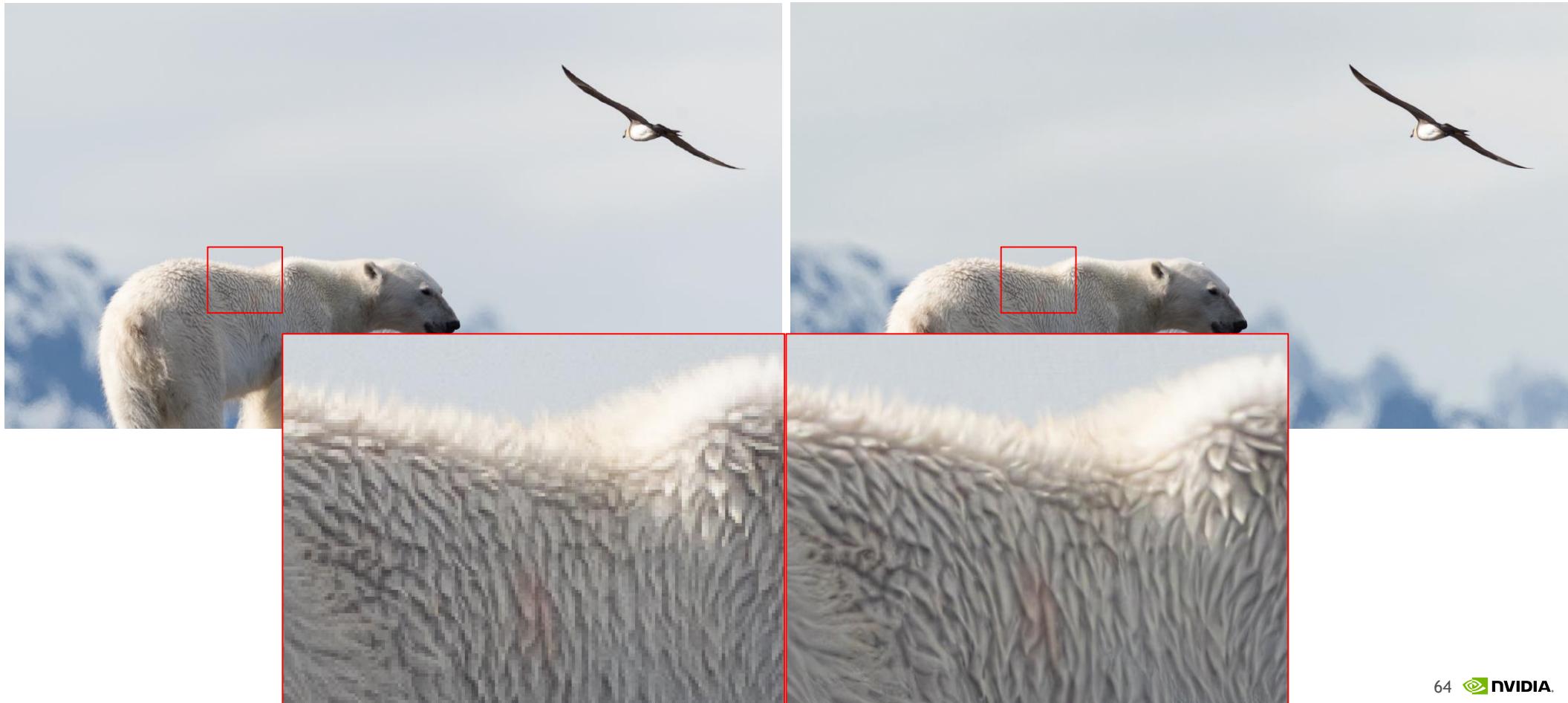
INPUT VS OUTPUT



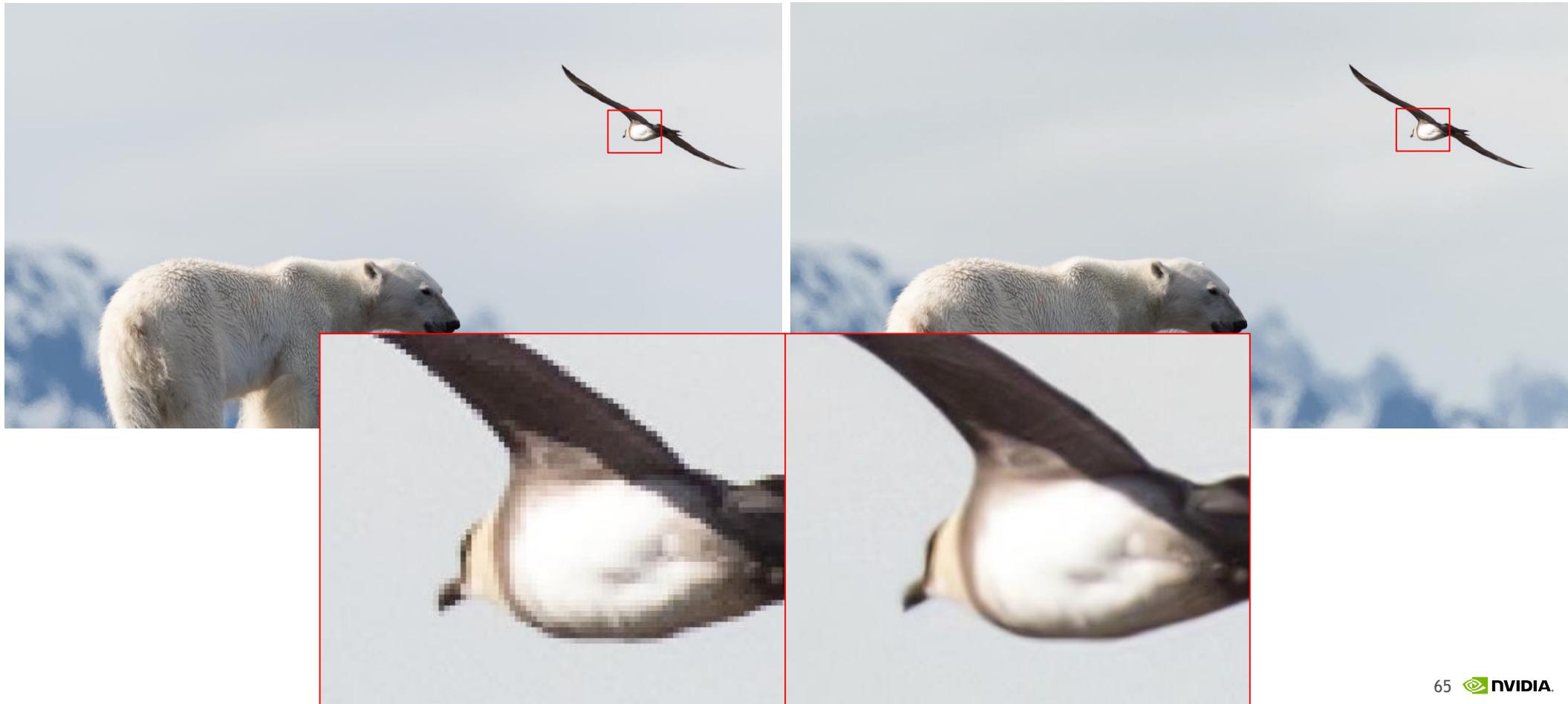
INPUT VS OUTPUT (REAL IMAGE)



INPUT VS OUTPUT (REAL IMAGE)



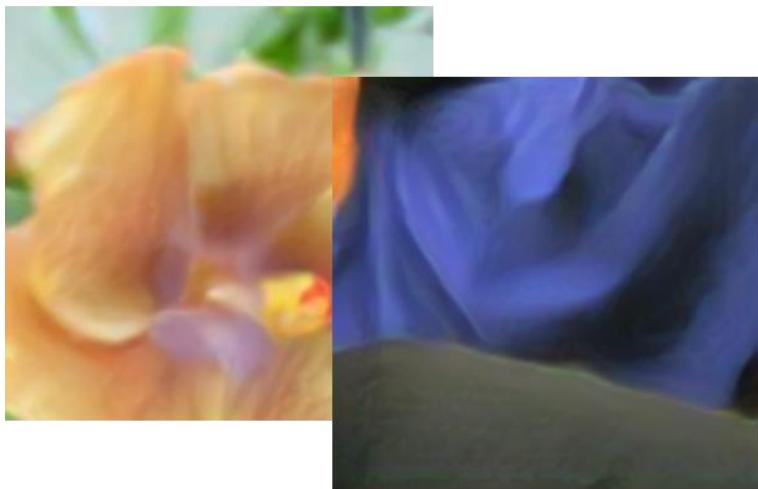
INPUT VS OUTPUT (REAL IMAGE)



QUESTIONS?

THANK YOU!

DISCUSSION



VS

Low weight for GAN

Blurry image

High weight for GAN

GAN artifacts & color shift

