-
I s e Instituto Superior de
Engenharia do Porto

Marine Robotics

Unmanned Autonomous Vehicles in Air Land and Sea

Politecnico Milano — June 2016

N,

Alfredo Martins
INESC TEC / ISEP

Portugal
alfredo.martins@inesctec.pt



L}
nstituto Superior de
Engenharia do Porto

Sensors and Perception




L}
I ‘ Instituto Superior de °J INESC
Engenharia do Porto AT a0

Perception

Sensor — dispositive that maps environmental attribute in a quantitative
measure

Sensors convert energy from one form to another (transductors)

Perception — interpretation and fusion of sensor measurements,
‘knowledge” of the environment (external/internal)

sensor =» acquisition== filtering/processing

N

fusion === interpretation
sensor == acquisition== filtering/processing

sensor =» acquisition=== filtering/processing

‘sensing”  INNEEGEGEGEGEGEEEEEEEE— perception

increasing abstraction
decreasing granularity
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Acquisition

e Can be performed at different points in the
processing chain

— one can have analog processing before A/D
conversion

o ODbtaining measures in a convenient format
— Analog/Digital conversion

o Communication with a specific sensor,
data reception
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Filtering /pre-processing

o Filtering — noise reduction

e “outliers” elimination

e Selection of frequency range of interest
e Recalibration

e Changing of data representation
— ex: coordinate transformation

e Basic processing
— exX: vision segmentation

e Depending on the sensor
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Sensor fusion

In general it is necessary to combine information from multiple sensors

— Noise
— Limited accuracy and precision
— Reliability (redundancy)
— Limited perception of the environment
Incomplete description (types of measures, occlusions ...)
— Cost

It can be more efficient combine multiple sensors than to use a more
expensive one

Sensor fusion — Combine multiple sensor measures in coherent information
Sensorial integration — Use information from multiple sensors to do something useful
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Sensor fusion

o Combine data from different sources
— Multiple sensors
— Different physical space
— Different times

e Methods incorporating uncertainity in the sources
— Discrete probabilistic filters
— Neural networks
— Kalman filtering (EKF, UKF etc)

e Coherent result — “virtual” sensor data
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Interpretation

o Depends on the task
o Usually requires a previous environment model (“match”)

o Extraction/detection of relevant information from data (maximum,
minimum, temporal events)

o Higher abstraction building (ex: topological localization)

o Clustering, pattern recognition , machine learning
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Sensor Classification

e Proprioceptor/exteroceptor

— Proprioceptor — internal state measurement (battery level,
wheel velocity, etc)

— Exteroceptor — external quantity measurement, environmental
(distance to objects, external temperature etc)

o Active / Passive
— Active — energy emitting to the environment (sonar, radar)
— Passive — only receive energy: vision

o Contact/ Contactless
o With or without physical contact
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o Reflection of radio pulses and microwaves
o Obstacle detection and mapping

e Widely used in marine navigation

e Large dimension and weight

e Sensitive to atmospheric conditions

o Multiple levels of information (from simple
echo’s and target tracking)
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Radar

Echo return of L shaped pier
from RADAR mounted on ROAZ
ASV (in La Spezia, Italy)

4000

Visible returns from boats /

stationed behind pier e

3000

ROAZ (Radar center)
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e Ranging/bathymetric
— Altimeter
— Subbottom profiler
— Sonar profiler (mechanic)
— Multibeam sonar
— SWATH bathymetric sonar (interferometric)

e Imaging
— FLS
— Sidescan sonar
— 3D imaging/ranging (CodaOctopus Echoscope)

o ADCP /DVL
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Underwater acoustics

e Sound — primary source of information for sensing
underwater

e Underwater acoustics depends on multiple factors
— Sound velocity — salinity, temperature
— Multipath, shallow water and reflections on surface
— Ambient noise
— Interference
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Single Beam Echosounders

e Sonar emits a pulse and detects echo
from target, range determined by time of
flight "

e Range e e
— FAT (First return Above Threshold) o~
. f

— Maximum return ootprint
— Echo profile (range binning)

e Used for depth soundings or for obstacle
ranging (limited application)

e Single narrow beam (usually less than
39)

o Integrated AHRS (Heading, Pitch, Roll)

e Small size

o Typically with serial interface

[ISA500]
www.lmpactSubsea.com
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Multibeam echosounder

e Array of transducers emits and receives ,
a fan shape beam to the seabed "

e Acquire depth scans, measuring the
signal travel time along multiple
directions

beam
swath width

e Can also return the echo profile in each
direction (with binning)

e Each beam varies from 0.5 to 32

e Price highly dependent on angular and
range resolution (from ~30k€ for 3° to
100/200 K€ for 0.5)

18



L]
I ‘ Instituto Superior de °J INESC
Engenharia do Porto AT a0

Multibeam echosounder

e All beams grabbed simultaneously
e Resolution dependent on slant range
o Higher the altitude the lower resolution

o Higher frequencies give higher
resolution but lower range

e Frequencies ranging from 500kHz to
2.25MHz

swath width
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Multibeam Sonar

Image from Teledyne Blueview (MB2250)
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Multibeam echosounder

Depending on the required mission
can be mounted either vertically or
horizontally.

e Common arrangement looking down
transverse to vehicle direction of
motion to provide bathymetry data

o Different points on the sea floor
provide returns at different angles

o Mechanically rotating solutions (for

fixed position) with vertical beam ~ 3 ‘p\
provide wide horizontal coverage — =
— Ex: Blueview BV5000 BlueVieW BV5000

Images from Teledyne Blueview
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Electronic actuated multibeam

Multibeam with the possibility of
electronically controlling the vertical angle of
the beam pattern

Solid state tilting

Provides almost 3D by sweeping the vertical
angle fast

Currently there is no commercial solution
available (Tritech Eclipse no longer in
production)
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Mechanically rotating pencil

beam profiller
e Rotating narrow beam

e Similar to a single echosounder but
with a mechanical rotation of the
transducer

e Narrow beam 1°-2°

e For distance measurement and
profilling

PENCIL SHAPED SOMAR BEAM
SCANS IN A VERTICAL PLANE
TO MEASURE BOTTOM PROFILE
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Forward Looking Sonar (FLS)

e Imaging sonar

e Sonar “illuminates” the environment and
receives multiple vertical wide and horizontal
narrow beams

e For each beam a complete echo profile is
returned

e All beams acquired simultaneously
e Real-time imagery

e Applications: Search and Rescue (SAR),
Obstacle Avoidance, Target Tracking and
Subsea Monitoring and Inspection

Horizontal angle

[Germini 720i]
www Eteoinc 2]

www.tritech.co.uk
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Forward Looking Sonar (FLS)

 FLS does not provide distance o i m -
information _ —

e Return echo at a given distance (time
delay) can be anywere within the in
the wide angle of the beam

ECHO STRENGTH V5 TIME WHEMN
FAN SHAPED SONAR BEAM
INTERSECTS WITH A FLAT BOTTOM

o Can also be mounted in vertical
configuration (ex: for lateral looking)

FAN SHAPED SOMAR BEARM
INTERSECTS WITH A FLAT BOTTORM
AND TARGETS

Range

Vertical
angle
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Forward Looking Sonar (FLS)

Single or double frequency

High quality imaging fro higher frequencies (ex:
Aris Explorer 3000 at 3MHz)

Range resolutions up to 3mm

Ranges from 5m (Aris 3000) to 100m( BV
M900)

Beam width typically 1° (or less)
Horizontal span from 45° to 90°

Models with two crossing beam patterns (for
AUV installation)

Typlcal example Tritech 720i
720 kHz operating frequency
—  Number of Beams: 256
— Swathe: 120°
— Vertical Beamwidth: 20°
— Range Resolution: 8mm

Teledyne Blueview M900
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Mechanically scanned imaging sonar
(MSIS)

e Mechanically rotated transducer that
scans a 2D area

e Low scanning rate

e Vehicle motion produces distortion
in scan (different directions taken at
different times)

e Good for obstacle detection

Image from [1]

o Example Tritech MSIS
— Vertical wide beam (20° - 40°)
— Narrow horizontal beam (1.5-3°)

— Continuous 360° rotation with 0.45° of
mechanical resolution

— Range: 100 m (650kHz) — 300 m (325kHz)

[Super Seaking]
www.tritech.co.uk

[1] David Ribas, “Underwater SLAM fro structured environment using an imaging sonar”, Ph.D. Thesis, Univ. Girona, 2008
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360° scan in a structured environment

Echo =
strenght 150

.

Time / RangB sl

/
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Y (m)

Echo itensity (8 bit)
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Motion distortion

Multibeam scanner Mechanical Séanned Imagjng Sopar

Full scan in time step k Full scan in m time steps {k — k+m}

Image from P. Ridao “An introduction to Applied Underwater Robotics”, Bts 09
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Motion distortion
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Image from P. Ridao “An introduction to Applied Underwater Robotics”, Bts 09
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Subottom profilers

o Echo profile from material frontiers under the sea bottom

e System is capable of penetrating the seabed and
highlighting structural differences that are hidden from
view

e Applications: Site survey, Route survey, Pipeline
crossing, Wreck search and Object detection;

o Seaking beamwidth: 4.5° (20kHz) and 4° (200kHz) [Seaking SBP]

www.tritech.co.uk

e
5] @ M RIAVIEBAIV S AV ] B ol sl svee s
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Subbottom profiling

o Difficult to interpret data

e Echo returns very sensitive to
multipath and sonar parameters

e Sonar does not identify material only
reflective frontiers (that occur with
changing of rock density

Subbottom profile of area in river performed
with ROAZ autonomous surface vehicle
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Acoustic cameras

e Projector sonar insonifies the
environment

e A 2D receiver array receives echoes
from multiple beams

e 2.5D snapshot (similar to a ranging
ToF camera)
e Currently only one commercially

available sensor: CODA Octopus
Echoscope

e 375KHz /610 KHz

e 2D multibeam
— 2D range snapshot
— 128x128 beams
— 3cm range resolution Projector element
— FAT or Max return

Receiver array

:
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3D Acoustic cameras

R e I e LI
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Sidescan sonar (SSS)

e Sonar “illuminates” the environment and
measures signal return in two transverse
narrow beams

e Most common imaging sonar

e Typical configuration with two transducers
— Portboard side
— Starboard side

e Does not measure signal travel time

e Measures energy of the return, the full
continuous echo

e By stitching several scans, a photo-like acoustic
image of seafloor can be built

e Motion is required in order to obtain an image
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Sidescan Sonar

< sidescan display
\ A seabed £ 53 =

track line

fixed transdueers transmit a
narrow fan-shaped-acoustic
beam to either side of the—_.

track line
track line.

direction
of travel

acoustic shadow _— B
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Sidescan Sonar

Bright rings appear on
bottorn as resuft

of unsven vertical
beamn pattem

1

IR RV

h

st R |
| Target Height h = Hxs

| r+s
{ trua only on flat, level bottom )

TARGETS AT THE SAME SLANT RANGE
BUT DIFFERENT ELEVATIONS PLOT AT THE ACTUAL SONAR BEAM WITH USE SHADOW LENGTH
SAME LOCATION ON THE DISPLAY WITH UNEVEN PATTERN TO CALCULATE TARGET HEIGHT
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SSS image interpretation

o Bottom reflectivity appears
as bright spot

] Se n S itiVity to m Oti O n behind objects b e Water surface return (or reflection)
(orientation, disturbances) B |

+ First bottom return (or reﬂ'ection)

itude: | 52:25.8741 N
005.06.5844 N
24-SEP-2006

Bottom Return
§ (Towfish Altitude) = 10.1m

Surface Return
(Towfish Depth) = 2.4m

Tot water depth ~= Bottom Return + Surface Return = 10.1m + 2.4m = 12.5m [§

Images from IMAGENEX
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SSS image interpretation

- Good orientation and speed contrélr

Acoustlc noise, (echosounder mterference)
Homegeneus refle(:tlon|

‘ Sur‘face Waves- (H?ot'
and iny the surﬁace reﬁurn,.

Sand bottom
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S e
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Rocks reaching surface

Sandy sea bottom with
Rock formations
Loss of signal (vertical black lines)

| Motion distortion
Chl
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Syntetic aperture sonar - SAS

e Uses vehicle motion to “replicate” effect of having a very large transducer array (larger
than the vehicle itself)

e Combines successive pings at known positions along track in order to provide a virtual
larger array

o High resolution with relatively low frequency, thus also higher ranges

o EXxpensive

o Relatively large
—  Kraken Aquapix

— Konsgberg HISAS
Pulse positions
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Interferometric SAS

e Combined bathymetric scan with imaging

— Interferometric
— Uses time difference of arrival from bottom echo
with 2 vertical separated transducers

{
- Pulse positions

Synthetic Aperture Sonar
(Large virtual aperture generated on PC)

Combine echoes
at each antenna position

I Conventional side-scan sonar

; Image from
/ http://www.jams
‘ tec.go.jp/e/abou
t/press_release/
20090806/

Image from [1]
Sharp acoustic beam

R. Hansen et al. “Signal Processing for AUV based Interferometric Synthetic Aperture Sonar”, IEEE Oceans,
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SAS Sonar

e SAS dependent of quality of " Sonar ]
navigation e o

o Relative pulse positions must
be known with precision

e DPCA / Displaced Phase
Centre Antenna

— Phase measurements to oo Motion
. . . . . ompensation
provide inter-ping navigation ~

Slant-range DPCA (2D) |

Broadside interferometry ]

Motion
Estimation

DPCA+INS Simple ]

DPCA#INS Full ]

i Straight line

Arbitrary motion

[Wavenumber —_—i A Time-domain Beamforming]
Beamforming |: gEeamforming
[cmrp Scaling Ji i Fast Backprojection ] :

PGA, PCA, Mosaic PGA
SAS Image
Contrast Optimization Autofocus  f——->p (echo streanggth)
—
"Map drift

[Coarse: Cross Correlation Interferometry > Bal:xrar:tnc
(Full: 2D Phase Unwrap

Image from [1]

R. Hansen et al. “Signal Processing for AUV based Interferometric Synthetic Aperture Sonar”, IEEE Oceans,
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Synthetic Aperture Sonar - SAS

e High resolution

e HISAS 1030
— Freq. 50-120kHz
— Along track, Across track resolution
— Max range @ 2m/s (swath 400m)
— Area coverage rate 2km2/h
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Doppler Sonars

o Use Doppler frequency shift to measure relative velocities

— Frequency shift of a wave for observer moving relative to its
source

— Higher frequency on approach and lower in separation

e Sonar emits at frequency and detects frequency shift, thus
measuring velocity towards target

e Target can be either the sea-bottom or other infrastructure or
particles in suspension on water (ADCP)
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DVL — Doppler Velocity Log

o With bottom tracking for navigation

o 2types:
— Multiple beam (4 beams or more)
— Phased array (beam forming)

o Multiple beams allow for determination of the 3
components of the instrument velocity (the doppler effect
only provides relative velocity in de direction of each
beam)

o Available OEM versions for AUV integration (transducers
separated from electronics)

e Dual head options
e Return also altitude and one water cell velocity
e DVL (bottom tracking, <100 m, typically) + IMU

— Accuracy 0.1-0.5% travelled distance
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ADYV -Acoustic single cell water velocimeter

e Returns water velocity in a small single cell

e In robotic vehicles used for water relative velocity
measurement

e Turbulence measurements
e High precision
e High measurement rate

www.nortek-as.com
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ADCP - Acoustic Doppler

Current Profiler
o DVL with return of velocities of multiple cells
in the water column (water current profile)

o Can be an option in navigation DVL
instruments

e Usually mounted on the sea floor pointed
upwards

e Surface tracking allows for wave
measurement and surface current

www.nortek-as.com
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Cameras

o Provide high resolution images
e Robust landmark detection can be performed

o Light quality degrades underwater
— Chromatic distortion
— High sensitivity to turbulence and backscatter

Image from [1]

a) diffusion b) flickering c¢) non-uniform lighting

[1] J. Aulinas, M. Carreras et al. “Feature extraction for underwater visual SLAM, IEEE OCEANS Europe, 2011
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Stereo Vision

e Stereo vision underwater has limited
applications

e Old experiments underwater

— Jean de Wouters d’Oplinter, 1948 with tests in
Mdeiterranean sea

— Rebikoff, 1954 used stereo for mapping
archeological sites on manned vehicle Pegasus

e Standard application of stereo technigques

52 Unmanned Autonomous Vehicles in Air, Land and Sea | Polit. Milano 2016
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Hyperspectral cameras

e Acquire data along the electromagnetic
spectrum, from ultraviolet to long-infrared

e When all data is associated, it can be
generated a hyperspectral image cube,
which consists of a set of images layered
on top of one another.

e Used off-water for material analysis and
identification (ex: agriculture, mining)

single AIS

Re g 'S &
flectance o
raster cell

[1] Michael Doneus, Geert Verhoeven, Clement Atzberger, Michael Wess, Michal Rus, “New ways to extract archaeological
information from hyperspectral pixels”
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Hyperspectral Cameras -
Tunable Spectral Filter

e Acquire 2D image at a time, wherein
each 2D image corresponds to a

wavelength
X
e S0, only when all wavelength (2D , }\4
Image) have been acquired, it becomes _J” 3
possible to obtain the spectrum of each A |t
pixel. A

[1] http://www.gildenphotonics.com/hyperspectral-imaging-/hyperspectral-imaging-technology.aspx .
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Hyperspectral Cameras - Pushbroom

o Allows full spectral data simultaneously,
with spatial line scanning over time

e The camera acquires all spectral
information exactly at the same time,
being insensitive to instrument/sample
movement

e For each line, obtains the spectrum for

each pixel A

550 nm

VAR
CUTING
SURFACES

[1] http://www.gildenphotonics.com/hyperspectral-imaging-/hyperspectral-imaging-technology.aspx .

[2] Volent, Z., et al. "Kelp forest mapping by use of airborne hyperspectral imager.” Journal of Applied Remote Sensing 1(1), 2007.
Unmanned Autonomous Vehicles in Air, Land and Sea | Polit. Milano 2016
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Underwater Hyperspec’rral

/n EE R

e Pushbroom camera

e Airborne sensor (not really
underwater!!!!)

e Similar approach as system used in
Sunny project

o Kelp algae studies

HYPERSPECTRAL IMAGER

o Underwater hyperspectral system under

development for mining studies
J3 i
e Some commercial developments (ex: )

Ecotone UHI)

ALTITUDE N

[1] Volent, Z., et al. "Kelp forest mapping by use of airborne hyperspectral imager." Journal of Applied Remote Sensing 1(1), 2007.
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Structured light

e The use of pure visual perception methods is limited in underwater environments.

o One way of overcoming such limitation is by using line laser projector.

Camera Laser

.c*s ‘ E—

Unmanned Autonomous Vehicles in Air, Land and Sea | Polit. Milano 2016
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Structured light

o Current high degree of application in
microbathymetry and close range profiling

o Common use of simple dual dot laser
projectors in teleoperated ROV missions to
provide scale in imaging for the user

o Blue and green laser

e Very sensitive to water turbidity

o Excellent precision when comparing with
sonar based sensors

o Comercially available solutions

59
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Underwater LIDAR

e Standard LIDAR in water environment

o Distance measurement by time of
flight

e Technology in water still in its infancy

e Comercial solutions have been
proposed (3D at Depth)

o Suffers from the same limitations from
structured light and more expensive

60 Unmanned Autonomous Vehicles in Air, Land and Sea | Polit. Milano 2016
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Commercial Underwater Laser Systems

o 3D at Depth (lidar) Seatronics Ag2R

Newton Labs M210UW

https://lyoutu.be/kjSuwofgt g
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Navigation problem

Where am 1?

e Inrelation to a pre-defined reference frame
— Inertial frame or fixed in the world (NED, ECEF)
— Local reference frame

o Relative localization
— Inrelation to temporary frame (ex: landmark)
— In relation to mobile reference frame

e Topology

— Order relation with environment elements
e Semantic

69 Unmanned Autonomous Vehicles in Air, Land and Sea | Polit. Milano 2016
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Navigation problem

Where am 1?

e Required information depends on application
— Position and orientation (relation between {b} and {n}
— Velocity information (linear, angular}
— Qualifiers (ex: on the right of, inside etc)

— Deterministic or probabilistic (more useful, in this case some measure
of uncertainty is required)

b}

J (RTVW)

Estimate position, orientation and velocity of the vehicle
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‘ Instituto Super B} INESC
‘ Engenharad P rt e

Localization methods

e Dead reckoning — relative measurements

— Inertial navigation
— DVL

e Absolute measurements
— Active beacons (VLS, GPS, LBL, ...)
— Landmark recognition

e Combination of both relative and absolute measurements
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L]
I ‘ Instituto Superior de oJ INESC
Engenharia do Porto giaeE e

Some problems in navigation...

e Errors in sensors (noise, lack of precision, accuracy, drift, bias...
e Errors in robot model

e Errors in world model (map, ....)

o Dificult to obtain “exact location”

o Even approximate location (even with large errors) can be useful

e Useful to have measures on the confidence of determined information

¥

Deterministic models do not deal with uncertainty, thus:

Probabilistic models
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Probabilistic approach

e Information represented in a probabilistic way

o Takes into account uncertainty in the sensor
measurements, model of environment and of the robot

o Allows to integrate in a coherent way information from
different sensors

o Representation more suitable to reality



‘ Instituto Super B} INESC
Engenharia do Porto e

Probabilis’ric approach

o Information represented by probability distributions
— PDF Probability Density Functions (continuous, discretization's ...)
— Significative samples...
— Statistical moments (mean, covariance, ...)

e Random variables instead of deterministic

e Robot and sensor models incorporate noise characterization
measures

e Integration and probabilistic calculus
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Examplelll

bel(x) — “belief” PDF in all possible locations, best estimate or robot location in a given moment
p(z|x) — conditional probability of z (measurements) given x (state)

Lt 1Tt 1t 1 [ [ [ [ [T [ [ [ [ [T [ [ [ T [ T [ T [ T [T [ T [ T [ [ [ 1]
. IIIIIIIIIIIIIIIIIIII IIII IIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIII
initial estimate B e e e e — St et e e || )
4
bel(x)
X
adooris observed P T e
| I (N N N N N NN N | I | F r r F F F §F § § ¥ T T 1 | I N N N N N N
|I|I|I|I|I|I|I|I|I| ||I| IIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIII
Conditional probability of
p(z[x)

observing a door is maximum

when in front of one of them ' ' ' x
4

A priori | can be any one of
the 3, bel(x) represents this

Figure from [1]

[1] S. Thrun et al, “Probabilistic Robotics”, MIT Press,
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Example

{ bel(x)

p(z/x)

$ bel(x)

=

$ bel(x)

robot moves to the right

Location estimation is

“attenuated” (uncertainty

increase)

Prediction

another door is observed

4

After observing 2™ door

incorporates information —

bel(x) has a large peak in
2" door — consistent with

motion performed and

observation

Correction

robot moves to the right

Location estimation

degrades again

Prediction

Unmanned Autonomous Vehicles in Air, Land and Sea | Polit. Milano 2016
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Predict — Update cycle

o Allows to accommodate multiple hypotheses in conflict

e Predict- Correct cycle incorporates increases of uncertainty due to
motion or passing of time as well as additional information given by

observations
| | PREDICTION
11'}(?{: -+ 1k -+ l) system mode]| ;'I:(kf ‘~— 1 | k)
Corrected state at State predicted at instant
instant k+1 k+1 given previous state
CORRECTION

sensor model

Markov process— Current process state contains all information required for future
prediction (not needed to know all the precious history of the state
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Navigation in marine
autonomous systems

e Surface systems
GNSS
INS

o Underwater robots navigation

— Absolute acoustic positioning systems
SBL, LBL
USBL
— Dead reckoning and sensor fusion solutions
DVL
INS

— Terrain based navigation and SLAM

78 Unmanned Autonomous Vehicles in Air, Land and Sea | Polit. Milano 2016



‘ Instituto Super B} INESC
‘ Engenharia do Porto e

Surface systems

e GNSS - Global Navigation Satellite Systems (GPS, Glonass, Compass,
Galileo) usually available and main localization mechanism for USVs

e Loran (Loran-C) — US original, low frequency radio beacon based navigation
(trilateration), now almost substituted by GNSS systems

e GNSS + INS for 6DOF and additional precision

— Many applications require precise orientation to be known (even when roll and
pitch is not controlled), ex: bathymetry, visual target estimation.
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GNSS - Global Navigation Satellite Systems

o Geo-spatial positioning using time signals transmitted by satellites

e High precision synchronized satellite clocks allow for receiver to
determine its position
o Standard regime, receiver needs at least 4 satellites (3 for position and
one extra for the drift in receiver clock)
o Signal degradation due to poor geometry, reflection and multipath
o Multiple constellations
— GPS -USA
— GLONASS - Russia
— Galileu — Europe
— BeiDou - China
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Global Positioning System (GPS)

o Enables three-dimensional positioning and time
synchronization to UTC time

o Civil GPS receivers can generate 3 types of
measurements
— Pseudorange (PR) measurements
— Phase Measurements
— Doppler Measurements
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GPS-Pseudorange

o Each satellite transmits a unique ranging signal with embedded time
information, C/A code

o By decoding the signal, receivers determine the time of transmission from
the satellite

o Ideally (clocks synchronized), travel time multiplied by the speed of light
provides the receiver/satellite range.

e Inreality, clock biases exist, hence the word pseudorange

Considering only clock biases, pseudoranges are given by:

PR =d+ cotg — cotp

d(m) - True satellite/receiver range

cots (s) - Satellite clock bias relative to GPS time
cotr (s) - Receiver clock bias relative to GPS time
c(m/s) - Speed of light

[1] Antonio Angrisano, “GNSS/INS Integration Methods”, 2010
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GPS- Pseudorange

e Other sources of error can exist

PR = d + CCStS — Cétﬁ + 5d0’rb -+ 5diono + 6dt7*op0 + 5dmulti + T

dd,p(m) - Orbital error

dd;ono(m) - Tonospheric error

ddiropo(m) - Tropospheric error Signal

Omuiti - Multipath error reflected by /
. . a building

n(m) - Receiver noise —

Direct
Signal

o Multipath can be a problem in the water surface
— Typical remedies are to shield the reflections in the

base of antenna GPS
Antenna
e In single point positioning expected accuracy 777777 /] 777
around 10m i by
Figure from [1] the ground

[1]1“GNSS Precise Positioning with RTKLIB”, 2011
[2] Antonio Angrisano, “GNSS/INS Integration Methods”, 2010
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GPS - Phase Measurement

Tracks the phase of the carrier frequencies (L1 or L2)

Phase measurement multiplied by the carrier wavelength represents
the satellite/receiver range.

Satellite/receiver range is expressed in units of cycles of the carrier
frequency

Exists an ambiguity term representing the number of wavelength cycles
(determined with help of a base station)

Millimeter accuracy measurement

)\Q‘) = \N -+ d -+ C(StS - C(StR + 5dorb + 5d?ﬁono + 5dt?'opo + '5dmult’£ =+ n

A - Carrier wavelength
¢ - Phase measurement
N - Number of cycles in the satellite/receiver distance



GPS - Doppler Measurement

o Derivative of the carrier phase

o Represents the frequency shift caused by the relative
receiver-satellite motion

o Multiplied by the carrier wavelength gives the derivative
of the satellite/receiver range, used to compute the
receiver velocity

85



‘ Instituto Superior de °J INESC
Engenharia do Porto AT a0

GPS Processing Techniques

e Differential GPS

— Static receiver — Base station

— Compared measuremnts to the moving receiver
(Rover) to minimize system errors

lonospheric and tropospheric delay
Clock Bias
Ephmeris errors

— Can be used online or in pos-processing

=

Rover
Receiver

Reference

Station

Communication Link M
_— N

Image from ]“GNSS Precise Positioning with RTKLIB”, 2011
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GPS Processing Techniques

e Real- Time Kinematic (RTK) GPS

— Uses phase measurements
— Base station helps to solve wavelength cycle
ambiguity
— Reduces errrors:
Atmospheric delays
Internal receiver errors
Attenuates multipath errors

— RTK requires 5 visible sattelites
— Milimeter accuracy
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Inertial Navigation Systems

o Dead reckoning navigation systems

e Inertial sensors
— 3 Accelerometers estimate linear motion
— 3 Gyroscopes estimate angular motion

o Unbounded position error growth

o Multiple levels of sensor integration
— IMU raw sensor outputs (accels. and angular velocities)

— AHRS - Attitude Heading and Reference Systems (provide
integration to provide heading or vertical direction)

— Full navigation solutions — INS

— Integrated GNSS-INS or (as in marine applications possible
integration of DVL data, ex: IxSea Phins)
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INS working principles

Initial INS systems used gyro-stabilized

platforms

High grade (navigation grade or strategic) still in this

technology

89

Most INS systems currently are strapdown

Without moving parts
Developments in MEMS coupled with widespread
applications (ex: cellphones) pushed development

Accelerometers measure specific force
(I Kinematic acceleration

g Gravitational acceleration

f=a—yg

Gyroscope sensors usually fall into 3

categories
MEMS - oscillating micro devices detecting angular

motion
FOG - Fiber optic gyro

RLG — Ring laser gyro

INESCU -

Instituto Superior de
Engenharia do Porto

Isep

Torque motor
Duplex ball-bearing

LM + X-axis
OGaxis  slipring (40-contact)

Torque motor
Duplex ball-bearing
slipring (50-contact)

Gyro error resolver (1X)

Duplex ball-bearing
slipring (40-contact)
Multispeed resolver
(1xand 16x)
Outer
gimbal
MG axis
& 6,
Stable
member

iy
7
II/,,I

Middle
gimbal

.//I////,/,

S il

Torque motor
Duplex ball-bearing
slipring (40-contact)

I 1y

Imu case
(cutaway)

Duplex ball-bearing Duplex ball-bearing

slipring (40-contact) slipring (50-contact)
Multispeed resolver (1x and 16x) Multispeed resolver (1x and 16x)
Figure from [1]

Novalabs IMU module

[1] image adapted from (Apollo Operations Handbook, LMA 790-3-LM), in P. Corke, “Robotics Vision and Control”, Springer, 2011
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Inertial Navigation Systems

Inertial sensors Support Attitude Navigation

(accel., gyroscopes) electronics computation computation
A

Magnetometer

Attitude and heading reference system - AHRS

Inertial Navigation System - INS

Analog Devices ISEP embedded . . .
ADRXS610 gyroscope IMU unit Xsens Mti-10 AHRS iIMAR INAV-FMS-E
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Fiber Optic Gyros

e FOG and RLG gyros measure rotation using the Sagnac effect

— Rotation causes the light path in a fiber optic coil or ring laser path
to be longer in the direction opposite to the rotation

— Two light signals are “sent” to the path and the phase difference
measures the motion

Image: “Ring laser gyroscope produced by Ukrainian
"Arsenal” factory on display at MAKS-2011 airshow#,
by James Nockson
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INS Mechanization

o Integration of the raw accelerations and angular velocities to provide
position and orientation

Gravitational
Computation
IMU
-] n n
Accelerometer fin > f Ld = f g s| @Ah
Gyroscope @, Wiy " " "
+ J. 2-02+0% ) xv
#
mﬂ‘
-4
Earth rotation rate N
Compute w], |

Figure from [1]

[11Y. Yoon et al “Real-time precision pedestrian navigation solution using Inertial Navigation System and Global Positioning System”, Advances in
Mechanical Engineering 7(3) - March 2015
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Wide range in quality

Isep

Engenharia do Porto

e From consumer to strategic
— Ex: embedded IMU with ~15°/hr
— Spacial FOG with ~1°hr

— Phins ~0.1%hr (0.6 naut
miles/hr)

o North seeking capabilities

— Detecting earth rotation and
determine Earth spinning axis

Earth rotation rate

I MEMS

Tactical )
@
(@]
O
Industrial
Optical,
Mechanical, Consumer
etc.
1 i } =
0.01 0.5 15 40 100

[deg/h] gyro bias stability

direction (north)
— Degrades with latitude

Unmanned Autonomous Vehicles in Air, Land and Sea | Polit. Milano 2016

Figure from [1]

INESC TEC
Embedded INS

IxBlue Phins 6000 APPlied Navigation
Spacial Fog
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GNSS+INS Integration

o GNSS fix correct INS drift
o INS provides navigation in case of satellite loss
e High rate from INS

o Multiple architectures of integration depending on sensor fusion
level

Position error (m)

20 0 Satellite
] NG loss
. [X>)
[}
10 0

* d Xgx x
% x
x x> x.\c X, %y
¥

1 INS s@PS]|

10 1 1 | 1 | 1

How X p

*x
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GPS/INS integration

o GPS/INS integration architecture depends on the type and
level of data fusion algorithms

o Integration architectures [11[21[3]
— Uncoupled
— Loosely coupled
— Tight coupled
— Ultra-tight coupled

[1] David H. Titterton and John L. Weston. Strapdown Inertial Navigation Technology, The Institution of Electrical Engineers, second
edition, 2004
[2] Gerard Lachapelle Andreas Wieser, Demoz Gebre-Egziabher and Mark Petovello. “Weighting GNSS Observations and Variations of
GNSS/INS Integration”. InsideGNSS,pages 26—-33, 2007
[3] Antonio Angrisano, “GNSS/INS Integration Methods”, 2010
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GNSS/INS Integration

e Uncoupled
— Separate systems
— Filter integrating outputs of each system
— Both can operate standalone

Receiver | GPS

Position/Speed

Position
—» Speed
Attitude

GPS/INS Integration
F 3

INS
Position/Speed/Attitude
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GNSS/INS Integration

e Loosely coupled
— Standalone GNSS
— Output of fusion filter used in te INS mechanization
— Requires access to mechanization in INS

GPS
Position/Speed

Receiver

Position
——p Speed
Attitude

GPS/INS Integration
F 3

I
| 1
| 1
| 1
| 1
| 1
| 1
| 0 .
| INS Mechanization —
| " INS
| i
| I
| I
| I
| I

Position/Speed/Attitude

INS Error Correction
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GNSS-INS integration

e Tightly coupled
— Highly integrated fusion
— GNSS raw data (pseudoranges, phase data) integrated with INS output
— Can use data from less than 4 satellites
— Estimated data used in the mechanization process
— High quality output

Receiver | GPS

Raw Data
v

| GPS/INS Integration | |
F N

INS Mechanization

|

|

___________________________________ " INS |
Position/Speed/Attitude |

INS Error Correction
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GNSS/INS integration

o Ultra tight coupled
— Most tight integration

— GNSS raw radio signals are used (signal correlation is affected by the filter with INS
information and also feed to it)

— Requires direct access to the radio processing (usually not available)
— Filter output feedback to INS mechanization
— Filter complex and difficult to tune

|

| GPS
: Raw Data
|

_________________ ] v

Position/Speed/Attitude

|

|
|

| : |
|

| g—plNS Mechanization — |

: * | INS :
| |

I I |

|

|

|

- -

INS Error Correction
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AlS — Automatic Identification System

External Ship tracking for legal, security, and marine traffic management

Legal mandated identification system installed in all relevant marine vessels (all
passenger ships and above 300 ton)
AlS transmitter

— Broadcasts ship identification, position and navigation details

— VHF transceiver

— Positioning system (GPS or Loran-C) and gyrocompass
— 2-10 sec broadcasts (in transit) or 3min interval (anchored)

Non encrypted communications, subject to spoofing

Frequently small ships turn it off when not desiring to be located (ex: fishing vessels in
non authorized areas)

Q VT NA1°1433TAT
\ W009°47'39.52"
| A28 | (41.2427, -009.7943)
- Vila doiConde El
e 7 N
& LECKO [NL] 9.6 knots / 4° & EMaiaf o Y
Position received: 3 minutes ago Vb g |
Destination: UDDEVALLA & = & - _
t & Pow « \
@ o NG
. Espinho "7
: | A32 |
ﬁ Santa Maria
dajFeira
A te

Image snapshot from www.marinetraffic.com 0
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AIS

e AIS transmitters tracked by base stations on shore or
satellite
e Two classes

— A - Large commercial vessels (integrated display, 12.5W
transmission, SOTDMA, ...)

— B - Leisure or lighter commercial ( 2W, CSTDMA or
SOTDMA,...)

e AIS transmitter
— 74 Km range
— Broadcasts ship identification, position and navigation details
— VHF transceiver ClassA
— Positioning system (GPS or Loran-C) and gyrocompass e
— 2-10 sec broadcasts (in transit) or 3min interval (anchored)

Class B
www.garmin.com

Receiver,
www.em-trak.com
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Underwater vehicle localization

e Problems : No GPS!, No Radio!
o Harsh and limiting environment

o Sensors for underwater localization
— Pressure sensor
— INS
— Magnetometers
— DVL sonars
— Profilling sonars
— Imaging sonars
— Acoustic positioning systems
— Cameras
— Structured light vision systems
— LIDAR ?7??
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Underwater navigation instruments

INSTRUMENT VARIABLE INTERNAL? UPDATE RATE PRECISION RANGE DRIFT
Acoustic Altimeter Z — Altitude yes varies: 0.1-10 H=z 0.01-1.0 m varies -
Pressure Sensor Z — Depth yes medium: 1 Hz 0.01% full-ocean —
Inclinometer Roll & Pitch yes fast: 1-10 Hz 0.1-1° +45° —
Magnetic Compass Heading ves medium: 1-2 Hz 1-10° as0"° —
Gyro Compass Heading yes fast: 1-10 Hz 0.1° asn” 10°/h
Ring-Laser Gyro Heading ves fast: 1-1000 Hz 0.0018° 360" 0.44° /h
Bottom-Lock Doppler XYZ — Velocity yes fast: 1-5 Hz 0.2-1.0% 30-200 m —

12 kHz LEL XYZ — Position NO varies: 0.1-1.0 H=z 0.01-10 m 5-10 km —

300 kHz LEL XYZ — Position NO 1.0-5.0 Hz +0.002 m typical 100 m —

103

From: Ryan Eustice , “Large-Area Visually Augmented Navigation for Autonomous Underwater Vehicles”, PhD. Thesis, MIT, 2005
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Underwater robot localization

e Infra-structured support
— Absolute positioning, error bounding
— Acoustic beacon support (LBL,SBL,USBL)
— Fixed or moving beacons
— Limited operation areas
— High logistics and operational cost

e Non infra-structured
— Dead reckoning sensors (IMU, DVL)
— Terrain based / SLAM
— Drifting position
— Flexibility in area of operation
— Allows stealth operation (security and military applications)

e Possible GPS fixes when at surface
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AUY Navigation

AUV Navigation

Sensor Technolo S
gy Geophysical
acoustic
inertial / dead reckoning transponders optical acoustic magnetic
and modams
I T I
|
1
COMpAass DWL (AN pressura manocular sierao
3ENS0r magnatomelar
Cameras
singke fixed short ultra-short lomg
beacon baseling baseling baseling | imaging ranging
GlEs
Transpundars acoustic songar songr
modearm SONAR
Sensor Hardware _
manned surface il 7 _______ “‘\_ ______ _‘5{: __________ ”1|
suppar '
: autonamous homogeneous heterogeneous :
: surface crafis feams teams :
I I
| - . " !
| Cooperative Localization !
Collaboration B e ’

Figure from [1]

[1] L. Paull, S. Saeedi, M. Seto, and H. Li, “AUV Navigation and Localization: A Review,” IEEE J. Ocean. Eng., vol. 39, no. 1, pp. 131-
149, Jan. 2014.
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Depth

o Easy direct measurement of depth from pressure sensors (limited absolute
error)

e 1 bar for each 10m of water column

e Initial calibration required

o Pressure sensor output depends on temperature

o Depends on water density (on the column) and on atmospheric pressure
e Analog or digital outputs

o Can be integrated in other sensors (ex: CTD for oceanographic applications,
DVL, etc)

e High precision sensor typical accuracy and precision
— Acuracy 0.002% FS
— Precision 0.05% FS

Model 33x from Keller Druck
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Other sensors

e Inclinometer
— Measures roll and pitch angles
— Slow dynamics

o Magnetic compass
— Measures earth magnetic field — yaw angle
— Sensitive to electromagnetic perturbations

— For underwater vehicles operating in open sea
relatively reliable
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Acoustic localization systems

e Based on acoustic ping signals providing range measurements (or bearing)

e Synchronous or asynchronous

— TWTT/ TOA — Two Way Time Travel /Time Of Arrival /Spherical Nav
Distance to transponder obtained from the difference time from pinging to the receiving of acknowledge

— OWTT /TDOA — One Way Time Travel /Time Difference of Arrival/ Hyperbolic Nav
Distance inferred by the time of arrival of transponder signals (with synchronization, less flexible)

o External localization (vehicle tracking) / vehicle self-localization
e Update rate dependent on distance

o Dependence on acoustic conditions
— ater sound speed (~1500 m/s) variable with temp or salinity
—  Multipath
— Noise

o With or without communication to the vehicle (ROVs, acoustic communications)
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Spherical navigation

e Location determined by trilateration

1 B
o Distances to known beacons are !
determined by the time of arrival of T A
acknowledge from each beacon T
T l T l Vehicle
 Points of constant return time lie in a sphere R ;istar']ce tO'B

o Intersection of spherical surfaces gives
position of the vehicle

e Do not require synchronized clocks
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Hyperbolic Navigation
e Localization process where the vehicle

determines its position from the time difference
of arrival of signals from known beacons

e The points in hyperbolic surface have the same

time difference of arrival (relative phase) \\
Figure adapted from www.alancordwe\.co.uk

Lines of constant dT from C and Master

e Requires time synchronization of emitting
signals

o Phase ambiguity issues T T T B

e Loran C, and GPS examples of these type of
navigation systems l l

Vehicle

dT
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LBL — Long Baseline Acoustic Navigation

e Set of known acoustic beacons and acoustic transponder on vehicle

e Vehicle interrogates each beacon and range is determined by the two-way
time of travel (TWTT)

e Requires environment infra-structuring and known beacon position
o Trilateration based system
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Trilateration

subtracting 1st eq in 2" eq

r? —rd+d*
N 2d

substituting in 18t eq, intersection is obtained (circumference)

2 _ 2 (ri —r3 +d°)*
4d? -'

substituting * + 2 = r7 — 2% in the 3'Y sphere and resolving in order to y

2 _ 2 2 N2 a2 a2 2 a9
ri—rg—x (=) +57 r-rtitt i

Yy = o e — X
2] 2] 7

now with x, and y known, manipulating 15t eq

: : -
y = 4y/r2 — 22 — 42, What if there are more beacons"
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Trilateration — Unconstrained Least Squares

e A simple trilateration algorithm with measurement noise [1]
e Vehicle assumed to be static

p € R™  vehicle position
pi € R" e {1.2,....m}

RO, Landmark
P = [pl pm] e R™*™ positions

ri=|p—pill twi, iec{l,2,...,m}
L J \ {1}
Ti Figure from [1]
Range measurement Measurement
to landmark i noise
T [ T PROBLEM
r — (T1,..., 'm W = |[wy,..., Wy . —~ .
7155 7] Compute estimate p & R™ of P
r — [7 7= 1T . . ,
r = [7"1» cee T-m] given measurements I — I' + W with W a zero mean
R —-E {WWT} c Rm>m  Measurement error Gaussian error with covariance R < [R"*m
covariance matrix

[1] A. Alcocer, “Positioning and Navigation Systems for Robotic Underwater Systems”, PhD. Thesis, IST, 2009.
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Trilateration — Unconstrained Least Squares

e Manipulating the squared measurements in order to obtain a linear equation in the position and its
square norm, a linear LS can be solved (ignoring dependence of position on the norm) (1.2,

d; = T?:Q — Hp - piHQ _ (p B Pi)T(p B pi) _ pr o QP;'FP 4 p;rp?: Square of distance

to landmark i

Square of distance measurements
Error in square

d-z'. L= ?F-Q — (?‘?; + ’ZU@')Q — ?f + 2?‘?;20@' + wf = dz-_ —+ 2?‘7;’10?; -+ /wf — d-i. + 51 distance

(2

measurement
d=d+¢
Square of distances
4] [p'p—2plp+pipi 1] [pl]  [plp]
d=|: | = I =pl* |:| -2 p+
i _pr —2plp+ pglpm_ 1] _PE;__ _P?;_Pm_

= ||p[/*1,, — 2PTp + 5(PTP)

[1] A. Alcocer, “Positioning and Navigation Systems for Robotic Underwater Systems”, PhD. Thesis, IST, 2009.

[2] K. Cheung et al, “Least squares algorithms for time-of-arrival based mobile location”, IEEE Trans. On Acoustics, Speech and Singnal
processing, vol2, pp145-148,2004
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Trilateration — Unconstrained Least Squares

ail ... din an [bﬂ {bl O}
S N n y(b) =6 : = . e
With the 5() operator defined as: 9(A) =9 SR =| |k O(b) =0 - ] ER

a,lﬂ a.r‘m af,.lm [an [D an

Reorganizing  d = ||p/|*1,, — 2P p + §(PTP) Itcomes: oPTp — pl*1,, = 5(PTP) —d+¢ (*)

d=d+¢

o

(*) Can be written in linearform | A@ = b + 6 with A= [QPT *14 =
2pT —1J

[QPT _1,,,“] p | =sPTP)—d~+¢ Bl — di

IplI2 b=3dP'P)-d= :

2 b § Pm |2 — dm

P
Note that all unknowns are in @ 6 = [ p 2]

solving for the unknown neglecting the constraints between P and ||p|/?

6* =arg min ||[A6 —Db|* mp |0" = (ATA)_IATb

9ER”+1

[1] A. Alcocer, “Positioning and Navigation Systems for Robotic Underwater Systems”, PhD. Thesis, IST, 2009.
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LBL

e Beacons
— On sea bottom

— Moored with marking buoys on the
surface

— On moving surface buoys/ASVs
(moving baseline)

o Many commercial solutions
incorporate acoustic communications
o High operational costs
— Deployment from the surface
— Calibration

- Recovery Evologics and Konsgberg LBL nodes
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800

e Limited area of operation (few km for low freq.)

o Relatively low ping rates
— 10 sec ping cycles
o Errors (low freq)
— HIPAP USBL, LBL 7-15kHz
— Range accuracy 0.2% (no ray bending ...)
— 6m @ 3000m
— Ray bending can increase error to 10s of meters...
e Errors (high freq) . . . .
—  LBL 300KHz (EXACT) T w0

— Few centimeter
— Limited range (100’s m)

e Error sensitive to range and position

e Beacon location requires calibration

— Beacon interrogation from multiple locations at surface to
trilaterate its exact location

— Calibration errors impact directly on navigation solution

700+

600

500
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o Surface buoys
— Acoustic transceiver

— GPS receiver (position and time
synchronization)

— Radio communications (allowing real time
vehicle tracking)

— Known position

e Can support multiple acoustic localization
methods (LBL or inverted USBL)

Image from [2]

o No deep water installation required

e Position available at surface

ACSA (Spain) GIBs INESC TEC Acoustic location buoy

*Also known as GIB Buoys — GPS Intelligent Buoys [1]

[1] Thomas, H.G. "GIB Buoys: An Interface Between Space and Depths of the Ocean", Proceedings of IEEE Autonomous Underwater Vehicles,
Cambridge, MA, USA, pages 181-184, August 1998
[2] A. Alcocer, “Positioning and Navigation Systems for Robotic Underwater Systems”, PhD. Thesis, IST, 2009
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Intelligent Buoys

Radio
 Antenna

|Strc7>|;k.,__\ |l »I@

 carbon |
Fiber Mast|

Connectors
Housingf

INESC TEC Acoustic
Nav. Buoy

J Elevat;d ]
= iPlate

Stabilization |
Device

Acoustic I
/" Transducer |

| Mourlngj Rlng
- Assembly

Electronics | -
Cylinder |
Bottom
EndCap|

[1] R. Almeida et al., “Man portable acoustic navigation buoys", Proceedings of IEEE Oceans Shanghai 2016
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Moving Baseline

o Example [1], AUV navigating in a moving baseline |
e TWTITT asynchronous Beacon B2 | transmission

S2
Beacon B1
\132 $1

s e " 34
N Vehicle m
AKE

on
(98]

LN
-
B

l detection

n

tot bt bt t,

B2 responds also to B1 response S2 with S3, vehicle
receives this at t4, allowing for determination:

m=dy +dy +1(

With the values obtained by the time differences

(x,y) position ts — 1o
lh=—

m:d%—d%Jrlz ay o
21 ta —to
m=——

2 — 2 _ .2 &
y=ydi—e y te — 13
(o —m ——

2 2c

[1]1 A. Matos, N. Cruz “AUV navigation and guidance in a moving acoustic network,” MTS/IEEE Oceans 2005.
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SBL- Short Baseline Navigation

e Shorter baseline than LBL (a few meters)

e Beacons on surface support ship hull or infrastructure
e Beacon position already pre-calibrated

e Shorter baseline implying larger errors

e Does not allow ships of opportunity

e High costs for ship installation
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SBL-Short Baseline Navigation

e Two possible architectures

— Beacon based — TDOA — Uses time differences at the receiver
(surface ship) to determine range and bearing

— Transponder based — TOA — Uses
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USBL — Ultra Short Baseline Navigation*

o Vehicle carries a transponder

e Transceiver on the surface (attached to vessel)

e Very short baseline (cm)

e Single transceiver at surface (containing multiple elements)

o USBL transceiver provides range and bearing to the target transponder

o Orientation of the transceiver required
— Usual integration with AHRS or INS

*Also known as SSBL — Super Short Baseline
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USBL-Ultra Short Baseline

e Lower cost and simpler to operate than LBL or SBL
e Can be used in vessel of opportunity

o Orientation of returning signal measured by signal phase
difference

e Slant range measured by TOA (beacon mode also possible)
e Measurements available at the transceiver side

e Position estimation very sensitive to transceiver head attitude _ _
. . HIPAP 502 USBL transceiver
error and increased errors with slant from Kongsberg

e For onboard AUV navigation, acoustic communications
integration is also required

o Possible inverted configuration (IUSBL)

e Accuracy, Ex: HIPAP USBL, LBL 7-15kHz

— Range accuracy 0.2% (no ray bending ...)
—  6m @ 3000m
— Ray bending can increase error to 10s of meters...

transponder transceiver
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USBL-Ultra Short Baseline

e Range detected by TDOA

b
o Orientation by phase delay at receiver array A PEENEN
bcosO B /l
A{ T b :“‘\\ 5 e
¢ Ag0:27rf(—](:039 OK A /
A o \C ‘
a)——@:>At:—(p b cos 6
t )
4 A@-c /
0 =cos” s
2nf-b 2D example

T/R

Figure adapted from [1]

P. Ridao “An introduction to Applied Underwater Robotics”, Bts 09
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DVL Navigation

o DVL provides relative velocity to the bottom (or other structures)

e Direct measuring of u, vand w

o Lower position drift compared with INS (only one integration step

to obtain position)

o Limited sensor range (bottom track <100m, typically)

e Accuracy

— 0.1-0.5% travelled distance
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Doppler effect

o Relative velocity of transmitter and receiver alter
receiving frequency

2nd wave
1st wave
VT — distance covered by emitter in one period v
cT — distance between emitter at initial position and receiver ( covered by 15t wave) .
c(t-T) — distance from emitter to the second wave after traveling N
one period <b )
Ar - wavelength at receiver
fr - received wavelength ¢
ft - transmitting frequency vT
T - transmitting period
vV - emitter velocity ~

c - sound velocity

0=0v1T—cT+ A\, T

fr FA = c = | fr = [i(:5)
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DVL Navigation

Transmitter moving, frequency at the stationary receiver

O (T) M R
Jr = T£Z - I
Transmitter stationary, frequency at the receiver (moving)
OB (R)

fr=F(1F2) e

In case of DVL on a vehicle, its is a moving transmitter and receiver,
intermediate reflection treated as a stationary receiver followed by a
stationary transmitter

-

152 op) (R)

fr = fe(35) — T

N . | . OR) (R)
Simplifying (v much less than ¢) multiplying by denominate conjugate

/T —

Sea bottom reflection

VTt NAfC
Af=f—fimt2d — U= 37,

C

C sound velocity

[1] N. Brokloff, “Matrix algorithm for Doppler sonar navigation”, MTS/IEEE Oceans 1994.
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Typical 4 transducer Janus configuration

e Multiple beams provide all components of velocity (in instrument fixed
frame)

e With movement in any direction at least 3 transducers move not
perpendicular to acoustic signal direction of travel

e Each beam measures the velocity component on its direction (given by
unit vector &i)

Janus configuration
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DVL velocity

o Considering the instrument reference frame Vehicle/instrument velocity
perfectly aligned with the body fixed frame {b}

— Vehicle velocity vbf is projected in each beam axis

—  With all 4 beams with bottom lock, solution is over
determined, it can be obtained by least squares or by
choosing pairs of beams

Vir =u v w]

Unit vectors for the four beams
é1 = [—cosa 0 sin ¢
€9 = [cos a 0 sin /]
és = [0 — cosa sin ]
[

é4 = [0 cos a sin

Doppler shift on beam i

Afi=2Le; vy

(&

Velocity along beam i

M A
Vi = € " Vbf
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DVL velocity

Doppler shifts in matrix form as function of velocity

Afi €1
Af X u
E}
Af=| T2 =2 | | | = 21E vy,
Afs | e3
R w
AV | 4 |

Pre-multiplying by ET (since E is not square) and
solving the least squares problem in order to Vbf

ETE|'Af = 2Ly,

Vo == 55 [E'E] 'EAf
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DVL navigation

Doppler sensor returns velocity in its reference frame Vdoppler
if sensor not aligned with {b} then Y doppler = Vo f

but the sensor frame {doppler} rotation wrt. {b} can be
determined, thus

. b
Vof = R’doppler " Vdoppler

Typically DVL sensors allow for
coordinate conversion with external

velocities in the world frame (or NED {n}) are obtained by the input from navigation sensors such as
linear transformation INS or GPS
n Additional LS velocity error measure
vV, = Rb (gb’ 0’ ¢) . be output is also commonly available

world or NED velocities v,, are integrated to determine position

X = 2(to) + [, va(r)dr
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Terrain based navigation

Use information from the environment in order to locate itself

Absolute location ({n}, {ecef} etc)
Map is needed

Relative navigation

Determination of relative position and pose
(velocities) to relevant local elements in the
environment (ex: relative to {I})

Many applications do not require absolute
positioning* (ex: motion relative to a wall,
inspection of a ship hull)

Two possibilities:

MAP - Map based navigation

- Local relative positioning

No MAP (ex. Visual servoing)
- SLAM
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Terrain based navigation

Problem: where am | ?
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Terrain based navigation

What can | see?

Depth profile

TN—

Image
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Terrain based navigation

Do | have a map?

Where can | be and see

this?
Where?
Depth profile K‘
TN

and if | have an image?

How do | find the
possible location?

How to find 1t???
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Terrain based navigation

What | should observe here?

m

What | have seen?
TN

Do they agree?

m
TN—

NO — | am not here

What | should observe here?

TN

What | have seen?
TN
Do they agree?
—_——>——— YES-1lam here
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Terrain based navigation

Complete search in all the
map can be problematic

— Large search space

— Computational power

— Multiple possible locations
for the same observed data

2 ?771/
6 DOF!!

Full unconstrained search is large, but usually some prior knowledge exists on initial
location and current possibilities.

Start with initial position and continuously integrate
measurement information to estimate location
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Terrain based navigation
e Unstructured environments increase the complexity

e Problem in trying to match all the data to map
— Dimension
— Map usually does not have the same detail/granularity
— Noise and uncertainty in the measurement process

¥

Extract relevant information from the observations
Identify features or landmarks.
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Terrain based navigation

e Maps usually don’t contain image
information

o Even if a globally referenced ground
truth image map (mosaic or other) exists

— Matching difficult
Huge search space
Perspective, distortions, noise, etc

Difficult to know: “what image should | see here?”
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Terrain based navigation

Is there any relation?

»
<« »

A g "_;
Where can | see this? Where can | see this?

This image seems better to answer
this question, why?
141 Unmanned Autonomous Vehicles in Air, Land and Sea | Polit. Milano 2016



L}
I ‘ Instituto Superior de °J INESC
Engenharia do Porto S

Terrain based navigation

Features

— Relevant, distinctive pieces of
information

— Can exist in map

— Identification problems
Feature description
Similitude
Difficult to identify uniquely (possibly
there also can be identical elements in
the environment)

— Unstructured environment increases

difficulty

— May not be static

— Do not need to correspond to
identifiable objects .
Feature points in the image
No special meaning, except for the
identification process
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Terrain based navigation

Identification
e Color
e Shape

o Template
e SIFTs, SURFs
e Other descriptors, etc

o Data association problem
— e Map building

May or may not exist in the MAP

143 Unmanned Autonomous Vehicles in Air, Land and Sea | Polit. Milano 2016



144

L}
I ‘ Instituto Superior de °_J INESC
Engenharia do Porto S

Visual odometry

e Sequence of images can be used to derive the motion of the observer between
frames

What motion?

——

Correspondences

Wrong correspondence!!!

Rotation R
Translation t
What about scale?
Velocity?

e If corresponding points between frames are available it is possible to obtain a rotation and translation
between both, minus a scale factor
e Velocity can be derived if the time of frame is available

Unmanned Autonomous Vehicles in Air, Land and Sea | Polit. Milano 2016
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Visual odometry

o Used to provide relative position measurements — velocity
e Dependent on texture

o Difficult to use underwater due to imaging environment
restrictions (loss of visibility, blur, noise...)

e For deep sea requires illumination — energy issues
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Terrain based navigation

Initialization

— PREDICT — UPDATE CYCLE

e Continuous process
maintaining an estimate of
the vehicle state

l

Feature extraction

———

o Data association plays
relevant role
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SLAM - Simultaneous Localization
and Mapping

What if there is no map? ® SLAM Problem

Simultaneous Localization And Mapping (SLAM)

Build at the same time a map of the environment and locate itself in it

o Identify possible landmarks from the Landmark observation is
observations correlated with vehicle position
e Maintain relative position in relation to a set
of landmarks Re-observation of landmarks
e Perform the predict-update cycle on the required

landmark positions and vehicle positions
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SLAM Problem

Initial Conditions:
— Robot was no previous information about its localization
— Robot was no previous information about the environment

Working Principle:

— As the robot moves around:

Builds a map according to sensor gathered information (Map is relative to the
estimated localization)

Localization is estimated by combining dead reckoning with map based
observations

— Loop Closure
When the robot returns to a previously visited area:
Accumulated localization uncertainty can be reduced

Map and localization are correlated, so a correction in localization is back
propagated to improve the map accuracy.

Useful link for SLAM references, algorithms and code:
www.openslam.org
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SLAM Problem

e Simultaneous estimate of landmark and robot locations

XJ  State of the vehicle

u Control at time k-1 to
k drive the vehicle to xk

IT);  Location of ith landmark

Zj].  Location of ith landmark

History of vehicle localization

Xok = {xo,z1, .., Tk} = {0:k—1, Tk}
Controls history
Uk = {u1,uz, ..., up} = {Upik—1, ur}

Landmark

— ;
Landmarks w ]
m = {mq,ma, ...,Mmp} ‘ Estimated e D- . *
A
. True — é| 5
All landmark observations )

Z0:k ={z1,29,..., 25} = {Zﬂzk—l,zk}

[1] H. Durrant-Whyte and T. Bayley, “Simultaneous Localisation and Mapping (SLAM): Part | The Essential Algorithms”, IEEE
Robotics & Automation Magazine, 2006
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SLAM

Joint probability (posterior) of landmark localization given vehicle state P(;L';; T?1|ZD~L- Uk '-ED)

Observing model (observing probability given the landmark and vehicle state) P(z;; |;{r.;h m}

Motion model as a state transition probability distribution P(rp|Ti—_1, uk)

e SLAM implemented in a classical predict-update cycle

Predict
P(xk, m|Zo.k—1,Unk,x0) = ]P(i-'kl'vfk—lsuk) x P(xg—1,m|Zo:k—1, Up:k—1, To)dxTp_1

Update

_ P(zp|z m)P(xk, m|Zo.p—1, Up,, To)
P(zk|Zo:k—1, Uoik)

P(zi,m|Zok, Up:k, To)
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landmarks are re-mapped in the wrong

global location... error accumulates without bounds and robot becomes lost” [2]

[1] Jonghyuk Kim and Salah Sukkarieh, “Real-time implementation of airborne inertial-SLAM”, Journal of Robotics and Autonomous Systems, 2007
[2] Newman, P.; Kin Ho, "SLAM-Loop Closing with Visually Salient Features," in Robotics and Automation, ICRA, pp.635-642, 18-22 April 2005
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SLAM Frameworks

Extended Kalman Filter (EKF)

Localization and map are represented by Gaussian probability distributions
Noise should be white and Gaussian

State vector is augmented to represent not only the robot pose but also
map related states.

SLAM follows a prediction/update cycle
— Prediction: Robot localization is updated using a motion model

— Update: Landmarks are observed:
New landmarks are added to the map
Existing landmarks are used to compute corrections

Complexity grows quadratically with the number of states 11— handle
hundreds of landmarks

[1] Hugh Durrant-Whyte and Tim Bailey. Simultaneous Localization and Mapping (SLAM): Part | The Essential Algorithms. IEEE Robotics and
Automation Magazine, 2, 200
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EKF SLAM

o EKF complexity grows quadratically with the number of states [1]

— Strategies for removing high percentage of landmarks, maintaining only
meaningful ones, without loss in map consistency [1].

— SLAM is preformed in a local area around robot localization [2].
Estimates are later combined with the global map when the robot moves
away.

— Map partitioning in low correlated sub-regions [3].

[1] Gamini Dissanayake, Hugh F. Durrant-Whyte and Tim Bailey, ~"A Computationally Efficient Solution to the Simultaneous Localisation and Map
Building {(SLAM)} Problem". ICRA, pages 1009--1014, 2000.

[2] Jose Guivant and Eduardo Nebot, "Optimization of the simultaneous localization and map-building algorithm for real-time implementation,"
Robotics and Automation, IEEE Transactions on , vol.17, no.3, pp.242,257, Jun 2001.

[3] J.J. Leonard and H.J.S. Feder, A computational efficient method for large-scale concurrent mapping and localisation". In Proceedings of the
Ninth International Symposium on Robotics Research, pages 169-176, 2000
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Particle filters
o Recursive Bayesian estimator

o Non-parametric state representation by means of particles, composed
by samples and weights.

e Do not impose any specific distribution shape
o Handle high non-linear and multi-modal distributions

o For a infinite number of particles, the posterior density function
approximates the optimal estimate [9].

o Complexity in traditional Particle Filters grows proportionally with the
number of particles — even for small maps, SLAM implementations are
not feasible

[1] M. Sanjeev Arulampalam, Simon Maskell, and Neil Gordon, A Tutorial on Particle Filters for Online Nonlinear/non-Gaussian Bayesian
Tracking". IEEE Transaction on Signal Processing, 50:174-188, 2002
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Fast SLAMITI

o EXxploits conditional independence of the landmarks given the robot
trajectory

e SLAM problem is decoupled into a localization problem and a set of
landmark estimation problems, conditioned on the localization

e Localization is estimated through a particle filter.
— Each particle contain its own map.
— Inside a particle, each landmark is estimated in a dedicated EKF.

o Advantages:
— Low complexity O(P.logM) — Handles thousands of landmarks
— Each particle develops its own data association

[1] Michael Montemerlo, Sebastian Thrun, Daphne Koller, and Ben Wegbreit. “FastSLAM: A Factored Solution to the Simultaneous Localization and
Mapping Problem.”In Proceedings of the AAAI National Conference on Artificial Intelligence, pages 593-598. AAAI, 2002
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Graph SLAMI'

o SLAM formulation using a graph:

— Nodes correspond to robot poses

— Edges represent sensor measurements and establish
constraints between nodes

— An optimization step finds the node configuration that
maximizes the measurement consistency

[1] Grisetti, G.; Kimmerle, R.; Stachniss, C.; Burgard, W., "A Tutorial on Graph-Based SLAM," in Intelligent Transportation Systems Magazine,
IEEE , vol.2, no.4, pp.31-43, 2010
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Some Underwater SLAM implementations

e SLAM in a Marina Environment
— EKF SLAM for structured environments.

— Prediction follows a constant velocity kinematic
model

— State updates:
DVL — Bottom lock 1.5Hz velocity updates plus

depth measurement I a.
Compass+inclinometer — Low cost motion pash-dot—slam map
reference unit provides attitude updates at Solid — slam traj
0.1Hz.

— Landmarks from MSIS
— No Loop closure

— Accuracy around 15 meters for a trajectory of
600 meters.

— Structured environment, since straight lines
are extracted from MSIS data.

Images from [1]

[1] D. Ribas et al, Underwater SLAM in Man-Made Structured Environments*, Journal of Field Robotics, Wiley, 2008
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o Bathymetry based SLAM .
e SLAM with particle filter : iy
o Featureless - No data association i |
o Discretized bathymetry map (evidence grid) — ... -

25D - -

»e "% 220 e e 150 3400 W5

— Single depth estimate per cell
— Updated with EIF (Extended Information)

e Vehicle states estimated in separated EKF
o Adaptive particle sizing

[1] S. Barkby, S. B. Williams, O. Pizarro, and M. V. Jakuba, “A featureless approach to efficient bathymetric slam using distributed particle
mapping.” Journal of Fields Robotics, vol. 28, no. 1, pp. 19-39, 2011
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BPSLAM

e Hierarchical

e Each resample particle does not copy the map but only
points to it

e Each particle has only a map (its own grid) with

observations after resampling
o Full map obtained by following the tree
B.
Mapped Region Available

for Particle 9

Marked nodes indicate map for particle 9
Leafs current particles

Figure from [1]

[1] S. Barkby, S. B. Williams, O. Pizarro, and M. V. Jakuba, “A featureless approach to efficient bathymetric slam using distributed particle
mapping.” Journal of Fields Robotics, vol. 28, no. 1, pp. 19-39
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Particle Set i No match = no weight

-T\
{Direction of

Estimate Node i ||' || Motion

Estimate Vd /
Vector '/4!3

0 1 2 3

X map index Dbsg:?;tiﬂn X map index Est=NH XmapindeX  preyious weights have
Map Structure Map Structure Obs-@ Map Structure {242 ;3{:3;;\;’
Bad match = low weight. —_ and Particle 2 10 be
Root Good match = hlgh weight. E removed. Particle 3
" Particle % = remains unchanged.
8‘ Particle 1 is replaced
Particle ID EE E o by Particles 4 and 5,
which both inherit all of
{0,311 3} {2 2} {g 2} Particle 1's estimates.
Ancestry Tree Ancestry Tree Coordinates Ancestry Tree

(c) Particle resampling that re-

(b) Particle weighting proce-
sults from weighting

(a) Particles forming initial
dure upon recbserving seabed

depth estimates

Figure from [1]

[1] S. Barkby, S. B. Williams, O. Pizarro, and M. V. Jakuba, “A featureless approach to efficient bathymetric slam using distributed particle
mapping.” Journal of Fields Robotics, vol. 28, no. 1, pp. 19-39, 2011
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Real Time Visual SLAM

o Relative navigation for ROVs without
additional sensors
— Deep sea ROV navigation for legacy systems
— Additional functionalities

Image Acquisition

Landmark

o Navigation aid for AUVs near bottom or Detection T
close to structures

— For ex: for precise landing in benthic
transporting robots

Data Association ——

e Visual navigation in multiple robot
operations at close range (docking, motion
coordination etc)
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RT-SLAM framework

e Real-Time SLAM software infrastructure

o Developed at LAAS-CNRS % e
e Monocular vision based
e FastSLAM

e Landmark parameterization

— Inverse depth (L) () (] [u)
DM1| |DM2 DM3
— Re-parameterization of converged L‘Jx

landmarks to euclidean point (3 params or) (07 ﬁﬂ ﬁ,q\f}m [" 6 ) [T’T}

VS 6, leading to computation and memory

Image from [1]

gains) W —world
. M — map
e Image proceSSIng bt
— Harris corner detector S — sensor
— ZNCC for point matching © —observation
. o MM — map manager
o Constant velocity prediction model DM — data manager

e Active search — One-point RANSAC

[1] C. Roussillon et al., “RT-SLAM: A Generic and Real-Time Visual SLAM Implementation,” in Computer Vision Systems, vol. 6962, J. L.
Crowley, B. A. Draper, and M. Thonnat, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 31-40
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Point and line features detection

* Motion dynamic changes
lead to divergence (rotations,
lack of INS)

 Dependence on the low
guality image

« Low number of features in
the scenario

Unmanned Autonomous Vehicles in Air, Land and Sea | Polit. Milano 2016
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ROV trajectory and landmark evolution

ROV trajectory

Underuater SLAM
Ground thruth
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—* init point landmark
+  converge point landmark
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* Only monocular
vision

 Feature extraction
even with harsh
conditions

« Useful for when only
Image is available
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Trajectory and landmark
evolution

—*— init point landmark
4+ converge point landmark
—— line landmark

landmark Id

600

400

200

[
0 10 20 30 40 50 60 70 80 90 100
time (s)
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Realhme Derformcmce

0 50 100 150 200 250 200

e Monocular up to 30 fps — Pentium Dual core

o For the test tank case real time performance with an Intel Atom Dual
Core (25 W)
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Underwater SLAM implementations

Author Scenario Main Sensors Estimator Landmarks cll_oos?ﬁe Submaping
[1], 2006 Sea DVL, INS, Compass, LBL EKF Beacon No No
coast Locations
[2], 2007 Flooded DVL, INS_, _Depth sensor, PE Walls NO NO
caverns Profiling sonar
Shallow DVL, Compass, Tilt sensor,
[3], 2008 Pressure sensor, Stereo EIF SURF Yes No
waters "
vision
: arina : : alls es es
4], 2008 Mari DVL, MRU, MSIS EKF Wall Y Yl
(5], 2009 Shallow DVL, Heading Gyroscope, oD EKE FLS No NO
waters FLS

169

[11 E. Olson, J. Leonard, and S. Teller, “Robust range-only beacon localization,” IEEE Journal of Oceanic Engineering, vol. 31, no. 4, pp. 949-958, 2006.
[2] N. Fairfield, D. Jonak, G. Kantor, and D. Wettergreen, “Field results of the control, navigation, and mapping systems of a hovering auv,” in UUST, 2007
[3] I. Mahon, S. Williams, O. Pizarro, and M. Johnson-Roberson, “Efficient view-based slam using visual loop closures,” IEEE Transactions on Robotics, vol. 24, no. 5, pp.

1002-1014, 2008.

[4] D. Ribas, P. Ridao, J. Tardos, and J. Neira, “Underwater slam in manmade structured environments,” Journal of Field Robotics, vol. 25, pp. 898—921, 2008.
[5] Koh, A.C.T.; Wijesoma, W.S.; Pua, S.L.; Lee, K.W.; Kalyan, B., "Shallow waters SLAM experiments on meredith AUV using forward looking sonar," in OCEANS, pp.1-6,

26-29 Oct. 2009
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Underwater SLAM implementations

Author Scenario Main Sensors Estimator Landmarks Loop Submaping
closure

DVL, Gyrocompass, GPS, Graph SSS
Fhel), 200 Sea Depth sensor, SSS SLAM Ladmarks No No
[19], 2011 Sea Camera PF SIFT No No
[20], 2010 Sea =ty bl sek iy (R PF Terrain Yes Yes

Compass

t2m DVL, IMU, Depth sensor SSS
[21], 2010 (352:: SSS EKF Landmarks Yes Yes
[22],2011 ‘T’At‘;'é?;" DVL, IMU, Camera EKF SURF Yes Yes

[6] Luc Jaulin, “A Nonlinear Set-membership Approach for the Localization and Map Building of an Underwater Robot using Interval Constraint Propagation”, IEEE
Transaction on Robotics, vol 25, no. 1, pp. 88-98, 2009

[7]1 S. Augenstein and S. Rock, “Improved frame-to-frame pose tracking during vision-only slam/sfm with a tumbling target,” in ICRA, pp. 3131-3138, 2011

[8] S. Barkby, S. B. Williams, O. Pizarro, and M. V. Jakuba, “A featureless approach to efficient bathymetric slam using distributed particle mapping.” Journal of Fields
Robotics, vol. 28, no. 1, pp. 19-39.

[9]Aulinas, J.; Llado, X.; Salvi, J.; Petillot, Y.R., "Selective Submap Joining for underwater large scale 6-DOF SLAM," in Intelligent Robots and Systems (IROS), 2010
IEEE/RSJ International Conference on, vol., no., pp.2552-2557, 18-22 Oct. 2010

[10] Aulinas, J.; Carreras, M.; Llado, X.; Salvi, J.; Garcia, R.; Prados, R.; Petillot, Y.R., "Feature extraction for underwater visual SLAM," in OCEANS, 2011 IEEE - Spain ,
vol., no., pp.1-7, 6-9 June 2011
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