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Outline 2

o Simple Linear Regression Model

= | east Squares Fit “ o g 3
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o Multi Variate Regession Model ~ -zi+ "
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* |nference in Regression
o Other Considerations in Regression Model
= Qualitative Predictors
" |nteraction Terms
* Non Linear Regression

* Possible issues in Linear Regression
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Example: Increasing Sales by Advertising 3
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FIGURE 2.1. The Advertising data set. The plot displays sales, in thousands
of units, as a function of TV, radio, and newspaper budgets, in thousands of
dollars, for 200 different markets. In each plot we show the simple least squares
fit of sales to that variable, as described in Chapter 3. In other words, each blue
line represents a stmple model that can be used to predict sales using TV, radio,

and newspaper, respectively.
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What can we ask to the data? 4

Sales
Salas
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Is there a relationship between advertising budget and sales?

How strong is the relationship between advertising budget and sales?
Which media contribute to sales?

How accurately can we estimate the effect of each medium on sales?
How accurately can we predict future sales?

Is the relationship linear?

O O O O O O O

Is there synergy among the advertising media?
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Simple linear regression 5

o Le assume that a linear relationship exists between Y and X

sales~ (g + (31 X TV

o WVe say sales regress on TV through some parameters
* Model coefficients 3y and /3,

= After training, a new data point can be predicted as

a

Yy = ?0 -+ 31 £

o Given a datasets the coefficient above can be estimated by using
least squares to minimize the Residual Sum of Squares

€ = Yi — Vi

n
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Example: TV Advertising vs Sales 6
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FIGURE 3.1. For the Advertising data, the least squares fit for the regression
of sales onto TV s shown. The fit is found by minimizing the sum of squared
errors. Fach grey line segment represents an error, and the fit makes a compro-
maise by averaging their squares. In this case a linear fit captures the essence of
the relationship, although it 1s somewhat deficient in the left of the plot.
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Least squares fitting 7

o Least square fitting minimizes RSS (Residual Sum of Squares)
€i = Yi— Vi
RSS :e%+e%—|—-+-+ei.

RSS = (y1 — 30 — 31;{:1 )2 — (yg — QD — 51;{:2)2 +...+ (yﬂ — S’D — 31;.{?”)2

o Obtaining the following estimates , )
B1 = 0.0475 s
n - T\ 3 8 = . O_—lf.-:l .'_. ;::;}:#F
% L Z?ﬁ:l("t'i - J,)(;’Ji’ _ ,_U) AR :F:r_-‘__f gl
M1l — n . —\92 0 R I X Il iy
Zi:l(“ — ) .. g,:l«f""'f IR B
2 L tfﬂ:‘f‘.‘:-" e '
A _ P f“."_f:f' -
o =y — P11 “F 5 — 703
O 50 1':;} 150 200 2;(} ﬂﬁl}(}

Y = " : = = 1 n -
o Where ¥ = 7 >.i1Yi and T = =y T

POLITECNICO DI MILANO

Prof. Matteo Matteucci — Machine Learning - I




Least square solution ... 8
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FIGURE 3.2. Contour and three-dimensional plots of the RSS on the
Advertising data, using sales as the response and TV as the predictor. The
red dots correspond to the least squares estimates Bo and 1, given by (3.4).
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Least squares fitting 9

o Least square fitting minimizes RSS (Residual Sum of Squares)
€i = Yi—Yi
RSS = 6% + e% + -+ E:i.

RSS = (y1 — .*'90 — .311?1 )2 — (yg — BD — ;91;{:2)2 +...+ (yﬂ — S’D — ;’91;1-'”)2

o Obtaining the following estimates , )
. B1 = 0.0475 sl
. A TETE aq 8 . s ey #2]l0e2T
5. — Zz‘:l(i-i —Z)(yi — ) AR IE :;_,_.:.-f:"f. |
o Zn (x; — )2 - N 1o | e’ (K ’
=117 R B i AR L
R TR i
5 = Az LA
Ho = Y — J_) 1L o ‘-‘ ,30 = 7.03
O 50 1 150 200 2;0 BIICK}
TE— " 1. A — 1 n -
o Where V= 72.,—1¥% and 7= =) " But are they
any good?
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Population regression line 10

o Recall from Statistical Learning theory the underlying hypothesis
Y =050+ 51X +¢€

= Jothe Y value when X =0
= 71 the average increase in Y due to unitary increase in X

= the error term captures all the rest ...

o This model is known as “population regression line”
= the best linear approximation of the true model

* it might differ from the least squares regression line

“The population regression line stays to the mean of a distribution as the
least squares regression line stays to the sample mean ...”
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Example: population regression line

10
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variance in the
bias-variance trade-off
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FIGURE 3.3. A simulated data set. Left: The red line represents the true rela-
tionship, f(X) = 2+ 3X, which iz known as the population regression line. The
blue line is the least squares line; it is the least squares estimate for f(X ) based
on the observed data, shown in black. Right: The population regression line is
again shown in red, and the least squares line in dark blue. In light blue, ten least
squares lines are shown, each computed on the basis of a separate random set of
observations. Fach least squares line is different, but on average, the least squares

lines are quite close to the population regression line.
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Standard error & linear regression 12

o The (squared) standard error for the mean estimator represents
the average distance of the sample mean from the real mean

. . ~\ 2 02
Var(j1) = SE(1)” = —

o We can use similar formulae for the standard errors of the linear
regression coefficients ...

.\ 2 5 [1 T2
SE(By) =0% |- + =& —
no )i (i — 1)
9
.9 o
SE((1) = -
2?21(11 —I)?
o These formulae assume The higher the spread of x
the better the estimate

= uncorrelated errors ...
= ... having the same (unknown) variance o2 = Var(e)
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Parameters confidence intervals 13

o In general errors variance is not known, but it can be estimated
from residuals (if the model fits properly)

RSE = /RSS/(n — 2)

o From standard errors we can compute confidence intervals for
the linear regression parameters.

o E.g., the 95% confidence intervals for the parameters are
Bo £ 2 - SE(530)
31+ 27SE(5)

This should be the 97.5
guantile of a t-distribution

= the true slope is, with 95% probability, in the range

3y —2-SE(B), B +2- SE(;‘%Q}
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Example: TV Advertising data 14

Sales without any

o If we consider the 95% confidence intervals ”
advertising

= for the intercept we have [6.130,7.935]

" for the slope we have [0.042, 0.053]\ Average impact of
TV advertising
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Parameters hypothesis testing 15

o Standard errors can be used for hypothesis testing such as:
= H,: there is no relationship between Y and X

= H_: there is some relationship between Y and X

o This translates on parameters hypothesis testing for
Ho: 31 =0 against H,: 31 #0

o We do not know true parameters t-distribution with 4df =5
SO we can use estimates and t-distribution with df = 2

perform a statistical test using

IL — A~
SE(54)
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Example: TV advertising hypothesis test 17

o We reject the null hypothesis H, if the p-value is small
= p-value is the probability of making a wrong choice

= usually small is as low as 5% or |%, these percentages, with
N>30 correspond to t~2 and t~2.75 respectively

" in other fields, p-values might be significantly different, e.g., in
bioinformatics p-values of 10-¢ are quite common to avoid
false discoveries ...

Coefficient  Std. error t-statistic p-value
Intercept 7.0325 0.4578 15.36 < 0.0001
TV 0.0475 0.0027 17.67 < 0.0001

TABLE 3.1. For the Advertising data, coefficients of the least squares model
for the regression of number of units sold on T'V advertising budget. An increase
of $1,000 in the TV advertising budget is associated with an increase in sales by
around 50 units (Recall that the sales variable is in thousands of units, and the
TV variable is in thousands of dollars).
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Accuracy of a model: RSE

18

o The classical measure of fit is mean squared error, in linear

regression we use the Residual Standard Error

TL

RSS =) (yi — )"

1=1

RSE = \/ : RSS =

n—?2

irreducible error.

n—?2

e

\

= |t estimates the standard deviation of

Quantity Value
Residual standard error | 3.26

R? 0.612
F-statistic 312.1

T

Z(’yi — Ui)?

1=1

e errors, i.e., the

TABLE 3.2. For the Advertising data, more information about the
model for the regression of number of units sold on TV advertisir

Prof. Matteo Matteucci — Machine Learning - I

How far the model is
from least square line
on average

Compared to the
average sales
3,260/14,000 = 23 %
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Accuracy of a model: R?

19

o WVe might be interested in computing how much of the data
variance is explained by the model (“relative accuracy”)

~ TSS—RSS _ RSS

2
i TSS =1 TSS

T

RSS =) (yi—4)°

1=1

/
\

TSS = (i — 5

o An R? close to | means the data are almost perfectly explained
by our simple linear model, in our case it is just 0.612 ...

Quantity

Value

Residual standard error
RQ
F-statistic

3.26
0.612/

312.1

Is this due to the error
noise or to the fact that
data is not linear?

TABLE 3.2. For the Advertising data, more information about the least squares
model for the regression of number of units sold on TV advertising budget.

Prof. Matteo Matteucci — Machine Learning - I
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R? vs Correlation 20

o Recall the definition of correlation between two variables, it is a
measure of the (linear) relationship between them

Cor(X,Y) = Z”‘“lm_ )
Vi )2V 2 i (Yi — )
o In the simple univariate linear regression setting we have
r = Cor(X,Y)
R2 = 2

o In a multivariate case this does not holds and R? is used to
extend the correlation concept to multiple variables

IS5 —R55 RSS

2 — S
= TSS =1 1TSS
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What can we ask to the data? 21

Sales
Salas

0 50 100 200 300 0 10 20 a0 40 50 0 20 40 &0 80 100

T Radio MNewspapar

Is there a relationship between advertising budget and sales?

How strong is the relationship between advertising budget and sales?
Which media contribute to sales?

How accurately can we estimate the effect of each medium on sales?
How accurately can we predict future sales?

Is the relationship linear?

O O O O O O O

Is there synergy among the advertising media?
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Multiple linear regression ... the easy way 22

Simple regression of sales on radio

Coefficient Std. error t-statistic p-value

Intercept 9.312 0.563 16.54 < 0.0001

radio 0.203 0.020 9.92 < 0.0001
Simple regression of sales on newspaper

Coefficient  Std. error t-statistic p-value

Intercept 12.351 0.621 19.858 < 0.0001

newspaper 0.055 0.017 3.30 < 0.0001

TABLE 3.3. More simple linear regression models for the Advertising data. Co-
efficients of the simple linear regression model for number of units sold on Top:
radio advertising budget and Bottom: newspaper advertising budget. A $1,000 in-
crease in spending on radio advertising is associated with an average increase in
sales by around 203 units, while the same increase in spending on newspaper ad-
vertising is associated with an average increase in sales by around 55 units (Note
that the sales variable is in thousands of units, and the radio and newspaper

variables are in thousands of dollars).
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Multiple linear regression ... the right way 23

o Treating variables as they were independent

= does not tell how an increase in sales is obtained by changing
the three input variables

= the coefficients of each input did not take into account the
other input in the estimate process

* if input are highly correlated, using independent estimates can
be misleading

o Extend linear regression to consider multiple predictors
sales = [Jg + 31 X TV + 5 X radio + J3 X newspaper + €

o More formally we have the multivariate regression

Y = Bo+ B X1+ BaXo+ -+ BpXp+e
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Example: a two dimensional dataset 24
—_—

X1

FIGURE 3.4. In a three-dimensional setting, with two predictors and one re-
sponse, the least squares regression line becomes a plane. The plane is chosen

to minimaze the sum of the squared vertical distances between each observation
(shown in red) and the plane.
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Linear regression 25

o Linear regression parametric model, i.e., the population line
Y =80+ 51 X1+ BoXo + -+ 5, X, + €

= each parameters describes the average influence of the
associated input keeping all the others fixed

o The regression coefficient can be estimated by least squares fit

T
RSS = > (w—in)
i—1
T
- Z(Ui — Bo — P11 — Pawig — -+ — -*'313"“:513)2
1—=1

o To obtain the least squares predictor

sl

E} — %0 —|— .’%1;{?1 —|— :92;{& —l_ e _|_ J:.'}pi-'p
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Example: Advertising dataset 26
Coefficient ~ Std. error t-statistic p-value
Intercept 7.0325 0.4578 15.36 < 0.0001
TV 0.0475 0.0027 17.67 < 0.0001

Coefficient  Std. error t-statistic p-value

Intercept 2.939 0.3119
TV 0.046 0.0014
radio 0.189 0.0086
newspaper —0.001 0.0059

9.42 < 0.0001
32.81 < 0.0001
21.89 < 0.0001
—0.18 0.8599

TABLE 3.4. For the Advertising data, least squares coefficient estimales of the
maultiple linear regression of number of units sold on radio, TV, and newspaper

advertising budgets.

Prof. Matteo Matteucci — Machine Learning - I
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Example: Advertising dataset 27

Coefficient Std. error t-statistic p-value
Intercept 9.312 0.563 16.54 < 0.0001
radio 0.203 0.020 9.92 < 0.0001

Coefficient  Std. error t-statistic p-value
Intercept 2.939 0.3119 9.42 < 0.0001
TV 0.046 0.0014 32.81 < 0.0001
radio 0.189 0.0086 21.89 < 0.0001
newspaper —0.001 0.0059 —0.18 0.8599

TABLE 3.4. For the Advertising data, least squares coefficient estimales of the
maultiple linear regression of number of units sold on radio, TV, and newspaper

advertising budgets.

Prof. Matteo Matteucci — Machine Learning - I
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Example: Advertising dataset

28

Coefficient  Std. error t-statistic p-value
Intercept 12.351 0.621 19.88 < 0.0001
newspaper 0.055 0.017 3.30 | < 0.0001 |

Coefficient  Std. error t-statistic p-value
Intercept 2.939 0.3119 9.42 < 0.0001
TV 0.046 0.0014 32.81 < 0.0001
radio 0.189 0.0086 21.80 < 0.0001
newspaper ~0.001  0.0059 —018| 08599

TABLE 3.4. For the Advertising data, least squares coefficient estimales of the
maultiple linear regression of number of units sold on radio, TV, and newspaper

advertising budgets.

Prof. Matteo Matteucci — Machine Learning - I
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Correlation between attributes 29
TV radio  newspaper sales
TV 1.0000 0.0548 0.0567 0.7822
radio 1.0000 0.3541 0.5762
newspaper 1.0000 0.2283
sales 1.0000

TABLE 3.5. Correlation matriz for TV, radio, newspaper, and sales for the

Advertising data.
o Let consider correlations between input and
= |f we increase radio then sales increase

* Radio and newspaper are highly correlated

output variables

is some markets

* |f we increase radio then newspaper increases

o The increase on sales is correlate to the increase of newspaper is
due to radio, not to the fact that newspaper increases sales

= E.g., increase in sharks attacks are correlated to ice cream

sales at the beach ... because of people!

Prof. Matteo Matteucci — Machine Learning - I
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Computing linear regression coefficients (1)

o Computing the least regression fit can be done easily using linear
algebra calculus

o Recall here RSS(3) = (yi — f(x:))?

SO )

M-

1

(

|
M,:

1

i

o By taking into account that
= Xisan N x (p+1) data matrix
= yis N x | vector of desired output
= fisa(ptl) x | vector of model coefficients

o WVe can rewrite the Residuals Sums of Squares as

RSS(B) = (y — XB)" (v — XB)
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Computing linear regression coefficients (2) 3!

o We want to minimize RSS(3) = (y — X,S)T{y — X3)

o Let’s compute the RSS derivatives with respect to f§

ORSS
" — _oxXT (v —X3
R (y — X5)
92RSS
_ 9 T
03037 2XX

o Assuming X has full rank and X"X >0 we have just to compare
the first derivative to zero

ol 1 o XT(y —Xp3)=0 Pseudo
Tl AY — (XTx =12 |

o In matrix algebra terms the prediction becomes
y=X7=XXTX)"xTy
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Rephrase the questions 32

Sales
Salas

0 50 100 200 300 0 10 20 a0 40 50 0 20 40 &0 80 100

TV Radio MNewespapar

o Is at least one of the predictors X, ..., X, useful in predicting the
response?

o Do dall the predictors help to explain Y, or it is only a subset of the
predictors useful

o How well does the model fit the data?

o Given a set of predictor values, what response value should we predict,
and accurate is our prediction?

POLITECNICO DI MILANO
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Hypothesis testing on multiple parameters 33

o Is there any relationship between response and predictors?
HD : 31 = lﬁg — 3;_;. — 0
against
H, : at least one [3; 1s non-zero

o This test is performed using the F-statistics

P (TSS — RSS)/p n

TSS = S (4: — §)° I/E{SS/(” — || BSS = D (i — )’

1=1

o [f the linear model assumptions are valid
E{RSS/(n—p—1)} = o?

= when H, is true E{(TSS — RSS)/p} = o F~|
= when H_is true E{(TSS — RSS)/p} > 0° then F> |

POLITECNICO DI MILANO

Prof. Matteo Matteucci — Machine Learning - I




Example: Advertising dataset 34
Quantity Value
Residual standard error | 1.69
R? 0.897 F>1
F-statistic H70

TABLE 3.6. More information about the least squares model for the regression
of number of units sold on TV, newspaper, and radio advertising budgets in the
Advertising data. Other information about this model was displayed in Table 3.4.

o Fis well above |, a relationship exists!

o How much should be F to tell this
relationship exists?

F(an , df)

F Table fora= 05

dfl=1

161.45]199.50|215.71] 224 58] 230.16 | 23399 236.77 | 238.88 543241881

18.51 | 19.00 | 18.96 | 1925 | 19.30 | 15.33 | 19.354 19.37 | 11938 119.40

1013 ] 955 | 928 |l l oo L2 8 8.85 B1 B8.79

550 | 474 | 45 1 412 | 397 | 387 | 379 | 373 |55 Eaod

e e B
e e =4 2 G B ) 1 £ O O

13

Fi i

17
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Testing for subsets of variables 35

o We can test also a subset of the variables

Hyp : L"_i’p_qﬂ = "'-:gp—q—|—2 = ... = 3}:) — 0
o The novel F-statistics for the model fitted on g variables is

(RSSo — RSS)/q

F=—
RSS/(n—p—1)

o If we leave out one variable at the time (g=/) we obtain an
equivalent formulation of the t-statistics for single parameters

= F-statistics is more accurate than t-statistics computed for
each parameter since it corrects for other parameters

" |t tells you the partial effect of adding that specific variable to
the model
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Spurious correlations 36

o If the number of factors p is big, p-values might be tricky

= With p=100 and H, true, ~5% of the p=values (by chance) will
be lower than 0.05 and we might see 5 predictors associated
(by chance) to the response

= F statistic is not affected by the number of factors p in the

model

Coefficient Std. error t-statistic p-value
Intercept 2.939 0.3119 942 < 0.0001
TV 0.046 0.0014 32.81 < 0.0001
radio 0.189 0.0086 21.80 < 0.0001
newspaper —0.001 0.0059 —0.18 (0.8599

TABLE 3.4. For the Advertising data, least squares coefficient estimates of the
multiple linear regression of number of units sold on radio, TV, and newspaper
advertising budgets.
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Model fit in multiple variable selection 37

o As for the simple linear regression R? and RSE are used
o In multiple linear regression R? equals Cor(Y,Y)?

o An R?close to Imeans that the model explains a large amount of
variance in the data

Removing newspaper this goes
o The more variables in the model the from 0.8972 to 0.89719

Quantity Value
Residual standard error | 1.69
R? 0.897
F-statistic 570

TABLE 3.6. More information about the least squares model for the regression
of number of units sold on T'V, newspaper, and radio advertising budgets in the
Advertising data. Other information about this model was displayed in Table 3.4.

o In a multi variable scenario RSE becomes RSE — \/ L RSS.

n—p-—1
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Data visualization 38

t Sales

—*Radio

FIGURE 3.5. For the Advertising data, a linear regression fit to sales using
TV and radio as predictors. From the patiern of the residuals, we can see that
there is a pronounced non-linear relationship in the data. The positive residuals
(those wvisible above the surface), tend to lie along the 45-degree line, where TV
and Radio budgets are split evenly. The negative residuals (most not visible), tend
to lie away from this line, where budgets are more lopsided.
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Example: Credit Predictors. .« «« SR [\ Qe p——

Balance .’II :
5 SIHS 8
In the Credit dataset _ 1t :
= 7 quantitative nge ! ::
o . E TR
" 4 qualitative ; _
| |iomizs || Cards :
o Qualitative ones :
Education
= Gender :
= Student (status)
T | | L ] ] | 2 2 2
= Status (marital) I Al .r.l.ilu: | A ||& ._
" Ethnicity s il e | 1L
Caucasian ) —— —
* African American e bl ||| ™ " || Ratng [3
, i g /
* Asian 0 %0 1500

T T T T
6 8 50 100 120 200 800 14000

FIGURE 3.6. The Credit data set contains information about balance, age,
cards, education, income, limit, and rating for a number of polential cus-

tomers.
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Qualitative Predictors (Two Levels) 41

o Qualitative predictors with Two Levels can be coded using

Dummy Variables
1 if 2th person is female

Lq = e :
0 if 2th person is male,

o This results in a “double” model for regression

_f | Bo + [1+ € if 2th person is female
Y; = ._.-'3.3. + Bix; +€; = _, o '
Bo + €; if 2th person is male.
Average balance Average difference of balance
among males between males and females
Coefficient  Std. error t-statistic p-value
Intercept 509.80 33.13 15.389 <0
gender [Female] 19.73 46.05 0.429 0.6690
N—

TABLE 3.7. Least squares coefficient estimates associated with the regression of
balance onto gender in the Credit data set. The linear model is given in (3.27).
That is, gender is encoded as a dummy variable, as in (3.26).
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Other Coding for Two Levels 42

o Other possible coding can be devised for Dummy Variables

1 if 7th person is female
L = _ e :
—1 if ¢th person is male

o In this case the model becomes

__ __ Bo + 31 + € if 7th person is female
yi = Po+ Giri +6, =9 e .
Bo — B1 + € if ¢th person is male.
Average balance \ Amount of salary females

are above the average and
males are below ...

o No significant impact on the regression output, but on the
interpretation of the coefficients ...
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Qualitative Predictors (More Levels) 43

o More than 2 levels are handled by using L-1 dummy labels

S 1 if ith person is Asian
hie i 0 if 7th person is not Asian,
f _
L 1 if 7th person is Caucasian
e 10 if ith person is not Caucasian.

o This again results in a “multiple output” model

Average difference between
African Americans and Asian

r i ' L] . ™ #
Bo+1+€; if ith person is Asian

Yi = Bo+Pirrii+P2ri2+€ = § Po+P2+€; if ith person is Caucasian

Bo-+€; if 7th person is African American
Average balance for Average difference between
African American African Americans and Caucasians

POLITECNICO DI MILANO
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Qualitative Predictors (More Levels) 44
Coefficient  Std. error t-statistic p-value
Intercept 531.00 46.32 11.464 < 0.0001
ethnicity[Asian] —18.69 65.02  —0.287 C0.7740D
ethnicity[Caucasian] —12.50 H6.68 —0.221 0.8260

TABLE 3.8. Least squares coefficient estimates associated with the regression
of balance onto ethnicity in the Credit data set. The linear model is given in
(3.30). That is, ethnicity is encoded via two dummy variables (3.28) and (3.29).

o This again results in a “multiple output” model

The non coded level is
defined baseline

KILC)JD—F.L
Yi = Bo+Pirrii+P2xio+€ = § Po+ P2

\,SD%—E.I-_ if 7th person is African American

o F-statistics should be used instead of p-values F-statistics
H[) : 31 — 32 — () p-value 0.96

+e€; if ith person is Asian

if 7th person is Caucasian
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Variables Interactions (or Sinergies) 45

o So far the linear regression model has assumed
" Linear relationship between predictor and response
= Additive relationship between predictor and response

o What if allocating half the budget to TV and Radio would increase the
sales more than butting it all on one of the two?

+ Sales

The “slope” of TV
Increases because of an
Increase in radio budget

This effect in marketing
IS known as sinergy

*Radio
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Variable Interactions (continued) 46

o Let consider the classical Linear Regression model
Y = 080+ 81X7 + G2Xg + €

= An increase in X| of | unit increases Y on average by /3, units

= Presence or absence of other variables does not affect this

o WWe can extend the previous model with an interaction term

Y = '}[] + 51X + G2 X9 + _-"33)(1 Xo + €

: . . . One variable affects other
= this translates in a “linear model variables influence

Y = _30 + (_31 _33}1?2)}{1 -+ .D-}Q }{2 -+ €
— _30 —+ _{81 }{1 — '3 2 )fg + €
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Example: Interaction between TV and Radio 47

o WVe can imaging some interaction in TV and Radio Advertising

sales = [p+ 51 X TV+ B2 X radio 4 33 X (radio X TV) + €
= (g + (1 + B3 X radio) X TV + 35 X radio + €.

= The interaction term is the increase of effectiveness of TV
advertising for one unit of Radio advertising

= p-value suggests this interaction to be significant

= R2increases from 89.7% to 96.8% (69% of missing variance)

Coefficient  Std. error t-statistic p-value
Intercept 6.7502 0.248 27.23 < 0.0001
TV 0.0191 0.002 12.70 < 0.0001
radio 0.0289 0.009 3.24 0.0014
TVXradio 0.0011 0.000 20.73 < 0.0001

TABLE 3.9. For the Advertising data, least squares coefficient estimates asso-
ciated with the regression of sales onto TV and radio, with an interaction term,

as in (3.35).
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Interaction in Qualitative Predictors

48

o WVe can check for interactions with qualitative predictors

balance;

Bo + 1 X income; +

1400

1000

Balance

200 600
I

! B9 + B3 X income; if student

if not student

Without
Interaction

I
50

I
100

Is this term
2 , »
MS|gnlflcan:tw income; if student
Bo 4+ 1 X income; 1f not student
§ | =— student
- non-student
: §—
= —
I |
[y
.-
2 _|
| N
150 : ! 50 100 150
With
Interaction Income

Income
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Example: MpG Polynomial Regression 49
D —— Linear
= [Degree 2
— Degree 5
El’ —
8 o
=
9

150 200

Horsepower

FIGURE 3.8. The Auto data set. For a number of cars, mpg and horsepower are
shown. The linear regression fit is shown in orange. The linear regression fit for a
model that includes horsepower? is shown as a blue curve. The linear regression
fit for a model that includes all polynomaials of horsepower up to fifth-degree is

shoun in green.
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Non Linear Fitting 50

o WWe can use Polynomial Regression to accomodate non linearity
mpg = 3y + 31 X horsepower + 3y X hGI‘EEp{}WBI‘E + €

= |t is still a linear fitting problem !!!!

= A 5% grade polynome seems too much, but the quadratic
term is statistically significant

Coeflicient Std. error t-statistic p-value
Intercept 56.9001 1.8004 31.6 < 0.0001
horsepower —0.4662 0.0311 —15.0 < 0.0001
horsepower” 0.0012 0.0001 10.1 < 0.0001

TABLE 3.10. For the Auto data set, least squares coefficient estimates associated
with the regression of mpg onto horsepower and horsepower=.
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Potential Problems in Linear Regression 51

o A number of possible problems might be encountered when
fitting the linear regression model.

* Non-linearity of the data

* Dependence of the error terms

* Non-constant variance of error terms
= Qutliers

" High leverage points

= Collinearity

In practice, identitfying and overcoming these problems is as much an
art as a science. Many pages in countless books have been written on this
topic. Since the linear regression model is not our primary focus here, we
will provide only a brief summary of some key points.
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Non Linearity of the Data 52

o [f the linearity assumption does not hold, the conclusions drawn
might be (at least) inaccurate ... check residual plot!

Residual Plot for Linear Fit Residual Plot for Quadratic Fit
QL -
223 234
w o 330 = 323
- 334
=
= _ | — |

5
5
I

0
0

Residuals
Residuals

— 155

-15 —-10 =5
| | |
/1 5 10 -5

I I I I
15 20 25 30 35

I I I I I I
5 10 15 20 25 30

Fitted values

Try to use non linear
FIGURE 3.9. Plots of residuals versus predift|transformations of the predictor
data set. In each plot, the red line is a smooth fi (log X, X2, sgrt(X), ...)
it easier to identify a trend. Left: A linear redrbssromormpgomrmorsepower——

strong pattern in the residuals indicates non-linearity in the data. Right: A linear
regression of mpg on horsepower and horsepower>. There is little pattern in the

residuals.
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Dependence of the Error Term

53

o Errors are supposed to uncorrelated otherwise standard errors

would underestimate the true erro

rs ... tracking phenomenon
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FIGURE 3.10. Plots of residuals from simulated time series data sefs generated
with differing levels of correlation p between error terms for adjacent time points.
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Non Constant Variance of Error Term 54

o Linear Regression assumes no heteroscedasticity in the noise
Response Y Response log(y)

15
F
0.4

S

10

Residuals
Residuals

=10

-5
1
-0B -06 -04 -02 00
]
]
= f

&1
437

[ [ [ [ | [ | [ [ | [
10 15 20 25 30 2.4 2.6 2.8 3.0 3.2 3.4

Fitted values Fitted values

FIGURE 3.11. Residual plots. In each plot, the red line is a smooth fit to the
residuals, intended to make it easier to identify a trend. The blue lines track the
outer quantiles of the residuals, and emphasize patterns. Left: The funnel shape
indicates heteroscedasticity. Right: The predictor has been log-transformed, and

there is now no evidence of heteroscedasticity.
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Presence of outliers 55

o An outlier is a point that is too far from its prediction
= Might be due to error in data collection (just remove it)

= Might be due to some missing predictors (revise the model)

A0 o 200
L] -
o
o
— L1 T .a =
o a
N, o ER =
z @0 o B oo
o T O o = Qo o
I T~ oty ="~ T & 0 o O
” EQ%JDE 5 . _ﬁﬁ‘)@cﬂ’hﬂ
- o o 2 o o off e o~ g
T 4o o © o e
I | I I | | I | | I I | I | |
2 4 0o 2 2 0 2 4 B 2 0 2 4 B
X Fitted Values Fitted Values

FIGURE 3.12. Left: The least squares regression line is shouwn in red, and the
regression line after removing the outlier is shown in blue. Center: The residual
plot clearly identifies the outlier. Right: The outlier has a studentized residual of
6; typically we expect values between —3 and 3.
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High Leverage Points 56

o High leverage points have unexpected values for a predictor

w o el
o B T
o =R Mo
@
g
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&
B S
L 1]
=
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T &
[
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000 Q05 040 0415 020 025
X Xy Leverage

FIGURE 3.13. Left: Observation 41 is a high leverage point, while 20 iz not.
The red line is the fit to all the data, and the blue line is the fit with observation
41 removed. Center: The red observation is not unusual in terms of its X1 value
or its Xo value, but still falls outside the bulk of the data, and hence has high
leverage. Right: Observation 41 has a high leverage and a high residual.

o Leverage statistics (between |/n and |, average (p+1)/n)

ho_ 1 (z: — @)?
RS S o
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Colinearity 57

o Some factors might be highly related so it might be difficult to
separate their effects

w  —
o 218
e \ )
T /! / 21.25.
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FIGURE 3.15. Contour plots for the RSS values as a function of the parameters
B3 for wvarious regressions involving the Credit data set. In each plot, the black
dots represent the coefficient values corresponding to the minimum RSS. Left:
A contour plot of RSS for the regression of balance onto age and limit. The
minimum value is well defined. Right: A contour plot of RSS for the regression
of balance onto rating and limit. Because of the collinearity, there are many

pairs (Plimits BRating) with a similar value for RSS.
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What can we ask to the data? 58

Sales
Salas

0 50 100 200 300 0 10 20 a0 40 50 0 20 40 &0 80 100

T Radio MNewspapar

Is there a relationship between advertising budget and sales?

How strong is the relationship between advertising budget and sales?
Which media contribute to sales?

How accurately can we estimate the effect of each medium on sales?
How accurately can we predict future sales?

Is the relationship linear?

O O O O O O O

Is there synergy among the advertising media?
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Wrap — up and Restart

O

O

O

O

O

Simple Linear Regression Model
Multi Variate Regression Model
Some Considerations in Regression Model

Feature subsect selection
= Best subset selection
= Stepwise selection

* Choosing the optimal model

Shrinkage methods
= Ridge Regression
* The Lasso
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Improved Linear Regression 60

o WVe can devise alternative procedures to least squares

* Improve prediction accuracy: if number of data is limited
(or p is big) we might have “low bias” but too “high variance”
(overfitting) and a poor prediction

* |Improve model interpretability: irrelevant variables, beside
impacting on prediction accuracy, make the model
unnecessary complex and difficult to interpret

o Several alternatives to remove unnecessary features (predictors)
= Subset Selection: selection of the input variables
= Shrinkage (or regularization): reduction of model variance

* Dimension reduction: projection on an input subspace
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L
Variable selection 6

o Select the variables which are really associated to the prediction
= Exhaustive exploration of model space (2F)
" Forward selection /

= Backward selection

. . If p=30 the number of possible
= Mixed selection models is 1.073.741.824

o Exhaustive exploration is unfeasible because of exponential
complexity

=Y =0 /_ Different possible metrics, e.g.,
=Y =B+ By * Xy Cp, AIC, BIC, adjusted R?

" Y =0+ B2+ X,

" Y=L+ fr* X1+ [ * X,
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Best Subset Selection 62

o Fit a least squares regression for any possible input combination
= A total of 2° need to be compared

" Best Subset Selection introduces a procedure to evaluate
them systematically

Algorithm 6.1 Best subset selection

1. Let Mg denote the null model, which contains no predictors. This
model simply predicts the sample mean for each observation.

2. For k=1.,2,...p:

(a) Fit all (*E) models that contain exactly &k predictors.

(b) Pick the best among these (E) models, and call it M},. Here best
is defined as having the smallest RSS, or

4|  Cross-validated

9 Q : rediction error!
3. Select a single best model from—among My. P efc 0 e 0

validated prediction error. ), (AIC). BIC. or adjusted R?.
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Example: Credit data best subset selection 63

P =
? - - —
® 3 - /
o = ‘
5 R? keeps increasing
{% g with used variables
E =I | [
3
% S RSS keeps decreasing
+ 4" . .
T 3 \\ with used variables
| _I_ - T - I - I‘ S [ | | | |
2 4 ] 8 10 2 4 6 8 10
Number of Predictors Number of Predictors

FIGURE 6.1. For each possible model containing a subset of the ten predictors
in the Credit data set, the RSS and R? are displayed. The red frontier tracks the
best model for a given number of predictors, according to RSS and R*. Though
the data set contains only ten predictors, the x-axis ranges from 1 to 11, since one
of the variables is categorical and takes on three values, leading to the creation of
two dummy variables.
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Forward Stepwise Selection 64

o Forward stepwise selection is a computationally efficient alternative
= Starts from an empty model with no predictors
" Adds one predictor at the time until “all are in”

" At each stage adds “most improving” variable

Algorithm 6.2 Forward stepwise selection

1. Let M denote the null model, which contains no predictors.
2. For k=0,..., p— 1:
(a) Consider all p — k models that augment the predictors in My
with one additional predictor.
(b) Choose the best among these p — k models, and call it M.

Here best is defined as having smallest RSS or highest 1?2

3. Select a single best model from among May,..., M, using cross-

validated prediction error, €, (AIC), BIC, or adjusted RZ.
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Forward Stepwise vs Best Subset Selection 65

o Forward Stepwise is a greedy approach
= Needs to fit |+p(p+1)/2 models instead of 2F
" |t can be used also when n < p (it will stop with k<n variables)

" |t does not “reconsider” its choices and thus might result in a
suboptimal subset of variables

# Variables | Best subset Forward stepwise

One rating rating

Two rating, income rating, income

Three rating, income, student rating, income, student

Four cards, income rating, income,
student, limit student, limit

TABLE 6.1. The first four selected models for best subset selection and forward
stepwise selection on the Credit data set. The first three models are identical but

the fourth models differ.
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Backward Stepwise Selection 66

o Backward stepwise selection is yet computationally efficient
= Starts from the model having all predictors

= At each stage removes the “least useful” variable

Algorithm 6.3 Backward stepwise selection

1. Let M, denote the full model, which contains all p predictors.

(a) Consider all £ models that contain all but one of the predictors
imm M., for a total of £ — 1 predictors.

(b) Choose the best among these k models, and call it Mj_;. Here
best is defined as having smallest RSS or highest R2.

3. Select a single best model from among My...., M, using cross-

validated prediction error, C), (AIC), BIC, or adjusted R?.

o Greedy as Forward Stepwise, but cannot be used when n <p

Prof. Matteo Matteucci — Machine Learning - I POLITECNICO DI MILANO




Choosing the Optimal Model (theory)

67

o Feature subset selection algorithms “optimize” the number of
features according to RSS and R?, but what about the test set?

o Several approaches estimate test error correct the training error

Strong statistical background
|

" = Mallows CP . /
C = — (RSS + 2J52
P ( T “TJ\

= Akaike Information Criterion
|
AIC = —5 (RSS + 2d5?)
no Y
= Bayesian Information Criterion

1,
BIC = — (RSS + log(n)d&*)—

d = number of predictors

52 = estimate of the
variance associated to
the complete model

Some constants omitted,
but proportional to C.

T
= Adjusted R?

Some constants omitted,
more stringent than C;

Adjusted R* =1 —

Prof. Matteo Matteucci — Machine Learning - I
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Example: Credit data feature selection 68
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FIGURE 6.2. C,, BIC, and adjusted R* are shown for the best models of each
size for the Credit data set (the lower frontier in Figure 6.1). Cp and BIC are
estimates of test MSE. In the middle plot we see that the BIC estimate of test
error shows an increase after four variables are selected. The other two plots are
rather flat after four variables are included.
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Choosing the Optimal Model (practice) 69

o We can use data itself to estimate the error on new data

" We can use an hold out set and perform validation

1213 i

!

7§22 13 91

FIGURE 5.1. A schematic display of the validation set approach. A set of n
observations are randomly split into a training set (shoum in blue, containing
observations 7, 22, and 13, among others) and a validation set {shoum in beige,
and containing observation 91, among others). The statistical learning method is
fit on the training set, and its performance is evaluated on the validation set.
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Choosing the Optimal Model (practice) 70

o We can use data itself to estimate the error on new data
" We can use an hold out set and perform validation

= We can use k-fold cross-validation

123 n
!

11765 47

11765 a7

11765 47

11765 47

11765 47

FIGURE 5.5. A schematic display of 5-fold CV. A set of n observations is
randomly split into five non-overlapping groups. Each of these fifths acts as a
validation set (shoum in beige), and the remainder as a training set (shoum in
blue). The test error is estimated by averaging the five resulting MSE estimates.
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Example: Credit data feature selection 71
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FIGURE 6.3. For the Credit data set, three quantities are displayed for the
best model containing d predictors, for d ranging from 1 to 11. The overall best
model, based on each of these quantities, 1s shouwn as a blue cross. Left: Square
root of BIC. Center: Validation set errors. Right: Cross-validation errors.
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Shrinkage Methods: Ridge Regression 72

o Ordinary Least Squares (OLS) minimizes

2
n

P
RSS = Z Yyi — Po — Z Bjri
j=1

1=1

o Ridge Regression minimizes a slightly different function
2

T

p p p
Y \wi—Bo—=) Bimij | +A) BF=RSS+A> 2
j=1 j=1

=1 1=1

= \ > 0 is atuning parameter to be estimated experimentally

* Shrinkage does hot apply to intercept, with centered variables
Bo=9=72 i1 Yi/n

= A, %7 is called shrinkage penalty

" as \ — oo parameters shrink to zero
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Example: Ridge Regression on Credit data 73
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FIGURE 6.4. The standardized ridge regression coefficients are displayed for
the Credit data set, as a function of X and ||B3]|2/]|3]|2.
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Ridge Regression vs. Ordinary Least Squares 74

o Ridge regression improves over OLS because of a reduced model
variance (i.e., a better bias-variance trade-off)

[=}
@
o
[Ty

o
e )

Mean Squared Error
20 30

10

2
0e]

=]
[Ty )

=]
=T

30

Mean Squared Error
20

10

(=]

p=45, n=50

0.2 0.4 0.6 0.8 1.0

18302/ 1181|2

FIGURE 6.5. Squared bias (black), variance (green), and test mean squared
error (purple) for the ridge regression predictions on a simulaled data set, as a

function of A and

BE\2/11B]l2. The horizontal dashed lines indicate the minimum

possible MSFE. The purple crosses indicate the ridge regression models for which
the MSFE is smallest.
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Shrinkage Methods: The Lasso 75

o Ridge regression is much more efficient than subset selection,
however it will use all the p input

o The Lasso is an alternative to shrink regression coefficients

2

T

p p r
j=1 j=1 7=1

1=1

= The llBllt = 2_ 5] forces coefficients to be exactly zero
* The Lasso performs variable section

* Models are simpler, sparse, and easy to interpret
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Example: The Lasso and the Credit data 76
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FIGURE 6.6. The standardized lasso coefficients on the Credit data set are
shown as a function of X and ||B%]|1/)|3]1.-
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Another interpretation of shrinkage 77

o WVe can show that Ridge regression solves the problem

2
n P P
mmgmze Z i — Bo ZJJ Tij > subject to Z__._ﬁj < s
1=1 1=1 1=1
/
o While The Lasso solves the problem
2
n p p
111111&}31112(9 Z y; — Bo — Z B > subject to Z 13;] <'s
1=1 71=1 7=1
/
o They approximate the Best Subset Selection
2
n p p
mmgmze Z y; — Bo — Z Bixij > subject to ZI (B; #0) <'s
1=1 71=1 7=1
J
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How can Lasso select variables? 78

B

FIGURE 6.7. Contours of the error and constraint functions for the lasso
(left) and ridge regression (right). The solid blue areas are the constraint re-

gions, |B1| + |B2| < s and Bf + B3 < s, while the red ellipses are the contours of
the RSS.
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Lasso vs. Ridge Regression (p=45 all useful) 79
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FIGURE 6.8. Left: Plots of squared bias (black), variance (green), and test MSFE
(purple) for the lasso on a simulated data set. Right: Comparison of squared bias,
variance and test MSE between lasso (solid) and ridge (dashed). Both are plotted
against their R? on the training data, as a common form of indexing. The crosses
in both plots indicate the lasso model for which the MSE is smallest.
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Lasso vs. Ridge Regression (p=2 only useful) 8o
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FIGURE 6.9. Left: Plots of squared bias (black), variance (green), and test MSE
(purple) for the lasso. The simulated data is similar to that in Figure 6.8, except
that now only two predictors are related to the response. Right: Comparison of
squared bias, variance and test MSE between lasso (solid) and ridge (dashed).
Both are plotted against their R* on the training data, as a common form of
indexing. The crosses in both plots indicate the lasso model for which the MSE is

smallest.
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Bayesian interpretation 8l

o The posterior for the coefficients can be written as
p(BIX.Y) x f(Y|X,B)p(B|X) = f(Y|X. B)p(5)

o Assuming the usual linear model
Y=00+X101+...+ X0, +¢€
* Having independent errors drawn from a normal distribution
o If we assume p(5) = [[;_, 9(53))
* |n Ridge regression we assume a Gaussian prior with zero
mean and variance being a function of lambda

* |n Lasso we assume a double-exponential (Laplace) with zero
mean and scale parameter a function of lambda
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Ridge and Lasso priors ... 82
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FIGURE 6.11. Left: Ridge regression is the posterior mode for 8 under a Gaus-
sian prior. Right: The lasso is the posterior mode for 3 under a double-exponential
pPrior.
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Selection of the tuning parameter (Ridge) 83
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FIGURE 6.12. Left: Cross-validation errors that result from applying ridge
regression to the Credit data set with various value of A. Right: The coefficient
estimates as a function of A. The vertical dashed lines indicate the value of A

selected by cross-validation.
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Selection of the tuning parameter (Lasso) 84
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FIGURE 6.13. Left: Ten-fold cross-validation MSE for the lasso, applied to
the sparse simulated data set from Figure 6.9. Right: The corresponding lasso
coefficient estimates are displayed. The vertical dashed lines indicate the lasso fit

for which the cross-validation error is smallest.
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85

Recall the Fundamental Picture
Closest fit in population

Realization |
i‘.\ 'I
N | Closest fit
Truth N MODEL
. A SPACE
Model hmsff””\ |
Estimation Bias ' __ Shrunken fit
Estimation Z N
Varance
RESTRICTED

MODEL SPACE
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