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ALIASED IMAGES
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WHAT IS SUPERRESOLUTION
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SUPERRESOLUTION
Build a high resolution version of a given low resolution image
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upscaling

n*W

n*H

W

H
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ZOOM! ENHANCE!

Zoom on the 

license plate

Yes
Sure!

Can you 

enhance that?
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EVEN THE INTERNET KNOWS…
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EXISTING TECHNIQUES

Interpolation (bilinear, bicubic, lanczos, etc.)

Interpolation  + Sharpening (and other filtration)

Such methods are data-independent

Very rough estimation of the data behavior

6filter-based sharpening

interpolation
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Perceptual Losses for Real-Time 

Style Transfer and Super-Res:

Johnson et al. 2016

EXISTING TECHNIQUES (DEEP)

7EnhaceNet: Mehdi et al. 

2017

Image Super-Res via 

Deep Recursive ResNets:

Tai et al. 2018

A Fully Progressive Approach 

to Single-Image Super-Res: 

Wang et al. 2018

Super-Res with Deep 

Adaptive Image Resampling:

Jia et al. 2017

and many others

…
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OUR SOLUTION
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TRAINING PIPELINE

9

HR image

LR image

𝑥

𝐷
 𝑥

Downscaling

Reconstructed HR image

𝐹W

Downscaling
SR 

model

𝑊
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TRAINING PIPELINE

Downscaling = Filtering + Decimation

Model Input
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HR image

LR image

𝑥

𝐷
 𝑥

Downscaling

Reconstructed HR image

𝐹W

Downscaling
SR 

model

𝑊

cutoff frequency at 

(or below) nyquist
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TRAINING PIPELINE

Solve the optimization problem:

𝑊 = 𝑎𝑟𝑔𝑚𝑖𝑛 

𝑖

𝐷𝑖𝑠𝑡(𝑥𝑖 , 𝐹𝑊 𝐷(𝑥𝑖) )

Model optimization
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𝑥𝑖 - training set

HR image

LR image

𝑥

𝐷
 𝑥

Downscaling

Reconstructed HR image

𝐹W

Downscaling
SR 

model

𝑊
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Upx4

Conv2d

[5, 5, 64]
Upconvx2 Upconvx2

Conv2d

[3, 3, 3]
8 x Res 8 x Res 8 x Res

+

MODEL (GWMT)
4x upscaling model

12
* Developed by Dmitry Korobchenko
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MODEL (GWMT)

Low-pass: Bilinear up-scaling of the input image.

4x upscaling model

13

Upx4

Conv2d

[5, 5, 64]
Upconvx2 Upconvx2

Conv2d

[3, 3, 3]
8 x Res 8 x Res 8 x Res

+

* Developed by Dmitry Korobchenko
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MODEL (GWMT)
4x upscaling model

14

Res
Conv2d

[3, 3, 64]

Conv2d

[3, 3, 64]

+

Upconvx2

NNx2

Conv2d

[3, 3, 64]

Upx4

Conv2d

[5, 5, 64]
Upconvx2 Upconvx2

Conv2d

[3, 3, 3]
8 x Res 8 x Res 8 x Res

+

* Developed by Dmitry Korobchenko
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DATASET

Training on fixed-size random crops

Input data issues

JPEG compression artifacts

OpenImagesV4*

15

Raw JPEG (over-compressed)

* https://storage.googleapis.com/openimages/web/index.html
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MSE HFEN VGG TV GAN+ + + +

LOSS FUNCTION

16
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PSNR 
Peak Signal-to-Noise Ratio

10 ∗ 𝑙𝑜𝑔10

𝑀𝐴𝑋2

𝑀𝑆𝐸

Related to

MSE HFEN VGG TV GAN+ + + +

𝑥
 𝑥

down SR

𝑦 = 𝐹(𝑥)

MSE loss: L =
1

𝑁
𝑥 − 𝐹 𝑥 2

LOSS FUNCTION

17
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HP: High-Pass filter

* http://ieeexplore.ieee.org/document/5617283/

MSE HFEN VGG TV GAN+ + + +

HFEN* loss: L = 𝛼1 𝐻𝑃(𝑥 − 𝐹 𝑥 ) 2

• HFEN*: High Frequency Error Norm

𝑥
 𝑥

down SR

𝑦 = 𝐹(𝑥)

LOSS FUNCTION

18



19* https://arxiv.org/abs/1409.1556

Perceptual 
features:

𝐺 𝑥 = 𝑉𝐺𝐺(𝑥)

MSE HFEN VGG TV GAN+ + + +

VGG* loss: L = 𝛼2 𝐺 𝑥 − 𝐺(𝐹 𝑥 ) 2

• VGG19 features taken after the 4𝑡ℎ convolutional layer (before 5𝑡ℎ max-pooling)

𝑥
 𝑥

down SR

𝑦 = 𝐹(𝑥)

LOSS FUNCTION

19

https://arxiv.org/abs/1409.1556
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MSE HFEN VGG TV GAN+ + + +

TV loss: 𝐿 = 𝛼3  Ω |∇𝐹(𝑥)|

• Serves as a regularizer and has little influence on the optimization

𝑥
 𝑥

down SR

𝑦 = 𝐹(𝑥)

LOSS FUNCTION

20
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LOSS FUNCTION

21

GAN loss = −𝛼4𝑙𝑛𝐷(𝐹 𝑥 )

MSE HFEN VGG TV GAN+ + + +

Discriminator 𝐷

𝐷(𝑦)

real

fake

Generator

𝑥
 𝑥

down SR

𝑦 = 𝐹(𝑥)

* https://arxiv.org/pdf/1609.04802.pdf
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RESULTS
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COMPARISON
Original vs downscaled
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COMPARISON
downscaled vs bicubic
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COMPARISON
downscaled vs perceptual
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COMPARISON
downscaled vs perceptual+GAN
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COMPARISON
original vs bicubic
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COMPARISON
original vs perceptual
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COMPARISON
original vs perceptual+GAN
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COMPARISON
easy details (hat)

Original

Downscaled (input)

Bicubic

Perceptual

Perceptual + GAN
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COMPARISON
details (eye)

Original

Downscaled (input)

Bicubic

Perceptual

Perceptual + GAN
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COMPARISON
hard details (feathers plume)

Original

Downscaled (input)

Bicubic

Perceptual

Perceptual + GAN
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WHAT ABOUT SYNTHETIC IMAGES?
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4x

COMPARISON
Synthetic Images
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4x

COMPARISON
Synthetic Images
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4x

● Trained on natural images

COMPARISON
Synthetic Images

38
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4x

COMPARISON
Synthetic Images

39
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OBSERVATIONS

• Synthetic images have more high frequency details

• Synthetic images with dithering contains noise-like artifacts

• The Network has never seen synthetic images during trainings

• Presence of artifacts in training image is reflected into upscaling artifact

• Especially with GANs

• We can probably improve these results

On synthetic image upscaling

40
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UPSCALING SYNTHETIC IMAGES
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GOAL
Train Super Resolution for synthetic images

43
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SOLUTION?
Train on game images!
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SOLUTION?

• Difficult to produce

Train on game images!
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SOLUTION?

• Difficult to produce

• Extremely biased dataset

Train on game images!
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SOLUTION?

• Difficult to produce

• Extremely biased dataset

• License issues?

Train on game images!

47
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NEW GOAL
Train SuperRes with natural images and apply to synthetic images

48



49

AUGMENTATION
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SOLUTION

To reduce the compression artifacts, we will extract random crops and downscale 
them to our training crop size

Augment photographic images

50

f × H H
downscale

f is random number
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SOLUTION

Filter the image with a cutoff above Nyquist limit

Downscale with aliasing

x 1/4
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SOLUTION

Use different cutoff limits above Nyquist

Every downscaling now generate examples with
different aliasing features.

Downscale with variable aliasing

x 1/4
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SOLUTION

After filtering, instead of sampling on a regular grid, jitter each sampling point

Every downscaling now generate very different examples 

Stochastic decimation
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x 1/4
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SOLUTION

Full control over introduced 
noise/ aliasing effect

Variable stochastic decimation

0.1 0.5 1.0 10𝜎 = 5.0

x 1/4



55

COMPARISON WITH PREVIOUS METHOD

55



56

EVALUATION

56

Ansel RTX (AI UP-RES)PreviousBicubic
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EVALUATION

57

Ansel RTX (AI UP-RES)PreviousBicubic
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Note. Not only unaliased but also denoised!

EVALUATION

58

Ansel RTX (AI UP-RES)PreviousBicubic
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COMPARISON WITH INPUT IMAGES

59
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INPUT VS OUTPUT

60Note. The input images are interpolated by Nearest Neighbor algorithm to make it same size with upscaled image
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INPUT VS OUTPUT
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INPUT VS OUTPUT
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INPUT VS OUTPUT (REAL IMAGE)
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INPUT VS OUTPUT (REAL IMAGE)
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INPUT VS OUTPUT (REAL IMAGE)
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QUESTIONS?

66
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THANK YOU!

67
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DISCUSSION

68

• GAN is hard to train: how to deal with artifacts? 

• How to find the optimal weights for loss function?


