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Motivations and main ideas

Some data from

A survey of industrial model predictive control
technology

J. Qin, T. Badgwell
Control Engineering Practice, 11 (2003), pp. 733-764
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Motivations and main ideas

Table 6
Summary of linear MPC applications by areas (estimates based on vendor survey; estimates do not include applications by companies who have
licensed vendor technology)*

Area Aspen Honeywell Adersa® Invensys SGS*© Total

Technology Hi-Spec
Refining 1200 480 280 25 1985
Petrochemicals 450 80 — 20 550
Chemicals 100 20 3 21 144
Pulp and paper 18 50 — — 68
Air & Gas — 10 - — 10
Utility — 10 — 4 14
Mining/Metallurgy 8 6 7 16 37
Food Processing — — 41 10 51
Polymer 17 — - — 17
Furnaces — — 42 3 45
Aerospace/Defense — — 13 — 13
Automotive — — 7 o 7
Unclassified 40 40 1045 26 450 1601
Total 1833 696 1438 125 450 4542
First App. DMC: 1985 PCT:1984 IDCOM:1973

IDCOM-M:1987 RMPCT:1991 HIECON:1986 1984 1985

OPC:1987
Largest App. 603 x 283 225 x 85 - 31 x 12 -

*The numbers reflect a snapshot survey conducted in mid-1999 and should not be read as static. A recent update by one vendor showed 80%
increase in the number of applications.
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Motivations and main ideas

Some data from

Economic assessment of advanced process
control - a survey and framework

M. Bauer, I. K. Craig
Journal of process control, 18 (2008), pp. 2-18
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Motivations and main ideas

A Kkey objective of industrial advanced process control (APC)
projects is to stabilize the process operation. In order to justify the
cost associated with the introduction of new APC technologies to a
process, the benefits have to be quantified in economic terms.

In the past, economic assessment methods have been developed,
that link the variation of key controlled process variables to
economic performance quantities.

This paper reviews these methods and incorporates them in a
framework for the economic evaluation of APC projects.

A web-based survey on the economic assessment of process
control has been completed by over 60 industrial APC experts.
The results give information about the state-of-the-art assessment
of economic benefits of advanced process control
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Motivations and main ideas
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Motivations and main ideas
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Fig. 4. Industrial use of APC methods: survey results.
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Motivations and main ideas
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Fig. 6. Main profit contributors: survey results.
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Motivations and main ideas
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Motivations and main ideas

S 40
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y0 () MPC u(t)

regulator

Attime t At time t+1
* Compute optimal future  Compute optimal future
input sequence input sequence

w@®),ut +1),.., u(t+N—1) :> w(t + 1), u(t +2),...,u(t + N)

based on the current model, based on the current model,

and on the predictions of and on the predictions of
references and disturbances. references and disturbances.
* Apply u(?) * Apply u(t+1)

Receding horizon principle
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Motivations and main ideas

Model predictive control is a family of algorithms
that enables to:

* Include explicitly in the problem formulation
contraints on input/state/output variables, and
also logic relations

* Consider MIMO systems of relevant dimensions

* Optimize the system operation

* Use simple models for control (obtained, e.g,,
by identification tests) or very detailed
nonlinear ones
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» Ingredients and features of MPC regulators
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Ingredients

1) The system model (discrete time):

* fis continuous
* f{0,0)=0 (i.e.,, Oisan
equilibrium point)

x(t+1) = fx(@),u®))

2) The constraints

Constraints are imposed on input and state variables

-  Xclosed
x(t) & X Suitable sets close
> * U compact
u(t) € U  They contain the origin (at

least for regulation)
* Better if convex
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Ingredients

3) Cost function (regulation):

For practical (e.g.,, computational) reasons the cost is defined over
a finite - prediction - horizon of length N steps.

At time t the following is minimized:

t+N—1

J = 2 [l(x(k),u(k))]+[Vf(x(t + N))]
k=t
Stage cost: Terminal cost:
* Continuous  Continuous
« [(0,0)=0 « V¢(0)=0

* Definite positive ¢ Definite positive
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Ingredients

The optimization problem (MPC)
At time t solve

w(©) -1
Subject to
x(t+1)=f(x(t),u(t)) System dynamic model
x(t) € X State constraints
u(t) e U Input constraints
x(t+N) € Xy Terminal state constraints
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Ingredients

The two ingredients that still need to be defined (terminal cost
Ve(x(t + N)) and terminal constraint x(t + N) € X¢) are

necessary to guarantee two fundamental properties:
* Recursive feasibility
* Convergence/stability

What are these properties?

Recursive feasibility

[f the MPC optimization problem has a solution at the initial time
step 0, then a solution of MPC exists at each time stept = 0

Necessary for preventing from having no solution at a given time
-> no control input would be defined!
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Ingredients
Convergence

[f a solution of the MPC optimization problem exists at each time
instant t, then

lx(t)|| > 0ast - +oo
To ensure recursive feasibility and convergence/stability we need
to define the 4th main ingredient.

4) Auxiliary control law

It is defined as a control law u(t) = x(x(t)) such that the origin is
an asymptotically stable equilibrium for the controlled system

x(t+1) = f(x(@),r(x(t)))
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Ingredients

5) Terminal constraint set X,

[tis defined in such a way that, if x(t) € X, then

x(t+1) = fx(6), k(x()) € X, | Itisapositively

invariant set!
X(t) € X i.e., X 2 Xf
u(t) =k(x(t)) eU

For instance, if x(t) € X¢, then we could apply the auxilary control
law for all future time instants, and we obtain that,

m=p x(t) > 0ast - +oo

==p> the state and input constraints are always verified.
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Ingredients

6) Terminal cost V/;

It is defined in such a way that «it decreases» if the auxiliary
control law is applied.

Vs (f(x,}c(x))) < Ve(x) — I(x, k(x))

It is needed to establish formal convergence results
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Ingredients

Basically, the latter ingredients are required for the
following reason:

In N steps the terminal region must be reachable

HIC SUNT LEONES

This implicitly defines the set of all initial conditions
such that the MPC optimization problem is feasible,
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Ingredients

HIC SUNT LEONES

How to enlarge the terminal set?

* Increase the number of steps N (greater
computational burden)

* In some applications (like autonomous vehicles)
the MPC for tracking can be extremely beneficial

Marcello Farina Introduction to MPC




Outline

>

» Model predictive control for tracking
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MPC for tracking - main idea
A

x(N) .xGOSl{ Xf/
. @)

° x(1)

But I can reach the I cannot reach the

intermediate point terminal region in N
x:(0) In N steps! steps!
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MPC for tracking - main idea
A

The solution lies in defining (in the optimization problem)
intermediate goals x. (t), that can be reached in N steps, which
eventually satisfy the property

xg(t) — X (final goal) ast — +oo
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MPC for tracking - ingredients

1) The system model (discrete time):

* fis continuous
x(t+1) = f(x(t),u(t)) * ¥, is our output goal
y(£) = h(x(®),u()) + /WG, He) g, 1€ (Xo, o)
is an equilibrium point
and corresponds to the
output y; = h(x¢g, Ug)
2) The constraints

Constraints are imposed on input and state variables

: e X closed
x(t) & X Suitable sets
> * U compact
u(t) ¢ U * They contain X; and U,

e (Convex
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MPC for tracking - ingredients

3) Cost function:

At time ¢ the following is minimized: Stage cost:
FAN—1 * (Continuous

) = ;[l(x(k)—xa(t),u(k)—u(;(t))] : 100.0)=0

e Definite positive

Terminal cost:
{Vf (x(t +N) — xg (t))] e Continuous

2 * Vr(0)=0
[-H/”yG () = ¥l ]  Definite positive
Cost on the temporary
goal y.(t) (its deviation Sl (®)ug (8))=x¢(t)
with respect to the final Ve (t) = h(xg(t), ug(t))

goal y. is penalized)
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MPC for tracking - ingredients

The optimization problem (MPC)
At time t solve

J

min
u(t),..,u(t+N—-1),ys(t)

Subject to
x(t+1) = f(x(t),u(t)) System dynamic model
y(t) = h(x(t), u(t))
x(t) € X State constraints

u(t) e U Input constraints

(x(t+ N),ys(t)) € Zs Terminal constraint
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MPC for tracking - ingredients

The terminal cost Vr (same definition as before) and terminal

constraint (x(t + N), y(t)) € Zs) are necessary to guarantee:
* Recursive feasibility (same as before)
* Convergence/stability

Convergence

If a solution of the MPC optimization problem exists at each time

instant ¢, then B
lyOIl » ygast - +

4) Auxiliary control law

[tis defined as a control law u(t) = k(x(t), yeq) such that the
equilibrium point (x.g, u.,) is asymptotically stable for the
controlled system x(t + 1) = f(x(t), k(x(t), yeq)) and where

Yeq — h(xeq' ueq)
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MPC for tracking - ingredients
5) Terminal constraint
It is defined in such a way that, if (x(t), yeq) € Z¢, then

(x(t +1),¥eq) € Zs [t is a positively
if x(t+1) = f(x(t), k(x(t), Yeq)) invariant set!
x(t) X

u(t) = k(x(t),yeq) €U

For instance, if(x(t), y.q) € Zf, then we could apply the auxilary
control law for all future time instants, and we obtain that,

= y(t) > YeqaSt o +oo

==p> the state and input constraints are always verified.
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MPC for tracking - ingredients

Terminal constraint - remark

The following solution can be applied: terminal point as the
terminal constraint set.

(x(t+ N),ys(t)) € Zf Terminal set

N

x(t+N) = x;(t) Terminal point

In this case we don’t need to define the auxiliary control law and
the terminal set, which are rather complex to obtain, especially for
non linear and/or large-scale systems.
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»Model predictive control for linear systems
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Linear systems - Ingredients

For simplicity we go back to the regulation case

1) The system model:
The pair (4, B) must be
x(t+ 1) = Ax(¢t) + Bu(t) controllable (at least

stabilizable)
2) The constraints

Linear inequality constraints
x(t) € X —> A,x(t) < b,
u(t) U —> Ayu(t) < by

For example, the saturation constraint |u| < 1 can be
writtenas [—1 1
[ 1 ]u = [1] 10 -1
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Linear systems - Ingredients

3) Cost function - common choice:

At time t the following is minimized:
t+N—1

J= ) lxGOlE + el + (e + NI
k=t

Quadratic stage cost: Quadratic terminal cost:
[(x(k), u(k)) Ve(x(t + N)) = [lx(t + N)||Z
= llx(B)I§ + llu(k) Iz = x(t + N)TPx(t + N)

= x(k)TQx (k) + u(k)" Ru(k)

Where the symmetric matrix
Where the symmetric matrices  P>0 is not arbitrary (see later).
Q=0 and R>0 are arbitrary.
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Linear systems - Ingredients
4) Auxiliary control law

It is defined as a linear control law u(t) = Kx(t) such that the
matrix F=A+BK is asymptotically stable, i.e., such that the system

x(t+1) = Ax(t) + BKx(t)
enjoys stability properties.
5) Terminal constraint set X,

In the linear case the terminal constraint can be enforced
using linear inequalities
6) Terminal cost Iy

We can define Vf(x(t + N)) = ||x(t + N)||3, where P is the
solution to the Lyapunov inequality:

(A+BK)TP(A+ BK)— P < —(Q + KTRK)
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Linear systems - MPC problem

The resulting MPC optimization problem can be cast as a QP
problem (quadratic program)

Easy to be solved by available solvers (Matlab
quadprog, IBM C-Plex cplexgp)

To see how, we define

x(t) u(t)
X, = : U, = : ]
x(t+ N) u(t+N—1)
And we compute that
I 0 e 0
Xt — x(t) + : . : Ut
AN KAN‘lB -+ Bl
Y
A B
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Linear systems - MPC problem

At time t the cost function is:
t+N—1

J= ) xGolE + Gl + llx(e + NI
k=t
= ”thlé + |Uell%
where Q - 0 R - 0
Q=|: =~ | R=[: -~
0 - P 0 - R
We compute: datum Optimization

labl
J =A@ BUJE + 105 T
= U{ (R +BTQB)U, + 2x(6)" AT QBU; + () AT QAx(?)

Independent of the optimization
variable: it can be neglected
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Linear systems - MPC problem

At time t the constraints are:

A, - 0771 u(t) b,
E ", E E — c/unt S : — /&u
0 - A Jlu(t+N-1) b,
_Ax 0]y x(t) _bx_
P : = A, (Ax(t) + BU) < | i | = 4,
0 - A lx(t+ N) Dy |
Overall:
]|
A, Bl = b, c/l o‘lx(t)
C’qin ’&in(t)

Marcello Farina Introduction to MPC




Linear systems - MPC problem

The resulting quadratic program is

min U (R + BTOB)U, + 2k(t)TATQBY,

[

Subject to @Ut < lh,l(t)

To solve it we can us atlab function quadprog:

X |= QUADPROG(HHf,AHbﬂ

e
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» Remarks
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Remarks - advantages

* Possibility to account for future consequences of present
actions:

* Actions are taken based on predictions
* Forecasts of disturbances and references are used

* We can naturally account for constraints:
* Oninputvariables, e.g., saturations
* On «internal» state variables, e.g., velocities, accelerations
* On «external» state variables, e.g., position, orientation, ...

* We can chose the optimal strategy (in some sense) in each
situation
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Remarks - disadvantages

* Especially in the non linear case, MPC optimization problems
are computationally burdensome!

* Solutions must be computed in a very short time interval
(short sampling time)

* Vehicle models are frequently non linear, e.g., the (simple)
unicycle model (differential drive)

A
(% =|v|cos®
; ly=vsing 1DPULS
Ké = |

v

Do we have to use a non linear MPC implementation?

» The MPC-based controller may be not applicable in
practice...
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Remarks - linearization for vehicle applications

We may resort to linearization techniques.
There are different possibilities:

1. Linearization around a fixed - equilibri
0 =0,v=0,w=0.

- point with

(% = v cos O

[smg o] 07]
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Remarks - linearization for vehicle applications

2. Linearization around a trajectory.

In the MPC framework, at time t the trajectory, predicted N steps
forward at the previous time step (i.e., t-1) is available. We have
the sequences

u(t -1t —1),ut|t—1),..,u(t+ N - 2|t — 1)

x(t|t—1),...,x(t+N -1t —1)

The linearized (affine) model, used for computing predictions at
time t, is obtained linearizing the model in each point of the
available predicted trajectory, i.e., fork =t,...,t + N — 1

x(k +1) = ACklt — D (x(k) — x(klt — 1)) +
B(klt — D(u(k) —ulk|t — 1)) + x(k + 1|t — 1)

of 9f
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Remarks - linearization for vehicle applications

3. Feedback linearization

Using a suitable internal control loop, we can make the
system’s dynamic evolve as a linear system.
This approach is better analyzed in the following lecture.

» This approach may turn out to be prone to modelling
errors.
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