
ROS COMMANDS
ROBOTICS

FILE SYSTEM TOOLS

Ros Desktop-full come with lots of tutorials
and tools

Before creating our own package and start
writing some code we will learn how to
navigate the ROS file system and use the
turtlesim package to test some of the most
useful tools

FILE SYSTEM TOOLS
Change directory in the ROS file system
roscd [package_name[/subdir]]

roscd roscpp && pwd /opt/ros/kinetic/share/roscpp

roscd roscpp/srv /opt/ros/kinetic/share/roscpp/srv

roscd robby_roboto ~/catkin_ws/src/robby_roboto

FILE SYSTEM TOOLS

Getting information about installed packages
rospack <subcommand> [options] [package]

subcommands (among the others)
depends [package] package dependencies
find [package] find package directory
list list available packages

rospack find roscpp /opt/ros/kinetic/share/roscpp

rospack list <several packages>

STARTING THE MIDDLEWARE

To start the ROS middleware just type in a terminal
roscore

Now it is possible to display information about the elements currently running
rosnode list

rostopic list

rostopic echo /rosout

rosservice list

rqt_graph

DEALING WITH NODES

Getting information about running nodes
rosnode <command> [other_commands]

subcommands (among the others)
ping test connectivity to node
info print information about node
kill kill a running node
cleanup purge registration information of unreachable nodes

rosnode list

rosnode info /rosout

STARTING ROS NODES

To start a ROS node type in a terminal
rosrun [package_name] [node_name]

rosrun turtlesim turtlesim_node

rosnode ping /turtlesim

rosnode info /turtlesim

/turtlesim

STARTING ROS NODES

In a new terminal
rosrun turtlesim turtle_teleop_key

Notes:
turtle_teleop_key is publishing the key strokes on a topic
turtlesim subscribes to the same topic to receive the key strokes

/turtlesim/teleop /turtle1/cmd_vel

DEALING WITH TOPICS

To show the running node type in a terminal
rqt_graph

To plot published data on a topic
rqt_plot /turtle1/pose/x /turtle1/pose/y

rqt_plot /turtle1/pose/x:y

To monitor a topic on a terminal type
rostopic echo /turtle1/cmd_vel

DEALING WITH TOPICS CONT.

Getting information about ROS topics
rostopic <command> [topic_name]

subcommands (among the others)
echo print messages to screen
find find topics by type
hz display publishing rate of topic
info print information about active topic
list list active topics
pub publish data to topic
type print topic type

DEALING WITH TOPICS CONT.

Getting information about ROS topics
rostopic type [topic_name]

rostopic type /turtle1/cmd_vel

Publishing ROS topics
rostopic pub [topic] [msg type] [args]

$ rostopic pub -1 /turtle1/cmd_vel geometry_msgs/Twist -- '[2.0, 0.0, 0.0]' '[0.0, 0.0, 1.8]'

DEALING WITH TOPICS CONT.
$ rostopic pub -1 /turtle1/cmd_vel geometry_msgs/Twist -- '[2.0, 0.0, 0.0]' '[0.0, 0.0, 1.8]'

The -1 option force rostopic to publish the message only once, if you want to publish the
message at a specific frequency you will use:

$ rostopic pub /turtle1/cmd_vel geometry_msgs/Twist -r 1 -- '[2.0, 0.0, 0.0]' '[0.0, 0.0, 1.8]'

Where the -r 1 option specify that the message will be published at 1hz frequency

}}'

MESSAGES (ALSO SERVICES)
Getting information about msg/srv files
rosmsg <command> [msg/srv_file]

subcommands (among the others)
show Display the fields in the msg/srv.
list Display names of all msg/srv.
package List all the msg/srv in a package.
packages List all packages containing the msg/srv.

rosmsg show Pose

rosmsg package nav_msgs

DEALING WITH SERVICES
Calling services from command line and getting information:
rosservice <command> [other_commands]

subcommand (among the others)
list Print information about active services.
node Print name of node providing a service.
call Call the service with the given args.
args List the arguments of a service.
type Print the service type.
find Find services by service type

rosservice call /reset
rosservice type /reset

BAGS

bag: file format to store messages data
Used to test different algorithm with the exact same input and to debug a system when it’s not
monitorable at runtime
To record a bag use:
rosbag record
to record all the topics use:
$ rosbag record -a

to record only a subset of the topic use:
$ rosbag record topic1 topic2 etc

BAGS

To get info regarding a beg use the command:
$ rosbag info bag_name

To play a bag run:
$ rosbag play bag_name

remember that to run rosbag you need an active ros session (roscore should be on)
Always monitor your bag size, sometimes logging all the topics (if you are working with cameras) is
not the best idea because you will produce more data/sec than your max disk writing speed.

CREATE THE ROS WORKSPACE
ROBOTICS

CREATING THE WORKSPACE

ROS uses a custom compiling environment called Catkin
cmake/make with specific flags
Requires a workspace with a specific structure
Easy to setup and “easy” to use

mkdir -p ~/catkin_ws/src

cd ~/catkin_ws/

catkin_make

echo "source ~/catkin_ws/devel/setup.bash" >> ~/.bashrc

source ~/.bashrc

WORKSPACE STRUCTURE

Source space (/src):
contains the source code of catkin packages.
Subfolder of this are the ROS packages you want to add to your system

Build space (/build):
space where cmake is invoked to build the catkin packages
cmake and catkin keep their cache information and other intermediate files here

Devel space (/devel):
Space where built targets are placed prior to being installed

All your stuff goes
here!

Not where
catkin_make

is invoked!

PACKAGE CREATION

Command to create a new package
catkin_create_pkg [package_name] [depend1] [depend2] [depend3]

Before running the script cd to your src directory, then:

catkin_create_pkg beginner_tutorials std_msgs rospy roscpp

Important Notes
roscpp and rospy are client libraries to use C++ and Python
!!Before being able to do that you should have creates a ros_workspace!!

PACKAGE CREATION

cd to the new package, the script should have created:
-CMakeLists.txt
-package.xml
-include folder
-src folder

cd to your catkin workspace root to compile the new package, simply using catkin_make

EDITORS/ IDEs
ROBOTICS

ROSED

rosed is part of the rosbash suite
Allow the user to edit files using directly the package name, rather than typing the entire path

 rosed [package_name] [filename]

rosed roscpp Logger.msg

The default editor is vim

You can edit the .bashrc file setting a more user friendly editor

IDEs

No official IDE by ROS

C++ editor with ROS specific plugins

On ROS wiki you can guides on how to properly
configure the plugins

http://wiki.ros.org/IDEs

Simply add some features like easier compiling
and some debug tools

http://wiki.ros.org/IDEs

Roboware

Based on Visual Studio

Designed for ROS

No need to install third parties plugin

Offers some functionalities:
- Run program directly inside Roboware
- Debugger
- Automatic file generation
- CMakeLists and Package.xml automatic

update (partial)
- Integrated ros tool

