

Pattern Analysis and Machine Intelligence

M. Matteucci, L. Malagò, D. Eynard
29/01/2013

Answer the following questions identifying the key aspects and try not to exceed the 1.5 page limit per question.

- Use only the 3 sheets provided by the teacher
- **Write your answers on different sheets according to the question**
- Write your name and Student ID on each sheet you turn in
- English is the official language, however Italian is allowed
- Either pen and pencil are allowed no other technical mean to support yourself is allowed

In case you have special needs (e.g., being graded within a given time) please **tell it to the teacher!**

Question 1: Logistic Regression (Answer on sheet 1 – 8 points)

Describe Linear Discriminant Analysis (LDA), its analytical form, its assumptions, and its advantages wrt plain Linear Regression (on the indicator matrix). How does it work for multi-class problems? Describe the two techniques to implement Quadratic Discriminant Analysis?

Question 2: Kernel Methods (Answer on sheet 1 – 8 points)

What is a Kernel Smoother and how it relates to k-nearest neighbors methods? What kernels are there? How can we use Kernel Smoothers for regression? And how for classification?

Question 3: Clustering (Answer on sheet 2 – 8 points)

Given the following algorithms:

- (1) k-means
- (2) Hierarchical
- (3) Spectral Clustering
- (4) DBSCAN
- (5) k-medoids
- (6) fuzzy c-means
- (7) Jarvis-Patrick
- (8) Self-Organizing Maps

complete the following sentences matching them with one (or more!) of the algorithms, answering the questions in parentheses and providing detailed explanations to motivate your choices.

(NOTE: although sentences refer to a single algorithm, there may be more than one valid choice. In these cases, provide and motivate all of them).

- (a) This algorithm relies on a "self-scaling" neighborhood (what does this mean? How can this be accomplished?)
- (b) This algorithm builds new clusters by merging or splitting existing ones (describe the differences between the two approaches... And what about the complexity?)
- (c) This algorithm can provide good results even when non-globular clusters are present (how does it/do they work?)
- (d) This algorithm works fine even with high-dimensional data (how does it reduce the dimensionality?)

Question 4: Regression (Answer on sheet 3 – 8 points)

Discuss differences and similarities between ridge regression and the lasso:

- 1) Which optimization problem do you need to solve in each method? Write down both the constrained formulation and the formulation with the penalizing term. Give a geometrical interpretation for the constrained formulation.
- 2) Can you provide a closed-form solution to any of the optimization problems in the previous point? If yes, derive β mathematically, starting from X matrix (N observations and m variables) and y vector (N observations)
- 3) If the X variables are orthonormal, there is an explicit solution for β of lasso and β of ridge regression, expressed as a simple transformations of the $\tilde{\beta}$ obtained with least squares. Explain the two different effects, and represent them on a graph where on the x axis you have $\tilde{\beta}$ of ordinary least squares, and on the y axis β of lasso and β of ridge regression.
- 4) Describe a real world scenario in which lasso would be more suitable than ridge regression and don't forget to justify your answer.