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Sensors and Perception
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Perception
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Acquisition

 Can be performed at different points in the 

processing chain 

– one can have analog processing before A/D 

conversion

 Obtaining measures in a convenient format

– Analog/Digital conversion

 Communication with a specific sensor, 

data reception

4
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Filtering /pre-processing

 Filtering – noise reduction

 “outliers” elimination

 Selection of frequency range of interest

 Recalibration

 Changing of data representation

– ex: coordinate transformation

 Basic processing

– ex: vision segmentation

 Depending on the sensor

5
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Sensor fusion

In general it is necessary to combine information from multiple sensors 

– Noise

– Limited accuracy and precision

– Reliability  (redundancy)

– Limited perception of the environment

 Incomplete description (types of measures, occlusions ...)

– Cost

 It can be more efficient combine multiple sensors than to use a more 

expensive one

6

Sensor fusion – Combine multiple sensor measures in coherent information 

Sensorial integration – Use information from multiple sensors to do something useful
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Sensor fusion

 Combine data from different sources

– Multiple sensors

– Different physical space

– Different times

 Methods incorporating uncertainity in the sources

– Discrete probabilistic filters

– Neural networks

– Kalman filtering (EKF, UKF etc)

 Coherent result – “virtual” sensor data

7
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Interpretation

 Depends on the task

 Usually requires a previous environment model (“match”)

 Extraction/detection of relevant information from data (maximum, 

minimum, temporal events)

 Higher abstraction building (ex: topological localization)

 Clustering, pattern recognition , machine learning

8
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Sensor Classification

 Proprioceptor/exteroceptor

– Proprioceptor – internal state measurement (battery level, 

wheel  velocity, etc)

– Exteroceptor – external quantity measurement, environmental

(distance to objects, external temperature etc)

 Active / Passive

– Active – energy emitting to the environment (sonar, radar)

– Passive – only receive energy: vision

 Contact / Contactless

 With or without physical contact

9



Perception sensors in marine 
environment
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Radar

 Reflection of radio pulses and microwaves

 Obstacle detection and mapping

 Widely used in marine navigation

 Large dimension and weight

 Sensitive to atmospheric conditions

 Multiple levels of information (from simple 

echo’s and target tracking)

12
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Radar

Echo return of L shaped pier 

from RADAR mounted on ROAZ 

ASV  (in La Spezia, Italy)

Visible returns from boats 

stationed behind pier

ROAZ (Radar center)

13



Underwater sonar sensors
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 Ranging/bathymetric
– Altimeter

– Subbottom profiler

– Sonar profiler (mechanic)

– Multibeam sonar

– SWATH bathymetric sonar (interferometric)

 Imaging
– FLS

– Sidescan sonar

– 3D imaging/ranging (CodaOctopus Echoscope)

 ADCP / DVL

15
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Underwater acoustics

 Sound – primary source of information for sensing 

underwater

 Underwater acoustics depends on multiple factors

– Sound velocity – salinity, temperature

– Multipath, shallow water and reflections on surface

– Ambient noise

– Interference

16
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Single Beam Echosounders

 Sonar emits a pulse and detects echo 

from target, range determined by time of 

flight

 Range

– FAT (First return Above Threshold) 

– Maximum return

– Echo profile (range binning)

 Used  for depth soundings or for obstacle 

ranging (limited application)

 Single narrow beam (usually less than 

3º)

 Integrated AHRS (Heading, Pitch, Roll)

 Small size

 Typically with serial interface

17

footprint

[ISA500]

www.ImpactSubsea.com
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Multibeam echosounder

 Array of transducers emits and receives 

a fan shape beam to the seabed

 Acquire depth scans, measuring the 

signal travel time along multiple 

directions

 Can also return the echo profile in each 

direction (with binning)

 Each beam varies from 0.5 to 3ª 

 Price highly dependent on angular and 

range  resolution (from ~30k€ for 3º to 

100/200 K€ for 0.5) 

18

swath width
beam
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Multibeam echosounder

 All beams grabbed simultaneously

 Resolution dependent on slant range

 Higher the altitude the lower resolution

 Higher frequencies give higher 

resolution but lower range

 Frequencies ranging from 500kHz to 

2.25MHz

19

swath width
beam
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Multibeam Sonar

20

Image from Teledyne Blueview (MB2250)
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Multibeam echosounder

 Depending on the required mission 

can be mounted either vertically or 

horizontally.

 Common arrangement looking down 

transverse to vehicle direction of 

motion to provide bathymetry data

 Different points on the sea floor 

provide returns at different angles

 Mechanically rotating solutions (for 

fixed position) with vertical beam 

provide wide horizontal coverage

– Ex: Blueview BV5000

21

Images from Teledyne Blueview
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Electronic actuated multibeam

 Multibeam with the possibility of 

electronically controlling the vertical angle of 

the beam pattern 

 Solid state tilting

 Provides almost 3D  by sweeping the vertical 

angle fast

 Currently there is no commercial solution 

available (Tritech Eclipse no longer in 

production) 

22
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Mechanically rotating pencil 
beam profiller

 Rotating narrow beam

 Similar to a single echosounder but 

with a mechanical rotation of the 

transducer

 Narrow beam 1º-2º

 For distance measurement and 

profilling

23

Images from Imagenex

www.imagenex.com
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Forward Looking Sonar (FLS)

 Imaging sonar

 Sonar “illuminates” the environment and 

receives multiple vertical wide and horizontal 

narrow beams

 For each beam a complete echo profile is 

returned

 All beams acquired simultaneously 

 Real-time imagery

 Applications: Search and Rescue (SAR), 

Obstacle Avoidance, Target Tracking and 

Subsea Monitoring and Inspection 

24

[Germini 720i] 

www.tritech.co.uk[Germini 720i] 

www.tritech.co.ukImage from Far Sounder

www.farsounder.com.uk
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Forward Looking Sonar (FLS)

 FLS does not provide distance 

information

 Return echo at a given distance (time 

delay) can be anywere within the in 

the wide angle of the beam

 Can also be mounted in vertical 

configuration (ex: for lateral looking)

25

Didson sonar from Soundmetrics

Images from Imagenex

www.imagenex.com

Image from Far Sounder

www.farsounder.com.uk
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Forward Looking Sonar (FLS)

 Single or double frequency

 High quality imaging fro higher frequencies (ex: 

Aris Explorer 3000 at 3MHz)

 Range resolutions up to 3mm

 Ranges from 5m (Aris 3000) to 100m( BV 

M900)

 Beam width typically 1º (or less)

 Horizontal span from 45º to 90º

 Models with two crossing beam patterns (for 

AUV installation)

 Typical example Tritech 720i
– 720 kHz operating frequency

– Number of Beams: 256

– Swathe: 120º

– Vertical Beamwidth: 20º

– Range Resolution: 8mm

26

Teledyne Blueview M900
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Mechanically scanned imaging sonar 
(MSIS)

 Mechanically rotated transducer that 

scans a 2D area

 Low scanning rate

 Vehicle motion produces distortion 

in scan (different directions taken at 

different times)

 Good for obstacle detection

 Example Tritech MSIS
– Vertical wide beam (20º - 40º)

– Narrow horizontal beam (1.5-3º )

– Continuous 360º rotation with 0.45º of 

mechanical resolution 

– Range: 100 m (650kHz) – 300 m (325kHz)

27

[Super Seaking] 

www.tritech.co.uk

Image from [1]

[1] David Ribas, “Underwater SLAM fro structured environment using an imaging sonar”, Ph.D. Thesis, Univ. Girona, 2008
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MSIS

28

Image from [1]

360º scan in a structured environment
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Motion distortion

29

Image from P. Ridao “An introduction to Applied Underwater Robotics”, Bts 09
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Motion distortion

30

Image from P. Ridao “An introduction to Applied Underwater Robotics”, Bts 09
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Subottom profilers

 Echo profile from material frontiers under the sea bottom

 System is capable of penetrating the seabed and 

highlighting structural differences that are hidden from 

view

 Applications: Site survey, Route survey, Pipeline 

crossing, Wreck search and Object detection;

 Seaking beamwidth: 4.5º (20kHz) and 4º (200kHz)

31

[Seaking SBP]

www.tritech.co.uk
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Subbottom profiling

 Difficult to interpret data

 Echo returns very sensitive to 

multipath and sonar parameters

 Sonar does not identify material only 

reflective frontiers (that occur with 

changing of rock density 

32

Subbottom profile of area in river performed 

with ROAZ autonomous surface vehicle
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Acoustic cameras
 Projector sonar insonifies the 

environment

 A 2D receiver array receives echoes 

from multiple beams

 2.5D snapshot (similar to a ranging 

ToF camera)

 Currently only one commercially 

available sensor: CODA Octopus 

Echoscope

 375KHz / 610 KHz 

 2D multibeam

– 2D range snapshot

– 128x128 beams

– 3cm range resolution

– FAT or Max return

33

Projector element

Receiver array
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3D Acoustic cameras

34
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Sidescan sonar (SSS)
 Sonar “illuminates” the environment and 

measures signal return in two transverse 

narrow beams

 Most common imaging sonar

 Typical configuration with two transducers

– Portboard side

– Starboard side

 Does not measure signal travel time

 Measures energy of the return, the full 

continuous echo

 By stitching several scans, a photo-like acoustic 

image of seafloor can be built

 Motion is required in order to obtain an image

35
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Sidescan Sonar 

36
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Sidescan Sonar

37

Images from Imagenex

www.imagenex.com
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SSS image interpretation

 Bottom reflectivity appears 

as bright spot 

 Sensitivity to motion 

(orientation, disturbances)

38

Images from  IMAGENEX
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SSS image interpretation

39

Good orientation and speed control

Rocks on the sea floor

Near rocks less depth

Sand bottom

Acoustic noise (echosounder interference)

Homegeneus reflection 

High gain – sandy bottom

Surface waves  (both in the bottom profile 

and in the surface return

Wave ondulation

Image distorted
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Sandy sea bottom with

Rock formations

Loss of signal (vertical black lines)

Rocks reaching surface

Motion distortion



Alfredo MartinsUnmanned Autonomous Vehicles in Air, Land and Sea |  Polit. Milano 2016

Syntetic aperture sonar - SAS

 Uses vehicle motion to “replicate” effect of having a very large transducer array (larger 

than the vehicle itself)

 Combines successive pings at known positions along track in order to provide a virtual 

larger array

 High resolution with relatively low frequency, thus also higher ranges

 Expensive

 Relatively large
– Kraken Aquapix

– Konsgberg HISAS

41

Pulse positions
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Interferometric SAS

42

 Combined bathymetric scan with imaging

– Interferometric

– Uses time difference of arrival from bottom echo 

with 2 vertical separated transducers
 pings

R. Hansen et al. “Signal Processing for AUV based Interferometric Synthetic Aperture Sonar”, IEEE Oceans, 

Image from [1]

Image from 

http://www.jams

tec.go.jp/e/abou

t/press_release/

20090806/
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SAS Sonar

 SAS dependent of quality of 

navigation

 Relative pulse positions must 

be known with precision

 DPCA / Displaced Phase 

Centre Antenna

– Phase measurements to 

provide inter-ping navigation

43
R. Hansen et al. “Signal Processing for AUV based Interferometric Synthetic Aperture Sonar”, IEEE Oceans, 

Image from [1]
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Synthetic Aperture Sonar - SAS

 High resolution

 HiSAS 1030

– Freq. 50-120kHz

– Along track, Across track resolution

– Max range @ 2m/s (swath 400m)

– Area coverage rate 2km2/h

44

Images from Kraken 

AquaPix Datasheet

www.krakernsonar.com
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Doppler Sonars

 Use Doppler frequency shift to measure relative velocities

– Frequency shift of a wave  for observer moving relative to its 

source

– Higher frequency on approach and lower in separation

 Sonar emits at frequency and detects frequency shift, thus 

measuring velocity towards target

 Target can be either the sea-bottom or other infrastructure or 

particles in suspension on water (ADCP)

45
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DVL – Doppler Velocity Log 

 With bottom tracking for navigation

 2 types :

– Multiple beam (4 beams or more)

– Phased array (beam forming)

 Multiple beams allow for determination of the 3 

components of the instrument velocity (the doppler effect 

only provides relative velocity in de direction of each 

beam)

 Available OEM versions for AUV integration (transducers 

separated from electronics)

 Dual head options

 Return also altitude and one water cell velocity

 DVL (bottom tracking, <100 m, typically) + IMU
– Accuracy 0.1-0.5% travelled distance

46



Alfredo MartinsUnmanned Autonomous Vehicles in Air, Land and Sea |  Polit. Milano 2016

ADV -Acoustic single cell water velocimeter

 Returns water velocity in a small single cell

 In robotic vehicles used for water relative velocity  

measurement

 Turbulence measurements

 High precision

 High measurement rate

47

www.nortek-as.com
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ADCP – Acoustic Doppler 
Current Profiler

 DVL with return of velocities of multiple cells 

in the water column (water current profile)

 Can be an option in navigation DVL 

instruments

 Usually mounted on the sea floor pointed 

upwards

 Surface tracking allows for wave 

measurement and surface current

48

www.nortek-as.com



Imaging

49
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Cameras

 Provide high resolution images

 Robust landmark detection can be performed

 Light quality degrades underwater

– Chromatic distortion

– High sensitivity to turbulence and backscatter

51

a) diffusion   b) flickering    c) non-uniform lighting

Image from [1]

[1] J. Aulinas, M. Carreras et al. “Feature extraction for underwater visual SLAM, IEEE OCEANS Europe, 2011



Alfredo MartinsUnmanned Autonomous Vehicles in Air, Land and Sea |  Polit. Milano 2016

Stereo Vision

 Stereo vision underwater has limited 

applications

 Old experiments underwater 

– Jean de Wouters d’Oplinter, 1948 with tests in 

Mdeiterranean sea

– Rebikoff, 1954 used stereo for mapping 

archeological sites on manned vehicle Pegasus

 Standard application of stereo techniques 

52
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Hyperspectral cameras

 Acquire data along the electromagnetic 

spectrum, from ultraviolet to long-infrared 

 When all data is associated, it can be 

generated a hyperspectral image cube, 

which consists of a set of images layered 

on top of one another.

 Used off-water for material analysis and 

identification (ex: agriculture, mining)

54

[1] Michael Doneus, Geert Verhoeven, Clement Atzberger, Michael Wess, Michal Rus, “New ways to extract archaeological 

information from hyperspectral pixels”

Image from [1]
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Hyperspectral Cameras –
Tunable Spectral Filter

 Acquire 2D image at a time, wherein 

each 2D image corresponds to a 

wavelength

 So, only when all wavelength (2D 

image) have been acquired, it becomes 

possible to obtain the spectrum of each 

pixel. 

55

[1] http://www.gildenphotonics.com/hyperspectral-imaging-/hyperspectral-imaging-technology.aspx .
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Hyperspectral Cameras - Pushbroom

 Allows full spectral data simultaneously, 

with spatial line scanning over time

 The camera acquires all spectral 

information exactly at the same time, 

being insensitive to instrument/sample 

movement

 For each line, obtains the spectrum for 

each pixel

56

Image from [2]

Image from [1]

[2] Volent, Z., et al. "Kelp forest mapping by use of airborne hyperspectral imager." Journal of Applied Remote Sensing 1(1), 2007.

[1] http://www.gildenphotonics.com/hyperspectral-imaging-/hyperspectral-imaging-technology.aspx .
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Underwater Hyperspectral
Imager (UHI=

 Pushbroom camera

 Airborne sensor (not really 

underwater!!!!)

 Similar approach as system used in 

Sunny project

 Kelp algae studies

 Underwater hyperspectral system under 

development for mining studies 

 Some commercial developments (ex: 

Ecotone UHI)

57

Images from [1]

[1] Volent, Z., et al. "Kelp forest mapping by use of airborne hyperspectral imager." Journal of Applied Remote Sensing 1(1), 2007.
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Structured light

 The use of pure visual perception methods is limited in underwater environments.

 One way of overcoming such limitation is by using line laser projector.
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Structured light
 Current high degree of application in 

microbathymetry and close range profiling

 Common use of simple dual dot laser 

projectors in teleoperated ROV missions to 

provide scale in imaging for the user

 Blue and green laser 

 Very sensitive to water turbidity 

 Excellent precision when comparing with 

sonar based sensors

 Comercially available solutions

59
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Underwater LIDAR

 Standard LIDAR in water environment

 Distance measurement by time of 

flight

 Technology in water still in its infancy

 Comercial solutions have been 

proposed (3D at Depth)

 Suffers from the same limitations from 

structured light and more expensive

60
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Commercial Underwater Laser Systems

 3D at Depth (lidar)                   Seatronics Ag2R 

UL5-500

61

Newton Labs M210UW

https://youtu.be/kjSuwofgt_g



Navigation

68
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Navigation problem

 In relation to a pre-defined reference frame

– Inertial frame or fixed in the world (NED, ECEF)

– Local reference frame

 Relative localization

– In relation to temporary frame (ex: landmark)

– In relation to mobile reference frame

 Topology

– Order relation with environment elements

 Semantic

69

Where am i?
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Navigation problem

 Required information depends on application

– Position and orientation (relation between {b} and {n}

– Velocity information (linear, angular}

– Qualifiers (ex: on the right of, inside etc)

– Deterministic or probabilistic (more useful, in this case some measure 

of uncertainty is required) 

70

Where am i?

Estimate position, orientation and velocity of the vehicle

{n}

{b}

?
(R, T, v ,w)
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Localization methods

 Dead reckoning – relative measurements

– Inertial navigation

– DVL

 Absolute measurements

– Active beacons (VLS, GPS, LBL, …)

– Landmark recognition

 Combination of both relative and absolute measurements

71
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Some problems in navigation…

 Errors in sensors (noise, lack of precision, accuracy, drift, bias…

 Errors in robot model

 Errors in world model (map, ….)

 Dificult to obtain “exact location”

 Even approximate location (even with large errors) can be useful

 Useful to have measures on the confidence of determined information

72

Deterministic models do not deal with uncertainty, thus:

Probabilistic models
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Probabilistic approach

 Information represented in a probabilistic way

 Takes into account uncertainty in the sensor 

measurements, model of environment and of the robot

 Allows to integrate in a coherent way information from 

different sensors

 Representation more suitable to reality

73
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Probabilistic approach

 Information represented by probability distributions

– PDF Probability Density Functions (continuous, discretization's …)

– Significative samples…

– Statistical moments (mean, covariance, …)

 Random variables instead of deterministic

 Robot and sensor models incorporate noise characterization 

measures

 Integration and probabilistic calculus

74
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Example[1]

bel(x) – “belief” PDF in all possible locations, best estimate or robot location in a given moment

p(z|x) – conditional probability of z (measurements) given x (state)

75

Figure from [1]

[1] S. Thrun et al, “Probabilistic Robotics”, MIT Press, 

initial estimate

a door is observed

Conditional probability of 

observing a door is maximum 

when in front of one of them

A priori I can be any one of 

the 3, bel(x) represents this 

3 possibilities
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Example

76

another door is observed

robot moves to the right

Location estimation  

degrades again

After observing 2nd door 

incorporates information –

bel(x) has a large peak in 

2nd door – consistent with 

motion performed and 

observation

robot moves to the right

Location estimation is 

“attenuated” (uncertainty 

increase)
Prediction

Correction

Prediction
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Predict – Update cycle

 Allows to accommodate multiple hypotheses in conflict

 Predict- Correct cycle incorporates increases of uncertainty due to 

motion or passing of time as well as additional information given by 

observations

77

State predicted at instant 

k+1 given previous state
Corrected state at 

instant k+1

Markov process– Current process state contains all information required for future 

prediction (not needed to know all the precious history of the state
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Navigation in marine 
autonomous systems

 Surface systems
 GNSS

 INS

 Underwater robots navigation

– Absolute acoustic positioning systems

 SBL, LBL

 USBL

– Dead reckoning and sensor fusion solutions

 DVL

 INS

– Terrain based navigation and SLAM

78
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Surface systems

 GNSS – Global Navigation Satellite Systems (GPS, Glonass, Compass, 

Galileo) usually available and main localization mechanism for USVs

 Loran (Loran-C) – US original, low frequency radio beacon based navigation 

(trilateration), now almost substituted by GNSS systems

 GNSS + INS for 6DOF  and additional precision

– Many applications require precise orientation to be known (even when roll and 

pitch is not controlled), ex: bathymetry, visual target estimation.
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GNSS – Global Navigation Satellite Systems

 Geo-spatial positioning using time signals transmitted by satellites

 High precision synchronized satellite clocks allow for receiver to 

determine its position

 Standard regime, receiver needs at least 4 satellites (3 for position and 

one extra for the drift in receiver clock)

 Signal degradation due to poor geometry, reflection and multipath

 Multiple constellations

– GPS – USA

– GLONASS – Russia

– Galileu – Europe

– BeiDou - China
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Global Positioning System (GPS)

 Enables three-dimensional positioning and time 

synchronization to UTC time

 Civil GPS receivers can generate 3 types of 

measurements

– Pseudorange (PR) measurements

– Phase Measurements

– Doppler Measurements
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GPS-Pseudorange

 Each satellite transmits a unique ranging signal with embedded time 

information, C/A code

 By decoding the signal, receivers determine the time of transmission from 

the satellite

 Ideally (clocks synchronized), travel time multiplied by the speed of light 

provides the receiver/satellite range.

 In reality, clock biases exist, hence the word pseudorange

82

Considering only clock biases, pseudoranges are given by:

[1] Antonio Angrisano, “GNSS/INS Integration Methods”, 2010
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GPS- Pseudorange

 Other sources of error can exist

 Multipath can be a problem in the water surface

– Typical remedies are to shield the reflections in the 

base of antenna 

 In single point positioning expected accuracy 

around 10m

83

[1]“GNSS Precise Positioning with RTKLIB”, 2011

[2] Antonio Angrisano, “GNSS/INS Integration Methods”, 2010

Figure from [1]



Alfredo MartinsUnmanned Autonomous Vehicles in Air, Land and Sea |  Polit. Milano 2016

GPS – Phase Measurement

 Tracks the phase of the carrier frequencies (L1 or L2)

 Phase measurement multiplied by the carrier wavelength represents 

the satellite/receiver range.

 Satellite/receiver range is expressed in units of cycles of the carrier 

frequency

 Exists an ambiguity term representing the number of wavelength cycles 

(determined with help of a base station)

 Millimeter accuracy measurement
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GPS – Doppler Measurement

 Derivative of the carrier phase

 Represents the frequency shift caused by the relative 

receiver-satellite motion

 Multiplied by the carrier wavelength gives the derivative 

of the satellite/receiver range, used to compute the 

receiver velocity
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GPS Processing Techniques

 Differential GPS

– Static receiver – Base station

– Compared measuremnts to the moving receiver 

(Rover) to minimize system errors

 Ionospheric and tropospheric delay

 Clock Bias

 Ephmeris errors

– Can be used online or in pos-processing

86

Image from ]“GNSS Precise Positioning with RTKLIB”, 2011
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GPS Processing Techniques

 Real- Time Kinematic (RTK) GPS

– Uses phase measurements

– Base station helps to solve wavelength cycle 

ambiguity

– Reduces errrors:

 Atmospheric delays

 Internal receiver errors

 Attenuates multipath errors

– RTK requires 5 visible sattelites

– Milimeter accuracy
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Inertial Navigation Systems

 Dead reckoning navigation systems

 Inertial sensors

– 3 Accelerometers estimate linear motion

– 3 Gyroscopes estimate angular motion

 Unbounded position error growth

 Multiple levels of sensor integration

– IMU raw sensor outputs (accels. and angular velocities)

– AHRS – Attitude  Heading and Reference Systems (provide 

integration to provide heading or vertical direction)

– Full navigation solutions – INS

– Integrated GNSS-INS or (as in marine applications possible 

integration of DVL data, ex: IxSea Phins)
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INS working principles
 Initial INS systems used gyro-stabilized 

platforms
– High grade (navigation grade or strategic) still in this 

technology

 Most INS systems currently are strapdown
– Without moving parts

– Developments in MEMS coupled with widespread 

applications (ex: cellphones) pushed development

 Accelerometers measure specific force

 Gyroscope sensors usually fall into 3 

categories
– MEMS – oscillating micro devices detecting angular 

motion

– FOG – Fiber optic gyro

– RLG – Ring laser gyro

89

Figure from [1]

[1] image adapted from (Apollo Operations Handbook, LMA 790-3-LM), in P. Corke, “Robotics Vision and Control”, Springer, 2011

Novalabs IMU module

Kinematic acceleration

Gravitational acceleration
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Inertial Navigation Systems

90

Inertial sensors

(accel., gyroscopes)

Support 

electronics
Attitude 

computation

Navigation 

computation

Inertial measurement unit  - IMU

Attitude and heading reference system - AHRS

Inertial Navigation System - INS

iMAR iNAV-FMS-EXsens Mti-10 AHRS

Magnetometer

Analog Devices 

ADRXS610 gyroscope

ISEP embedded

IMU unit
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Fiber Optic Gyros

 FOG and RLG gyros measure rotation using the Sagnac effect

– Rotation causes the light path in a fiber optic coil or ring laser path 

to be longer in the direction opposite to the rotation

– Two light signals are “sent” to the path and the phase difference 

measures the motion

91

Image: “Ring laser gyroscope produced by Ukrainian 

"Arsenal" factory on display at MAKS-2011 airshow#, 

by James Nockson
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INS Mechanization

 Integration of the raw accelerations and angular velocities to provide 

position and orientation

92

[1] Y. Yoon et al “Real-time precision pedestrian navigation solution using Inertial Navigation System and Global Positioning System”, Advances in 

Mechanical Engineering 7(3) · March 2015

Figure from [1]
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Wide range in quality 

 From consumer to strategic

– Ex: embedded IMU with ~15º/hr

– Spacial FOG with ~1º/hr

– Phins ~0.1º/hr (0.6 naut

miles/hr)

 North seeking capabilities

– Detecting earth rotation and 

determine Earth spinning axis 

direction (north)

– Degrades with latitude

93

Figure from [1]

INESC TEC 

Embedded INSApplied Navigation 

Spacial Fog
IxBlue Phins 6000
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GNSS+INS Integration

 GNSS fix correct INS drift

 INS provides navigation in case of satellite loss

 High rate from INS

 Multiple architectures of integration depending on sensor fusion 

level 
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GPS/INS integration

 GPS/ INS integration architecture depends on the type and 

level of data fusion algorithms

 Integration architectures [1],[2],[3]

– Uncoupled

– Loosely coupled

– Tight coupled

– Ultra-tight coupled

95

[1] David H. Titterton and John L. Weston. Strapdown Inertial Navigation Technology, The Institution of Electrical Engineers, second 

edition, 2004

[2] Gerard Lachapelle Andreas Wieser, Demoz Gebre-Egziabher and Mark Petovello. “Weighting GNSS Observations and Variations of 

GNSS/INS Integration”. InsideGNSS,pages 26–33, 2007

[3] Antonio Angrisano, “GNSS/INS Integration Methods”, 2010
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GNSS/INS Integration

 Uncoupled

– Separate systems

– Filter integrating outputs of each system

– Both can operate standalone
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GNSS/INS Integration

 Loosely coupled

– Standalone GNSS

– Output of fusion filter used in te INS mechanization

– Requires access to mechanization in INS
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GNSS-INS integration

 Tightly coupled

– Highly integrated fusion

– GNSS raw data (pseudoranges, phase data) integrated with INS output

– Can use data from less than 4 satellites

– Estimated data used in the mechanization process

– High quality output
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GNSS/INS integration

 Ultra tight coupled

– Most tight integration

– GNSS raw radio signals are used (signal correlation is affected by the filter with INS 

information and also feed to it)

– Requires direct access to the radio processing (usually not available)

– Filter output feedback to INS mechanization

– Filter complex and difficult to tune

99
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AIS – Automatic Identification System

 External Ship tracking for legal, security, and marine traffic management

 Legal mandated identification system installed in all relevant marine vessels (all 

passenger ships and above 300 ton)

 AIS transmitter
– Broadcasts ship identification, position and navigation details

– VHF transceiver

– Positioning system (GPS or Loran-C) and gyrocompass

– 2-10 sec broadcasts (in transit) or 3min interval (anchored)

 Non encrypted communications, subject to spoofing

 Frequently small ships turn it off when not desiring to be located (ex: fishing vessels in 

non authorized areas) 

100

Image snapshot from www.marinetraffic.com 
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AIS
 AIS transmitters tracked by base stations on shore or 

satellite

 Two classes

– A – Large commercial vessels (integrated display, 12.5W 

transmission, SOTDMA, …)

– B – Leisure or  lighter commercial ( 2W, CSTDMA or 

SOTDMA,…)

 AIS transmitter

– 74 Km range

– Broadcasts ship identification, position and navigation details

– VHF transceiver

– Positioning system (GPS or Loran-C) and gyrocompass

– 2-10 sec broadcasts (in transit) or 3min interval (anchored)

101

Class A

www.raymarine.eu

Receiver, 

www.em-trak.com

Class B 

www.garmin.com
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Underwater vehicle localization

 Problems : No GPS!, No Radio!

 Harsh and limiting environment

 Sensors for underwater localization

– Pressure sensor

– INS 

– Magnetometers

– DVL sonars

– Profilling sonars

– Imaging sonars

– Acoustic positioning systems

– Cameras 

– Structured light vision systems

– LIDAR ???

102
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Underwater  navigation instruments

103

From: Ryan Eustice , “Large-Area Visually Augmented Navigation for Autonomous Underwater Vehicles”, PhD. Thesis, MIT, 2005
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Underwater robot localization

 Infra-structured support

– Absolute positioning, error bounding

– Acoustic beacon support (LBL,SBL,USBL)

– Fixed or moving beacons

– Limited operation areas

– High logistics and operational cost

 Non infra-structured

– Dead reckoning sensors (IMU, DVL)

– Terrain based / SLAM

– Drifting position 

– Flexibility in area of operation

– Allows stealth operation (security and military applications)

 Possible GPS fixes when at surface

104
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AUV Navigation

105

[1] L. Paull, S. Saeedi, M. Seto, and H. Li, “AUV Navigation and Localization: A Review,” IEEE J. Ocean. Eng., vol. 39, no. 1, pp. 131–

149, Jan. 2014.

Figure from [1]
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Depth

 Easy direct measurement of depth from pressure sensors (limited absolute 

error)

 1 bar for each 10m of water column

 Initial calibration required

 Pressure sensor output depends on temperature

 Depends on water density (on the column) and on atmospheric pressure

 Analog or digital outputs

 Can be integrated in other sensors (ex: CTD for oceanographic applications, 

DVL, etc)

 High precision sensor typical accuracy and precision

– Acuracy 0.002% FS

– Precision 0.05% FS

106

Model 33x from Keller Druck
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Other sensors

 Inclinometer

– Measures roll and pitch angles

– Slow dynamics

 Magnetic compass 

– Measures earth magnetic field – yaw angle

– Sensitive to electromagnetic perturbations

– For underwater vehicles operating in open sea 

relatively reliable

107
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Acoustic localization systems

 Based on acoustic ping signals providing range measurements (or bearing)

 Synchronous or asynchronous

– TWTT / TOA – Two Way Time Travel /Time Of Arrival /Spherical Nav

 Distance to transponder obtained from the difference time from pinging to the receiving of acknowledge

– OWTT /TDOA – One Way Time Travel /Time Difference of Arrival/ Hyperbolic Nav

 Distance inferred by the time of arrival of transponder signals (with synchronization, less flexible)

 External localization (vehicle tracking) / vehicle self-localization

 Update rate dependent on distance 

 Dependence on acoustic conditions
– ater sound speed (~1500 m/s) variable with temp or salinity

– Multipath

– Noise  

 With or without communication to the vehicle (ROVs, acoustic communications)

108



Alfredo MartinsUnmanned Autonomous Vehicles in Air, Land and Sea |  Polit. Milano 2016

Spherical navigation

 Location determined by trilateration

 Distances to known beacons are 

determined by the time of arrival of 

acknowledge from each beacon

 Points of constant return time lie in a sphere

 Intersection of spherical surfaces gives 

position of the vehicle

 Do not require synchronized clocks

109

Distance to A Distance to B

Vehicle

B
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Hyperbolic Navigation

 Localization process where the vehicle 

determines its position from the time difference 

of arrival of signals from known beacons

 The points in hyperbolic surface have the same 

time difference of arrival (relative phase)

 Requires time synchronization of emitting 

signals

 Phase ambiguity issues

 Loran C, and GPS examples of these type of 

navigation systems
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dT
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Figure adapted from www.alancordwell.co.uk
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LBL – Long Baseline Acoustic Navigation

 Set of known acoustic beacons and acoustic transponder on vehicle

 Vehicle interrogates each beacon and range is determined by the two-way 

time of travel (TWTT)

 Requires environment infra-structuring and known beacon position

 Trilateration based system

111

acoustic beacon
acoustic beacon
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Trilateration
3 spheres

112

subtracting 1st eq in 2nd eq

substituting in 1st eq, intersection is obtained (circumference)

substituting in the 3rd sphere and resolving in order to y

now with x, and y known, manipulating 1st eq

Three beacon exact trilateration

What if there are more beacons?
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Trilateration – Unconstrained Least Squares

 A simple trilateration algorithm with measurement noise [1]

 Vehicle assumed to be static

113

[1] A. Alcocer, “Positioning and Navigation Systems for Robotic Underwater Systems”, PhD. Thesis, IST, 2009.

Figure from [1]
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Trilateration – Unconstrained Least Squares

 Manipulating the squared measurements in order to obtain a linear equation in the position and its 

square norm, a linear LS can be solved (ignoring dependence of position on the norm) [1],[2].

114

Square of distance 

to landmark i

Square of distances

Square of distance measurements

[1] A. Alcocer, “Positioning and Navigation Systems for Robotic Underwater Systems”, PhD. Thesis, IST, 2009.

[2] K. Cheung et al, “Least squares algorithms for time-of-arrival based mobile location”, IEEE Trans. On Acoustics, Speech and Singnal

processing, vol2, pp145-148,2004

Error in square 

distance 

measurement
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Trilateration – Unconstrained Least Squares

115

With the           operator defined as:

Reorganizing It comes: 

Can be written in linear form with

Note that all unknowns are in 

solving for the unknown neglecting the constraints between      and

A q b x

[1] A. Alcocer, “Positioning and Navigation Systems for Robotic Underwater Systems”, PhD. Thesis, IST, 2009.
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LBL

 Beacons

– On sea bottom

– Moored with marking buoys on the 

surface

– On moving surface buoys/ASVs 

(moving baseline)

 Many commercial solutions 

incorporate acoustic communications

 High operational costs

– Deployment from the surface

– Calibration

– Recovery

116

Evologics and Konsgberg LBL nodes
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LBL

 Limited area of operation  (few km for low freq.)

 Relatively low ping rates 

– 10 sec ping cycles

 Errors (low freq)
– HIPAP USBL, LBL 7-15kHz

– Range accuracy 0.2% (no ray bending …)

– 6m @ 3000m

– Ray bending can increase error to 10s of meters…

 Errors (high freq)
– LBL 300KHz (EXACT)

– Few centimeter

– Limited  range (100’s m)

 Error sensitive to range and position

 Beacon location requires calibration

– Beacon interrogation from multiple locations at surface to 

trilaterate its exact location

– Calibration errors impact directly on navigation solution
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Intelligent Buoys*

 Surface buoys

– Acoustic transceiver

– GPS receiver (position and time 

synchronization)

– Radio communications (allowing real time 

vehicle tracking)

– Known position

 Can support multiple acoustic localization 

methods (LBL or inverted USBL) 

 No deep water installation required

 Position available at surface
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[1] Thomas, H.G. "GIB Buoys: An Interface Between Space and Depths of the Ocean", Proceedings of IEEE Autonomous Underwater Vehicles, 

Cambridge, MA, USA, pages 181-184, August 1998

[2] A. Alcocer, “Positioning and Navigation Systems for Robotic Underwater Systems”, PhD. Thesis, IST, 2009

*Also known as GIB Buoys – GPS Intelligent Buoys [1]

ACSA (Spain) GIBs INESC TEC Acoustic location buoy

Image from [2]
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Intelligent Buoys

119

[1] R. Almeida et al.,  “Man portable acoustic navigation buoys", Proceedings of IEEE Oceans Shanghai 2016

INESC TEC Acoustic 

Nav. Buoy
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Moving Baseline
 Example [1], AUV navigating in a moving baseline 

 TWTT asynchronous

120

[1] A. Matos, N. Cruz “AUV navigation and guidance in a moving acoustic network,” MTS/IEEE Oceans 2005.

d1

d2

x

y

(x,y) position

B2 responds also to B1 response S2 with S3, vehicle 

receives this at t4, allowing for determination:

With the values obtained by the time differences
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SBL- Short Baseline Navigation

 Shorter baseline than LBL (a few meters)

 Beacons on surface support ship hull or infrastructure

 Beacon position already pre-calibrated

 Shorter baseline implying larger errors

 Does not allow ships of opportunity

 High costs for ship  installation  

121
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SBL-Short Baseline Navigation

 Two possible architectures

– Beacon based – TDOA – Uses time differences at the receiver 

(surface ship) to determine range and bearing

– Transponder based – TOA – Uses 
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USBL – Ultra Short Baseline Navigation*
 Vehicle carries a transponder

 Transceiver on the surface (attached to vessel)

 Very short baseline (cm)

 Single transceiver at surface (containing multiple elements)

 USBL transceiver provides range and bearing to the target transponder

 Orientation of the transceiver required

– Usual integration with AHRS or INS

123

*Also known as SSBL – Super Short Baseline
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USBL-Ultra Short Baseline

 Lower cost and simpler to operate than LBL or SBL

 Can be used in vessel of opportunity

 Orientation of returning signal measured by signal phase 

difference

 Slant range measured by TOA (beacon mode also possible)

 Measurements available at the transceiver side

 Position estimation very sensitive to transceiver head attitude 

error and increased errors with slant

 For onboard AUV navigation, acoustic communications 

integration is also required

 Possible inverted configuration (iUSBL) 

 Accuracy, Ex: HIPAP USBL, LBL 7-15kHz
– Range accuracy 0.2% (no ray bending …)

– 6m @ 3000m

– Ray bending can increase error to 10s of meters…
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HiPAP 502 USBL transceiver 

from Kongsberg

transponder transceiver
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USBL-Ultra Short Baseline

 Range detected by TDOA

 Orientation by phase delay at receiver array

125

T/R

q

Dt

b

b cos q

Figure adapted from [1]

P. Ridao “An introduction to Applied Underwater Robotics”, Bts 09

2D example
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DVL Navigation

 DVL provides relative velocity to the bottom (or other structures) 

 Direct measuring of u, v and w

 Lower position drift compared with INS (only one integration step 

to obtain position)

 Limited sensor range (bottom track <100m, typically)

 Accuracy 

– 0.1-0.5% travelled distance
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Doppler effect

127

<T ))) T

1st wave
2nd wave
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ct

vT – distance covered by emitter in one period

cT – distance between emitter at initial position and receiver ( covered by 1st wave)

c(t-T) – distance from emitter to the second wave after traveling

one period

lr - wavelength at receiver

fr - received wavelength

ft - transmitting frequency

T      - transmitting period

v      - emitter velocity

c      - sound velocity

 Relative velocity of transmitter and receiver alter 

receiving frequency
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DVL Navigation

128

Transmitter moving, frequency at the stationary receiver

[1] N. Brokloff, “Matrix algorithm for Doppler sonar navigation”, MTS/IEEE Oceans 1994.

Transmitter stationary, frequency at the  receiver (moving)

In case of DVL on a vehicle, its is a moving transmitter and receiver, 

intermediate reflection treated as a stationary receiver followed by a 

stationary transmitter

Simplifying (v much less than c) multiplying by denominate conjugate

RT
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Sea bottom reflection
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Typical 4 transducer Janus configuration

 Multiple beams provide all components of velocity (in instrument fixed 

frame)

 With movement in any direction at least 3 transducers move not 

perpendicular to acoustic signal direction of travel

 Each beam measures the velocity component on its direction (given by 

unit vector êi)
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DVL velocity

 Considering the instrument reference frame 

perfectly aligned with the body fixed frame {b} 
– Vehicle velocity vbf is projected in each beam axis

– With all 4 beams with bottom lock, solution is over 

determined, it can be obtained by least squares or by 

choosing pairs of beams
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vi

vbf

u

w

Velocity along beam i

Doppler shift on beam i

Unit vectors for the four beams

Vehicle/instrument velocity
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DVL velocity

131

vi

vbf

u

w

Doppler shifts in matrix form as function of  velocity

Pre-multiplying by ET (since E is not square) and 

solving the  least squares problem in order to vbf
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DVL navigation
Doppler sensor returns velocity in its reference frame   

if sensor not aligned with {b} then 

but the sensor frame {doppler} rotation wrt. {b} can be 

determined, thus

velocities in the world frame (or NED {n}) are obtained by the 

linear transformation

world or NED velocities         are integrated to determine position
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{b}

{doppler}

Typically DVL sensors allow for 

coordinate conversion with external 

input from navigation sensors such as 

INS or GPS

Additional LS velocity error measure 

output is also commonly available
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Terrain based navigation

Use information from the environment in order to locate itself

133

?

?

{b}

{n}

{l}

Absolute location ({n}, {ecef} etc)
Map is needed

Relative navigation
Determination of relative position and pose  

(velocities)  to relevant  local elements  in the 

environment (ex: relative to {l})

Many applications do not require absolute 

positioning* (ex: motion relative to a wall, 

inspection of a ship hull)

Two possibilities:

MAP

No MAP
- Local relative positioning     

(ex. Visual servoing)

- SLAM

- Map based navigation
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Terrain based navigation

Problem: where am I ?

134

?
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Terrain based navigation

What can I see?

135

Depth profile

Image
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Terrain based navigation

Do I have a map?

Where can I be and see 

this?

and if I have an image? 

How do I find the 

possible location?

136

Depth profile

Where?

??

?

?

How to find it???
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Terrain based navigation

137

Possible location?

What I should observe here?

What I have seen?

Do they agree?
NO – I am not here

What I should observe here?

What I have seen?

Do they agree?

YES – I am here
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Terrain based navigation

Complete search in all the 

map can be problematic
– Large search space

– Computational power

– Multiple possible locations 

for the same observed data

138

?

?
?

?
?

? ?

?
?

??

1?
2??

?

Full unconstrained search is large, but usually some prior knowledge exists on initial 

location and current possibilities.

Start with initial position and continuously integrate 

measurement information to estimate location

6 DOF!!!
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Terrain based navigation

139

 Unstructured environments increase the complexity

 Problem in trying to match all the data to map

– Dimension

– Map usually does not have the same detail/granularity

– Noise and uncertainty in the measurement process

Extract relevant information from the observations 

Identify features or landmarks.
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Terrain based navigation

 Maps usually don’t contain image 

information

 Even if a globally referenced ground 

truth image map (mosaic or other) exists

– Matching difficult 

 Huge search space

 Perspective, distortions, noise, etc

140

Difficult to know: “what image should I see here?”
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Terrain based navigation

141

Where can I see this? Where can I see this?

Is there any relation?

This image seems better to answer 

this question, why?
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Terrain based navigation

Features

– Relevant, distinctive pieces of 

information

– Can exist in map

– Identification problems

 Feature description

 Similitude

 Difficult to identify uniquely (possibly 

there also can be identical elements in 

the environment)

– Unstructured environment increases 

difficulty

– May not be static

– Do not need to correspond to 

identifiable objects

142

Patch of color

Coral

Rock

Feature points in the image

No special meaning, except for the 

identification process
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Terrain based navigation

Identification

143

FEATURE 1

FEATURE 2

FEATURE 3

May or may not exist in the MAP

 Color

 Shape

 Template

 SIFTs, SURFs

 Other descriptors, etc

 Data association problem

 Map building
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Visual odometry

 Sequence of images can be used to derive the motion of the observer between 

frames

144

What motion?

Rotation   R

Translation  t

What about scale?

Velocity?

 If corresponding points between frames are available it is possible to obtain a rotation and translation 

between both, minus a scale factor

 Velocity can be derived if the time of frame is available

Correspondences

Wrong correspondence!!!
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Visual odometry

145

 Used to provide relative position measurements – velocity

 Dependent on texture

 Difficult to use underwater due to imaging environment 

restrictions (loss of visibility, blur, noise…)

 For deep sea requires illumination – energy issues
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Terrain based navigation

146

Initialization

PREDICT – UPDATE CYCLE

 Continuous process 

maintaining an estimate of 

the vehicle state

 Data association plays 

relevant role

Prediction

Observation

Feature extraction

Data association

Update

MAP
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SLAM – Simultaneous Localization 
and Mapping

What if there is no map?

147

SLAM Problem

 Identify possible landmarks from the 

observations

 Maintain relative position in relation to a set 

of landmarks

 Perform the predict-update cycle on the 

landmark positions and vehicle positions

Landmark observation is 

correlated with vehicle position

Re-observation of landmarks 

required

Simultaneous Localization And Mapping  (SLAM)

Build at the same time a map of the environment and locate itself in it
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SLAM Problem

Initial Conditions:

– Robot was no previous information about its localization

– Robot was no previous information about the environment

Working Principle:

– As the robot moves around:

 Builds a map according to sensor gathered information (Map is relative to the 

estimated localization)

 Localization is estimated by combining dead reckoning with map based 

observations

– Loop Closure

 When the robot returns to a previously visited area:

 Accumulated localization uncertainty can be reduced

 Map and localization are correlated, so a correction in localization is back 

propagated to improve the map accuracy.

148

Useful link for SLAM references, algorithms and  code:

www.openslam.org
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SLAM Problem

 Simultaneous estimate of landmark and robot locations

149

State of the vehicle

Control at time k-1 to 

drive the vehicle to xk

Location of ith landmark

Location of ith landmark

[1] H. Durrant-Whyte and T. Bayley, “Simultaneous Localisation and Mapping (SLAM): Part I The Essential Algorithms”, IEEE 

Robotics & Automation Magazine, 2006 

History of vehicle localization

Controls history

Landmarks

All landmark observations
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SLAM

Joint probability (posterior) of landmark localization given vehicle state

Observing model (observing probability given the landmark and vehicle state)

Motion model as a state transition probability distribution

 SLAM implemented in a classical predict-update cycle

150

Predict

Update
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Loop Closure

151

[1] Jonghyuk Kim and Salah Sukkarieh, “Real-time implementation of airborne inertial-SLAM”, Journal of Robotics and Autonomous Systems, 2007

[2] Newman, P.; Kin Ho, "SLAM-Loop Closing with Visually Salient Features," in Robotics and Automation, ICRA,  pp.635-642, 18-22 April 2005

“If loop closure fails, previously visited landmarks are re-mapped in the wrong 

global location… error accumulates without bounds and robot becomes lost” [2]



Alfredo MartinsUnmanned Autonomous Vehicles in Air, Land and Sea |  Polit. Milano 2016

SLAM Frameworks 

 Localization and map are represented by Gaussian probability distributions

 Noise should be white and Gaussian

 State vector is augmented to represent not only the robot pose but also 

map related states.

 SLAM follows a prediction/update cycle

– Prediction: Robot localization is updated using a motion model

– Update: Landmarks are observed:

 New landmarks are added to the map

 Existing landmarks are used to compute corrections

 Complexity grows quadratically with the number of states [1] – handle 

hundreds of landmarks

152

Extended Kalman Filter (EKF)

[1] Hugh Durrant-Whyte and Tim Bailey. Simultaneous Localization and Mapping (SLAM): Part I The Essential Algorithms. IEEE Robotics and 

Automation Magazine, 2, 200 
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EKF SLAM

 EKF complexity grows quadratically with the number of states [1]

– Strategies for removing high percentage of landmarks, maintaining only 

meaningful ones, without loss in map consistency [1].

– SLAM is preformed in a local area around robot localization [2]. 

Estimates are later combined with the global map when the robot moves 

away.

– Map partitioning in low correlated sub-regions [3].

153

[1] Gamini Dissanayake, Hugh F. Durrant-Whyte and Tim Bailey, ``A Computationally Efficient Solution to the Simultaneous Localisation and Map 

Building {(SLAM)} Problem''. ICRA, pages 1009--1014, 2000.

[2] Jose Guivant and Eduardo Nebot, "Optimization of the simultaneous localization and map-building algorithm for real-time implementation," 

Robotics and Automation, IEEE Transactions on , vol.17, no.3, pp.242,257, Jun 2001.

[3] J.J. Leonard and H.J.S. Feder, ``A computational efficient method for large-scale concurrent mapping and localisation''. In Proceedings of the 

Ninth International Symposium on Robotics Research, pages 169–176, 2000
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Particle filters
 Recursive Bayesian estimator

 Non-parametric state representation by means of particles, composed 

by samples and weights.

 Do not impose any specific distribution shape

 Handle high non-linear and multi-modal distributions

 For a infinite number of particles, the posterior density function 

approximates the optimal estimate [9].

 Complexity in traditional Particle Filters grows proportionally with the 

number of particles – even for small maps, SLAM implementations are 

not feasible

154

[1] M. Sanjeev Arulampalam, Simon Maskell, and Neil Gordon, ``A Tutorial on Particle Filters for Online Nonlinear/non-Gaussian Bayesian 

Tracking''. IEEE Transaction on Signal Processing, 50:174–188, 2002 
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Fast SLAM[1]

 Exploits conditional independence of the landmarks given the robot 

trajectory

 SLAM problem is decoupled into a localization problem and a set of 

landmark estimation problems, conditioned on the localization

 Localization is estimated through a particle filter.

– Each particle contain its own map.

– Inside a particle, each landmark is estimated in a dedicated EKF.

 Advantages:

– Low complexity O(P.logM) – Handles thousands of landmarks

– Each particle develops its own data association

155

[1] Michael Montemerlo, Sebastian Thrun, Daphne Koller, and Ben Wegbreit. “FastSLAM: A Factored Solution to the SImultaneous Localization and 

Mapping Problem.”In Proceedings of the AAAI National Conference on Artificial Intelligence, pages 593–598. AAAI, 2002
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Graph SLAM[1]

 SLAM formulation using a graph:

– Nodes correspond to robot poses

– Edges represent sensor measurements and establish 

constraints between nodes

– An optimization step finds the node configuration that 

maximizes the measurement consistency

156

[1] Grisetti, G.; Kümmerle, R.; Stachniss, C.; Burgard, W., "A Tutorial on Graph-Based SLAM," in Intelligent Transportation Systems Magazine, 

IEEE , vol.2, no.4, pp.31-43, 2010
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Some Underwater SLAM implementations

 SLAM in a Marina Environment

– EKF SLAM for structured environments.

– Prediction follows a constant velocity kinematic 

model

– State updates:

 DVL – Bottom lock 1.5Hz velocity updates plus 

depth measurement

 Compass+inclinometer – Low cost motion 

reference unit provides attitude updates at 

0.1Hz.

– Landmarks from MSIS

– No Loop closure

– Accuracy around 15 meters for a trajectory of 

600 meters.

– Structured environment, since straight lines 

are extracted from MSIS data.

157

[1] D. Ribas et al, Underwater SLAM in  Man-Made Structured  Environments““, Journal of Field Robotics, Wiley, 2008

Dash-dot – slam map

Dashsed - GPS

Solid – slam traj

Images from [1]



Alfredo MartinsUnmanned Autonomous Vehicles in Air, Land and Sea |  Polit. Milano 2016

BPSLAM

 Bathymetry based SLAM

 SLAM with particle filter

 Featureless - No data association

 Discretized bathymetry map (evidence grid) –

2.5 D

– Single depth estimate per cell

– Updated with EIF (Extended Information)

 Vehicle states estimated in separated EKF

 Adaptive particle sizing 
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[1] S. Barkby, S. B. Williams, O. Pizarro, and M. V. Jakuba, “A featureless approach to efficient bathymetric slam using distributed particle 

mapping.” Journal of Fields Robotics, vol. 28, no. 1, pp. 19–39, 2011
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BPSLAM

 Hierarchical

 Each resample particle does not copy the map but only 

points to it

 Each particle has only a map (its own grid) with 

observations after resampling 

 Full map obtained by following the tree

160

Marked nodes indicate map for particle 9

Leafs current particles

Figure from [1]

[1] S. Barkby, S. B. Williams, O. Pizarro, and M. V. Jakuba, “A featureless approach to efficient bathymetric slam using distributed particle 

mapping.” Journal of Fields Robotics, vol. 28, no. 1, pp. 19–39
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BPSLAM

161

[1] S. Barkby, S. B. Williams, O. Pizarro, and M. V. Jakuba, “A featureless approach to efficient bathymetric slam using distributed particle 

mapping.” Journal of Fields Robotics, vol. 28, no. 1, pp. 19–39, 2011

Figure from [1]



Alfredo MartinsUnmanned Autonomous Vehicles in Air, Land and Sea |  Polit. Milano 2016

Real Time Visual SLAM

162

 Relative navigation for ROVs without 

additional sensors

– Deep sea ROV navigation for legacy systems

– Additional functionalities

 Navigation aid for AUVs near bottom or 

close to structures

– For ex: for precise landing in benthic 

transporting robots

 Visual navigation in multiple robot 

operations at close range (docking, motion 

coordination etc)
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RT-SLAM framework
 Real-Time SLAM software infrastructure

 Developed at LAAS-CNRS

 Monocular vision based

 FastSLAM

 Landmark parameterization

– Inverse depth

– Re-parameterization of converged

landmarks to euclidean point (3 params

vs 6, leading to computation and memory

gains)

 Image processing

– Harris corner detector

– ZNCC for point matching

 Constant velocity prediction model

 Active search – One-point RANSAC

163

[1] C. Roussillon et al., “RT-SLAM: A Generic and Real-Time Visual SLAM Implementation,” in Computer Vision Systems, vol. 6962, J. L. 

Crowley, B. A. Draper, and M. Thonnat, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 31–40 

W –world

M – map

R – robot

S – sensor

O – observation

MM – map manager

DM – data manager

Image from [1]
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Point and line features detection

• Motion dynamic changes 
lead to divergence (rotations, 
lack of INS)

• Dependence on the low 
quality image

• Low number of features in 
the scenario
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ROV trajectory  and landmark evolution
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Deep sea

• Only monocular 

vision

• Feature extraction 

even with harsh 

conditions

• Useful for when only 

image is available
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Realtime performance

 Monocular up to 30 fps – Pentium Dual core

 For the test tank case real time performance with an Intel Atom Dual 

Core (25 W)
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Underwater SLAM implementations

169

Author Scenario Main Sensors Estimator Landmarks
Loop

closure
Submaping

[1], 2006
Sea

coast
DVL, INS, Compass, LBL EKF

Beacon

Locations
No No

[2], 2007
Flooded

caverns

DVL, INS, Depth sensor, 

Profiling sonar
PF Walls No No

[3], 2008
Shallow

waters

DVL, Compass, Tilt sensor, 

Pressure sensor, Stereo

vision

EIF SURF Yes No

[4], 2008 Marina DVL, MRU, MSIS EKF Walls Yes Yes

[5], 2009
Shallow

waters

DVL, Heading Gyroscope, 

FLS
2D EKF FLS No No

[1] E. Olson, J. Leonard, and S. Teller, “Robust range-only beacon localization,” IEEE Journal of Oceanic Engineering, vol. 31, no. 4, pp. 949–958, 2006.

[2] N. Fairfield, D. Jonak, G. Kantor, and D. Wettergreen, “Field results of the control, navigation, and mapping systems of a hovering auv,” in UUST, 2007

[3] I. Mahon, S. Williams, O. Pizarro, and M. Johnson-Roberson, “Efficient view-based slam using visual loop closures,” IEEE Transactions on Robotics, vol. 24, no. 5, pp. 

1002–1014, 2008.

[4] D. Ribas, P. Ridao, J. Tardos, and J. Neira, “Underwater slam in manmade structured environments,” Journal of Field Robotics, vol. 25, pp. 898–921, 2008.

[5] Koh, A.C.T.; Wijesoma, W.S.; Pua, S.L.; Lee, K.W.; Kalyan, B., "Shallow waters SLAM experiments on meredith AUV using forward looking sonar," in OCEANS, pp.1-6, 

26-29 Oct. 2009
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Underwater SLAM implementations

170

Author Scenario Main Sensors Estimator Landmarks
Loop

closure
Submaping

[18], 2009 Sea
DVL, Gyrocompass, GPS, 

Depth sensor, SSS

Graph

SLAM

SSS 

Ladmarks
No No

[19], 2011 Sea Camera PF SIFT No No

[20], 2010 Sea
Sonar, Multibeam, DVL, 

Compass
PF Terrain Yes Yes

[21], 2010

12 m 

depth

tests

DVL, IMU, Depth sensor, 

SSS
EKF

SSS 

Landmarks
Yes Yes

[22],2011
Shallow

waters
DVL, IMU, Camera EKF SURF Yes Yes

[6] Luc Jaulin, “A Nonlinear Set-membership Approach for the Localization and Map Building of an Underwater Robot using Interval Constraint Propagation”, IEEE 

Transaction on Robotics, vol 25, no. 1, pp. 88–98, 2009

[7] S. Augenstein and S. Rock, “Improved frame-to-frame pose tracking during vision-only slam/sfm with a tumbling target,” in ICRA, pp. 3131–3138, 2011

[8] S. Barkby, S. B. Williams, O. Pizarro, and M. V. Jakuba, “A featureless approach to efficient bathymetric slam using distributed particle mapping.” Journal of Fields 

Robotics, vol. 28, no. 1, pp. 19–39.

[9]Aulinas, J.; Llado, X.; Salvi, J.; Petillot, Y.R., "Selective Submap Joining for underwater large scale 6-DOF SLAM," in Intelligent Robots and Systems (IROS), 2010 

IEEE/RSJ International Conference on , vol., no., pp.2552-2557, 18-22 Oct. 2010

[10] Aulinas, J.; Carreras, M.; Llado, X.; Salvi, J.; Garcia, R.; Prados, R.; Petillot, Y.R., "Feature extraction for underwater visual SLAM," in OCEANS, 2011 IEEE - Spain , 

vol., no., pp.1-7, 6-9 June 2011


