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A bit of history

e Fuzzy sets have been defined by Lotfi Zadeh in 1965, as a tool to model
approximate concepts

e In 1972 the first “linguistic” fuzzy controller is implemented

e In the Eighties boom of fuzzy controllers first in Japan, then USA and
Europe

¢ In the Nineties applications in many fields: fuzzy data bases, fuzzy decision
making, fuzzy clustering, fuzzy learning classifier systems, neuro-fuzzy
systems...
Massive diffusion of fuzzy controllers in end-user goods

e Now, fuzzy systems are the kernel of many “intelligent” devices
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Main characteristics

Fuzzy sets :
precise model in a finite number of points, smooth transition

(approximation) among them.

E.g.: control of a power
plant.

We can define what to do at the regimen
(e.g., steam temperature =120°, steam
pressure 3 atm), and when in critical
situations (e.g., steam temperature=
100°), and design a model that smoothly
goes from one point to the other.

Introduc



What is a fuzzy set?

A fuzzy set is a set whose membership function may range on the
interval [0,1].

/

Crisp sets Fuzzy sets
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Fuzzy membership functions

A membership function defines a set
Defines the degree of membership of an element to the set
H: U - [0, 1]

not very Young
A 35 years old person is:

with membership 0,3
*0Old with membership 0,2 05

enot very Young with membership 0,6 / /
0 -
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How to define MFs

Select a variable

Define the range of the variable

Identify labels

For each label identify characteristic points
Identify function shapes

Check

A o A
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Let’s try to define some MFs

First of all, the variable... Distance

Range of the variable [0..10]

Labels Close, Medium, Far

Characteristic points 0, max, middle values, where MF=1, ...
Function shape Linear

?

Close Medium Far

<>
10 Distance [m]
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MFs and concepts

MFs define fuzzy sets
Labels denote fuzzy sets
Fuzzy sets can be considered as conceptual representations
Symbol grounding:
reason in terms of concepts and ground them on objective reality

R=252 G=67 B=48
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Some conceptual differences

A fuzzy set with only one
member with the maximum
membership

A fuzzy set with a set of
members with the maximum
membership

a- a
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Some variations

0.8

0.6

0.4
0.2

0.8
0.6
0.4

0.2

trapmf

gbellmf

trimf gaussmf gauss2mf smf

zmf

psigmf

dsigmf pimf sigmf
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Fuzzy sets on ordinal scales

0 - no education

1 - elementary school
2 - high school

3 - two year college
4 - bachelor's degree
5 - masters's degree
6 - doctoral degree

—— poorly educated
—— highly educated
very highly educated
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Fuzzy sets and intervals

Smoother transition

in labeling a value

A
very low medium high very high
very low  low medium high  very high

-IIIIIIIIIIHT
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Frame of cognition

Fuzzy sets covering the universe of discourse

very low medium high very high

OO

Each fuzzy set is a granule

_|V
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Properties of a frame of cognition

Coverage

Each element of the universe of discourse is assigned to at least a
granule with membership > 0

Unimodality of fuzzy sets

There is a unique set of values for each granule with maximum
membership

Fuzzy partition:

for each value of the universe of discourse the sum of membership
degrees to the corresponding granules is 1
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Robustness

Let’s consider a punctual error as the sum of the errors in

interpretation by fuzzy sets due to imprecise measurements, noise, ...

e (@) = [1y(a) - my@)] + .. + [Ha(3) - py(a)]

and the integral error, as the integral of e(a) over the range of a

e = j e(a) da

It can be demonstrated that the integral error of a fuzzy partition is

smaller than that of a boolean partition, and that it is minimum w.r.t.

any other frame of cognition.
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a-cuts

The a-cut of a fuzzy set is the crisp set of the values of x such that p(X) = a

a,(X)={x| p(x) za}

L — >

a,(X) X |

1 I
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Support of a fuzzy set

The crisp set of values x of X such that p(x) > 0is the support

of the fuzzy set f on the universe X

support
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Height of a fuzzy set

The height A(A) of a fuzzy set A on the universe X is the highest
membership degree of an element of X to the fuzzy set

uﬂ

Heigth

v

A fuzzy set f is normal iff h{x)=1
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“Strange” MFs

Singleton:
a fuzzy set with
one member

Interval:
a fuzzy set with
members all at
the maximum height

u Three
3 X
u 1 Medium
3 5 X
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Convex fuzzy sets

A fuzzy set is convex iff

L (AX; + (1-A) x3) =2 min [p (X)), p (X;)]

for any x4, X, in [] and any A belonging to [0,1]

u 4

=

v
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Standard operators on fuzzy sets

Complement

L7 (X)=1- ps(X)

Union

Map (X) =max [Ha(X), K (X)]

Intersection

M 1n 12 (X) = min [U fl.(X)I U t2 (X)]
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Standard operators on fuzzy sets

Complement

M e (X)=1- K¢ (X)

Union

Kt o, (X) = max (K, (x), K, (X))

Intersection

Kt o, (X) =min (e, (x), K¢, (X))
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Examples of operator application

Complement

Y

|
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Union

Y
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Intersection

Y

Y
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Fundamental property of standard operators

Using the standard operators the maximum error is the one we have
on the operand’s MFs

uﬂ

v
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Complement

c:[0,1]-> [0,1]
C(Ma(X)) = p_a(X)

Axioms:

1. c(0)=1; c(1)=0 (boundary conditions)

2. Forall aandbin[0,1], if a < b then c(a) = c(b) (monotonicity)
3. Cis a continuous function

4. cis involutive, i.e., c(c(a))=a for all ain [0,1]
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Intersection and T-norms

Hang(X) = i[HA(X), Hp(X)]

Axioms:

1
2
3
4
5
6
7

.i[a, 1]=a (boundary conditions)

.d=b impliesi(a,d) =i(a,b) (monotonicity)

. i(b,a) = i(a,b) (commutativity)

.i(i(a,b),d) = i(a,i(b,d)) (associativity)

. 1 1S continuous

. a = i(a,a) (sub-idempotency)

. 8;< a, and b, < b, implies that i (a;,b,)<i(a,,b,)

(strict monotonicity)
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T-norms: examples

for a=1 we have ab

ab
max| a,b,a]

for a=0 we have min(a, b)

tl(:uA(X)nuB (X)) = max(0, IUA(X) + Uy (X)-1)

Ha(X) Bl (X)
IUA(X) + Uy (X) _/JA(X) Lt (X)

t,s(LA(X), g (X)) =
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Union and T-conorms (S-norms)

K aos (X) = U[pa(X), He(X)]

Axioms:

1. u[a, O]=a (boundary conditions)

2. b < d implies u(a,b) < u(a,d) (monotonicity)
3. u(a,b) = u(b,a) (commutativity)

4. u(a,u(b,d)) = u(u(a,b),d) (associativity)

5. U is continuous

6. u(a,a) = a (super-idempotency)

7. a;< a, e b; < b, implies that u(a;,b,)<u(a,,b,) (strict monotonicity)
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T-conorms: examples

S(pa(X), (X)) = min{1, (L, (X)) + ps(x)P)'? p =1
S, (Ua(X), Hg(Xx)) = min(1, 1,(x) + (X))

S3(1a(X), ts(X)) = max(p,(X), Us(X))
S, (Ha(X), ts(X)) = pa(X) + ts(X) = p,(X) Oprg(X)
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Aggregation

Ha(X) = h[pa1(X), ., Han(X)]

Axioms:

1. h[O,..., 0]=0, h[1,..., 11=1 (boundary conditions)
2. monotonicity

3. h is continuous

4. h(a,..,a) = a (idempotency)

5. simmetricity
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Properties of aggregation

min (ay, ..., a,) < h(ay, ..., a,) <max (ay, ..., a,)

Example of aggregation operator: generalized average

h(a,, ..., ;) = (a;°+ ...+ a,9)Y/%/ n
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