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Some data from

A survey of industrial model predictive control 
technology

J. Qin, T. Badgwell
Control Engineering Practice, 11 (2003), pp. 733-764
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Some data from

Economic assessment of advanced process
control – a survey and framework

M. Bauer, I. K. Craig
Journal of process control, 18 (2008), pp. 2-18
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A key objective of industrial advanced process control (APC)
projects is to stabilize the process operation. In order to justify the
cost associated with the introduction of new APC technologies to a
process, the benefits have to be quantified in economic terms.
In the past, economic assessment methods have been developed,
that link the variation of key controlled process variables to
economic performance quantities.
This paper reviews these methods and incorporates them in a
framework for the economic evaluation of APC projects.
A web-based survey on the economic assessment of process
control has been completed by over 60 industrial APC experts.
The results give information about the state-of-the-art assessment
of economic benefits of advanced process control

Introduction to MPC
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66  APC experts (38 APC users and 28 APC suppliers)
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Plant

Plant:
• Complex
• Large scale
• Non linear
• Continuous/discrete 

time
• Perturbed

MPC
regulator

Model:
• Physical (state-space)
• Identified

Predictive:
• Actions are taken

based on 
predictions

• Forecasts of 
disturbances and 
references are used

Control:
• Recursive solution

to a finite horizon
optimization
problem

• State/input 
constraints are 
enforced

𝑢(𝑡) 𝑦(𝑡)𝑦0 (𝑡)

𝑑(𝑡)



Motivations and main ideas

Marcello Farina 12Introduction to MPC

Plant
MPC

regulator

𝑢(𝑡) 𝑦(𝑡)𝑦0 (𝑡)

𝑑(𝑡)

At time t
• Compute optimal future 

input sequence
𝑢 𝑡 , 𝑢 𝑡 + 1 ,… , 𝑢 𝑡 + 𝑁 − 1

based on the current model, 
and on the predictions of 
references and disturbances.

• Apply u(t)

At time t+1
• Compute optimal future 

input sequence
𝑢 𝑡 + 1 , 𝑢 𝑡 + 2 ,… , 𝑢 𝑡 + 𝑁

based on the current model, 
and on the predictions of 
references and disturbances.

• Apply u(t+1)

Receding horizon principle
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Model predictive control is a family of algorithms
that enables to:

• Include explicitly in the problem formulation
contraints on input/state/output variables, and 
also logic relations

• Consider MIMO systems of relevant dimensions
• Optimize the system operation
• Use simple models for control (obtained, e.g., 

by identification tests) or very detailed
nonlinear ones
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Ingredients

𝑥(𝑡 + 1) = 𝑓(𝑥(𝑡), 𝑢(𝑡))

Constraints are imposed on input and state variables

1) The system model (discrete time):

2) The constraints

Marcello Farina 15

𝑥(𝑡) ∈ 𝕏

𝑢(𝑡) ∈ 𝕌

Introduction to MPC

Suitable sets

• f is continuous
• f(0,0)=0 (i.e., 0 is an 

equilibrium point)

• 𝕏 closed

• 𝕌 compact

• They contain the origin (at
least for regulation)

• Better if convex



Ingredients

For practical (e.g., computational) reasons the cost is defined over 
a finite – prediction – horizon of length N steps.

3) Cost function (regulation):

Marcello Farina 16Introduction to MPC

At time t the following is minimized:

𝐽 = ෍

𝑘=𝑡

𝑡+𝑁−1

𝑙 𝑥 𝑘 , 𝑢 𝑘 + 𝑉𝑓(𝑥(𝑡 + 𝑁))

Stage cost:
• Continuous
• l(0,0)=0
• Definite positive

Terminal cost:
• Continuous
• 𝑉𝑓(0)=0

• Definite positive
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The optimization problem (MPC)

At time t solve

min
𝑢 𝑡 ,…,𝑢(𝑡+𝑁−1)

𝐽

Subject to

𝑥(𝑡 + 1) = 𝑓(𝑥(𝑡), 𝑢(𝑡))

𝑥(𝑡) ∈ 𝕏

𝑢(𝑡) ∈ 𝕌

System dynamic model

State constraints

Input constraints

𝑥(𝑡 + 𝑁) ∈ 𝕏𝑓 Terminal state constraints
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The two ingredients that still need to be defined (terminal cost
𝑉𝑓(𝑥(𝑡 + 𝑁)) and terminal constraint 𝑥(𝑡 + 𝑁) ∈ 𝕏𝑓) are 
necessary to guarantee two fundamental properties:
• Recursive feasibility
• Convergence/stability

What are these properties?

Recursive feasibility

If the MPC optimization problem has a solution at the initial time 
step 0, then a solution of MPC exists at each time step 𝑡 ≥ 0.

Necessary for preventing from having no solution at a given time 
-> no control input would be defined! 
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Convergence

If a solution of the MPC optimization problem exists at each time 
instant t, then.

𝑥(𝑡) → 0 as 𝑡 → +∞

To ensure recursive feasibility and convergence/stability we need
to define the 4th main ingredient.

4) Auxiliary control law

It is defined as a control law 𝑢 𝑡 = 𝜅(𝑥(𝑡)) such that the origin is
an asymptotically stable equilibrium for the controlled system

𝑥(𝑡 + 1) = 𝑓(𝑥(𝑡), 𝜅(𝑥(𝑡)))



Ingredients

Marcello Farina 20Introduction to MPC

5) Terminal constraint set 𝕏𝑓

It is defined in such a way that, if 𝑥(𝑡) ∈ 𝕏𝑓, then

𝑥(𝑡 + 1) = 𝑓(𝑥(𝑡), 𝜅(𝑥(𝑡))) ∈ 𝕏𝑓 It is a positively
invariant set!

𝑥(𝑡) ∈ 𝕏 i.e., 𝕏 ⊇ 𝕏𝑓
𝑢 𝑡 = 𝜅(𝑥(𝑡)) ∈ 𝕌

For instance, if 𝑥(𝑡) ∈ 𝕏𝑓, then we could apply the auxilary control 
law for all future time instants, and we obtain that, 

𝑥(𝑡) → 0 as 𝑡 → +∞

the state and input constraints are always verified.
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6) Terminal cost 𝑉𝑓

It is defined in such a way that «it decreases» if the auxiliary
control law is applied.

It is needed to establish formal convergence results

𝑉𝑓 𝑓 𝑥, 𝜅 𝑥 ≤ 𝑉𝑓 𝑥 − 𝑙(𝑥, 𝜅 𝑥 )
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Basically, the latter ingredients are required for the 
following reason:

In N steps the terminal region must be reachable

𝕏𝑓

𝕏𝑁

𝑥(0)
𝑥(1)

𝑥(𝑁)

𝑥(0)
𝑥(1)

𝑥(𝑁)

This implicitly defines the set of all initial conditions
such that the MPC optimization problem is feasible, 
𝕏𝑁

HIC SUNT LEONES
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𝕏𝑓

𝕏𝑁

𝑥(0)
𝑥(1)

𝑥(𝑁)

𝑥(0)
𝑥(1)

𝑥(𝑁)

How to enlarge the terminal set?
• Increase the number of steps N (greater

computational burden)
• In some applications (like autonomous vehicles) 

the MPC for tracking can be extremely beneficial

HIC SUNT LEONES
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MPC for tracking – main idea
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𝕏𝑓

𝕏𝑁

𝑥(0)

𝑥(𝑁)

But I can reach the 
intermediate point
𝑥𝐺(0) in N steps!

I cannot reach the 
terminal region in N
steps!

𝑥𝐺(0)

𝑥(1)

OK… now I can 
reach the terminal 
region in N steps!
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𝑥(0)
𝑥(𝑁)

𝑥𝐺(0)

𝑥(1)

The solution lies in defining (in the optimization problem) 
intermediate goals 𝑥𝐺(𝑡), that can be reached in N steps, which
eventually satisfy the property

𝑥𝐺 𝑡 → ҧ𝑥𝐺 (final goal) as 𝑡 → +∞

𝑥𝐺(1)

𝑥(𝑁 + 1)

𝑥𝐺(2)

𝑥(𝑁 + 2)
𝑥(𝑘 + 𝑁)

𝑥(2)

𝑥𝐺(𝑘)



MPC for tracking - ingredients

𝑥(𝑡 + 1) = 𝑓(𝑥(𝑡), 𝑢(𝑡))

Constraints are imposed on input and state variables

1) The system model (discrete time):

2) The constraints
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𝑥(𝑡) ∈ 𝕏

𝑢(𝑡) ∈ 𝕌

Introduction to MPC

Suitable sets

• f is continuous
• ത𝑦𝐺 is our output goal
• f( ҧ𝑥𝐺 , ത𝑢𝐺)= ҧ𝑥𝐺 , i.e., ( ҧ𝑥𝐺 , ത𝑢𝐺) 

is an equilibrium point
and corresponds to the 
output ത𝑦𝐺 = ℎ( ҧ𝑥𝐺 , ത𝑢𝐺)

• 𝕏 closed

• 𝕌 compact

• They contain ҧ𝑥𝐺 and ത𝑢𝐺
• Convex

𝑦(𝑡) = ℎ(𝑥(𝑡), 𝑢(𝑡))
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3) Cost function:
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At time t the following is minimized:

𝐽 = ෍

𝑘=𝑡

𝑡+𝑁−1

𝑙 𝑥 𝑘 − 𝑥𝐺 𝑡 , 𝑢 𝑘 − 𝑢𝐺(𝑡)

+𝑉𝑓 𝑥 𝑡 + 𝑁 − 𝑥𝐺 𝑡

+𝛾 𝑦𝐺 𝑡 − ത𝑦𝐺
2

Stage cost:
• Continuous
• l(0,0)=0
• Definite positive

Terminal cost:
• Continuous
• 𝑉𝑓(0)=0

• Definite positive

Cost on the temporary
goal 𝑦𝐺 𝑡 (its deviation
with respect to the final
goal ത𝑦𝐺 is penalized)

f(𝑥𝐺 𝑡 ,𝑢𝐺 𝑡 )=𝑥𝐺 𝑡
𝑦𝐺 𝑡 = ℎ(𝑥𝐺 𝑡 , 𝑢𝐺 𝑡 )
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The optimization problem (MPC)

At time t solve

min
𝑢 𝑡 ,…,𝑢 𝑡+𝑁−1 ,𝑦𝐺(𝑡)

𝐽

Subject to

𝑥(𝑡) ∈ 𝕏

𝑢(𝑡) ∈ 𝕌

System dynamic model

State constraints

Input constraints

(𝑥 𝑡 + 𝑁 , 𝑦𝐺 𝑡 ) ∈ ℤ𝑓 Terminal constraint

𝑥(𝑡 + 1) = 𝑓(𝑥(𝑡), 𝑢(𝑡))

𝑦(𝑡) = ℎ(𝑥(𝑡), 𝑢(𝑡))
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The terminal cost 𝑉𝑓 (same definition as before) and terminal 
constraint (𝑥 𝑡 + 𝑁 , 𝑦𝐺 𝑡 ) ∈ ℤ𝑓) are necessary to guarantee:
• Recursive feasibility (same as before)
• Convergence/stability

Convergence

If a solution of the MPC optimization problem exists at each time 
instant t, then.

𝑦(𝑡) → ത𝑦𝐺 as 𝑡 → +∞

4) Auxiliary control law

It is defined as a control law 𝑢 𝑡 = 𝜅(𝑥 𝑡 , 𝑦𝑒𝑞) such that the 
equilibrium point (𝑥𝑒𝑞 , 𝑢𝑒𝑞) is asymptotically stable for the 
controlled system 𝑥(𝑡 + 1) = 𝑓(𝑥(𝑡), 𝜅(𝑥 𝑡 , 𝑦𝑒𝑞)) and where

𝑦𝑒𝑞 = ℎ(𝑥𝑒𝑞 , 𝑢𝑒𝑞)
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5) Terminal constraint

It is defined in such a way that, if (𝑥 𝑡 , 𝑦𝑒𝑞) ∈ ℤ𝑓, then

if 𝑥(𝑡 + 1) = 𝑓(𝑥(𝑡), 𝜅(𝑥 𝑡 , 𝑦𝑒𝑞))

It is a positively
invariant set!

𝑥(𝑡) ∈ 𝕏

𝑢 𝑡 = 𝜅(𝑥 𝑡 , 𝑦𝑒𝑞) ∈ 𝕌

For instance, if(𝑥 𝑡 , 𝑦𝑒𝑞) ∈ ℤ𝑓, then we could apply the auxilary
control law for all future time instants, and we obtain that, 

𝑦(𝑡) → 𝑦𝑒𝑞 as 𝑡 → +∞

the state and input constraints are always verified.

(𝑥 𝑡 + 1 , 𝑦𝑒𝑞) ∈ ℤ𝑓
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Terminal constraint - remark

The following solution can be applied: terminal point as the 
terminal constraint set.

In this case we don’t need to define the auxiliary control law and 
the terminal set, which are rather complex to obtain, especially for 
non linear and/or large-scale systems.

(𝑥 𝑡 + 𝑁 , 𝑦𝐺 𝑡 ) ∈ ℤ𝑓 Terminal set

𝑥 𝑡 + 𝑁 = 𝑥𝐺 𝑡 Terminal point
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Linear systems - Ingredients

𝑥 𝑡 + 1 = 𝐴𝑥 𝑡 + 𝐵𝑢(𝑡)

Linear inequality constraints

1) The system model:

2) The constraints

Marcello Farina 34

𝑥(𝑡) ∈ 𝕏

𝑢(𝑡) ∈ 𝕌

Introduction to MPC

For simplicity we go back to the regulation case

The pair (𝐴, 𝐵) must be 
controllable (at least
stabilizable)

𝐴𝑥𝑥(𝑡) ≤ 𝑏𝑥
𝐴𝑢𝑢(𝑡) ≤ 𝑏𝑢

For example, the saturation constraint 𝑢 ≤ 1 can be 
written as −1

1
𝑢 ≤

1
1 0 -1-1



Linear systems - Ingredients

3) Cost function – common choice:
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At time t the following is minimized:

𝐽 = ෍

𝑘=𝑡

𝑡+𝑁−1

𝑥(𝑘) 𝑄
2 + 𝑢(𝑘) 𝑅

2 + 𝑥(𝑡 + 𝑁) 𝑃
2

Quadratic stage cost:

𝑙 𝑥 𝑘 , 𝑢 𝑘

= 𝑥(𝑘) 𝑄
2 + 𝑢(𝑘) 𝑅

2

= 𝑥 𝑘 𝑇𝑄𝑥 𝑘 + 𝑢 𝑘 𝑇𝑅𝑢(𝑘)

Where the symmetric matrices
Q≥0 and R>0 are arbitrary.

Quadratic terminal cost:

𝑉𝑓 𝑥 𝑡 + 𝑁 = 𝑥(𝑡 + 𝑁) 𝑃
2

= 𝑥 𝑡 + 𝑁 𝑇𝑃𝑥 𝑡 + 𝑁

Where the symmetric matrix
P>0 is not arbitrary (see later).
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4) Auxiliary control law

It is defined as a linear control law 𝑢 𝑡 = 𝐾𝑥(𝑡) such that the 
matrix F=A+BK is asymptotically stable, i.e., such that the system

𝑥 𝑡 + 1 = 𝐴𝑥 𝑡 + 𝐵𝐾𝑥(𝑡)

enjoys stability properties.

5) Terminal constraint set 𝕏𝑓

In the linear case the terminal constraint can be enforced
using linear inequalities

𝐴𝑓𝑥(𝑡 + 𝑁) ≤ 𝑏𝑓
6) Terminal cost 𝑉𝑓

We can define 𝑉𝑓 𝑥 𝑡 + 𝑁 = 𝑥(𝑡 + 𝑁) 𝑃
2 , where P is the 

solution to the Lyapunov inequality:

(𝐴 + 𝐵𝐾)𝑇𝑃 𝐴 + 𝐵𝐾 − 𝑃 ≤ −(𝑄 + 𝐾𝑇𝑅𝐾)
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The resulting MPC optimization problem can be cast as a QP 
problem (quadratic program)

Easy to be solved by available solvers (Matlab
quadprog, IBM C-Plex cplexqp)

To see how, we define

𝑋𝑡 =
𝑥(𝑡)
⋮

𝑥(𝑡 + 𝑁)
, 𝑈𝑡 =

𝑢(𝑡)
⋮

𝑢(𝑡 + 𝑁 − 1)

𝑋𝑡 =
𝐼
⋮
𝐴𝑁

𝑥 𝑡 +
0 ⋯ 0
⋮ ⋱ ⋮

𝐴𝑁−1𝐵 ⋯ 𝐵
𝑈𝑡

And we compute that

𝒜 ℬ



Linear systems – MPC problem
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where

At time t the cost function is:

𝐽 = ෍

𝑘=𝑡

𝑡+𝑁−1

𝑥(𝑘) 𝑄
2 + 𝑢(𝑘) 𝑅

2 + 𝑥(𝑡 + 𝑁) 𝑃
2

= 𝑋𝑡 𝒬
2 + 𝑈𝑡 ℛ

2

𝒬 =
𝑄 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑃

, ℛ =
𝑅 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑅

We compute:

𝐽 = 𝒜𝑥 𝑡 + ℬ𝑈𝑡 𝒬
2 + 𝑈𝑡 ℛ

2

= 𝑈𝑡
𝑇 ℛ + ℬ𝑇𝒬ℬ 𝑈𝑡 + 2𝑥(𝑡)𝑇𝒜𝑇𝒬ℬ𝑈𝑡 + 𝑥(𝑡)𝑇𝒜𝑇𝒬𝒜𝑥(𝑡)

datum Optimization
variable

Independent of the optimization
variable: it can be neglected



Linear systems – MPC problem
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At time t the constraints are:

𝐴𝑥 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝐴𝑓

𝑥(𝑡)
⋮

𝑥(𝑡 + 𝑁)
= 𝒜𝑥(𝒜𝑥 𝑡 + ℬ𝑈𝑡) ≤

𝑏𝑥
⋮
𝑏𝑓

= 𝒷𝑥

𝐴𝑢 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝐴𝑢

𝑢(𝑡)
⋮

𝑢(𝑡 + 𝑁 − 1)
= 𝒜𝑢𝑈𝑡 ≤

𝑏𝑢
⋮
𝑏𝑢

= 𝒷𝑢

Overall:

𝒜𝑢

𝒜𝑥ℬ
𝑈𝑡 ≤

𝒷𝑢
𝒷𝑥 −𝒜𝑥𝒜𝑥 𝑡

𝒜𝑖𝑛 𝒷𝑖𝑛(𝑡)



Linear systems – MPC problem
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The resulting quadratic program is

min
𝑈𝑡

𝑈𝑡
𝑇 ℛ + ℬ𝑇𝒬ℬ 𝑈𝑡 + 2𝑥(𝑡)𝑇𝒜𝑇𝒬ℬ𝑈𝑡

Subject to 𝒜𝑖𝑛𝑈𝑡 ≤ 𝒷𝑖𝑛(𝑡)

To solve it we can use, e.g., the Matlab function quadprog:

X = QUADPROG(H,f,A,b)

𝑈𝑡
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Remarks - advantages
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• Possibility to account for future consequences of present
actions:
• Actions are taken based on predictions
• Forecasts of disturbances and references are used

• We can naturally account for constraints:
• On input variables, e.g., saturations
• On «internal» state variables, e.g., velocities, accelerations
• On «external» state variables, e.g., position, orientation, …

• We can chose the optimal strategy (in some sense) in each
situation



Remarks - disadvantages
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• Especially in the non linear case, MPC optimization problems
are computationally burdensome!

• Solutions must be computed in a very short time interval
(short sampling time)

• Vehicle models are frequently non linear, e.g., the (simple) 
unicycle model (differential drive) 

ቐ

ሶ𝑥 = 𝑣 cos 𝜃
ሶ𝑦 = 𝑣 sin 𝜃
ሶ𝜃 = 𝜔

Do we have to use a non linear MPC implementation?
The MPC-based controller may be not applicable in 
practice…

inputs
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We may resort to linearization techniques.
There are different possibilities:

1. Linearization around a fixed – equilibrium – point with 
𝜃 = ҧ𝜃, 𝑣 = 0,𝜔 = 0.  

ቐ
ሶ𝑥 = 𝑣 cos 𝜃
ሶ𝑦 = 𝑣 sin 𝜃
ሶ𝜃 = 𝜔

Not stabilizable!
Besides, the linearization error would be huge!

𝛿 ሶ𝑥
𝛿 ሶ𝑦

𝛿 ሶ𝜃

=
cos ҧ𝜃 0
sin ҧ𝜃 0
0 1

𝛿𝑣
𝛿𝜔
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2.    Linearization around a trajectory.

In the MPC framework, at time t the trajectory, predicted N steps
forward at the previous time step (i.e., t-1) is available. We have
the sequences

𝑢 𝑡 − 1|𝑡 − 1 , 𝑢 𝑡|𝑡 − 1 ,… , 𝑢(𝑡 + 𝑁 − 2|𝑡 − 1)
𝑥 𝑡|𝑡 − 1 ,… , 𝑥(𝑡 + 𝑁 − 1|𝑡 − 1)

The linearized (affine) model, used for computing predictions at
time t, is obtained linearizing the model in each point of the 
available predicted trajectory, i.e., for 𝑘 = 𝑡,… , 𝑡 + 𝑁 − 1

𝑥 𝑘 + 1 = 𝐴 𝑘 𝑡 − 1 𝑥 𝑘 − 𝑥 𝑘 𝑡 − 1 +

𝐵 𝑘 𝑡 − 1 𝑢 𝑘 − 𝑢 𝑘 𝑡 − 1 + 𝑥(𝑘 + 1|𝑡 − 1)

𝐴 𝑘 𝑡 − 1 = ቕ
𝜕𝑓

𝜕𝑥 ,𝑢 𝑘|𝑡−1 ,𝑥 𝑘|𝑡−1
, 𝐵 𝑘 𝑡 − 1 = ቕ

𝜕𝑓

𝜕𝑢 𝑢 𝑘|𝑡−1 ,𝑥 𝑘|𝑡−1
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3.    Feedback linearization

Using a suitable internal control loop, we can make the 
system’s dynamic evolve as a linear system.
This approach is better analyzed in the following lecture.

This approach may turn out to be prone to modelling
errors.
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