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Plan of the presentation

Overview of variational inference in deep learning: general algorithm,
research directions and fast review of the existing literature

Present some of the work we have done so far:
the use of graphical models for introducing correlations between the latent
variables
analysis of the geometry of the latent space

Present some ideas and questions that we have been thinking about, along
with possible research directions
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Generative Models in Deep Learning

Real images Generated images [12]
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Notations for Bayesian Inference

X,Z multivariate random variables, Z continuous, with probability density
functions (pdf) p✓(x) and p✓(z) respectively, with parameters ✓; p✓(z) is the
prior and p✓(x) the marginal ;

p✓(x, z): pdf of the joint random variable (X,Z), with parameters ✓;

p✓(x|z), p✓(z|x): pdfs of the random variables X|Z = z and Z|X = x;
p✓(z|x) is the posterior.
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General Setting

Formulation of the problem: The continuous latent r.v.
Z generates X, through f✓(·) a di↵erentiable function,

such that

Z
p✓(x|z)p✓(z)dz is intractable.

The goal is inference, i.e., finding p✓(z|x).

z

x

f✓(·)q�(z | x)

Variational inference [1] approximates

the true posterior p✓(z|x) with q�(z|x), by minimizing

the Kullback-Leibler divergence KL(q�(z|x) k p✓(z|x)).

Approach to the solution: maximizing a lower bound of the
log likelihood.
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Variational Inference I

Deriving the lower bound:

ln p✓(x) = ln

Z
q�(z|x)

p✓(x, z)

q�(z|x)
dz �

Z
q�(z|x) ln

p✓(x, z)

q�(z|x)
dz (Jensen’s inequality)

Evidence lower bound: L(✓,�; x) := Eq�(z|x)


ln

p✓(x, z)

q�(z|x)

�
 ln p✓(x)

Minimizing KL () maximizing the lower-bound:

Eq�(z|x)


ln

p✓(x, z)

q�(z|x)

�
= ln p✓(x)� KL(q�(z|x) k p✓(z|x))

The maximum of the lower-bound is the log-likelihood, and it is obtained when
KL(q�(z|x) k p✓(z|x)) = 0. Thus, the problems are equivalent.
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Variational Inference II

Optimizing the lower bound maximizes the log likelihood . The distribution
of X can be approximated with importance sampling :

ln p✓(x) ⇡ ln
1

S

SX

i=1

p✓(x|z(i))p✓(z(i))
q�(z(i)|x)

where z(i) ⇠ q�(·|x).

Fixing the family of distributions for the r.v., e.g. we assume they are
Gaussians, we move from variational calculus to regular optimization of the
parameters. The problem becomes:

max
✓,�

Eq�(z|x)[ln p✓(x, z)� ln q�(z|x)]
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Variational Autoencoders

Variational Autoencoders ([6], [11]) tackle the problem of
variational inference in the context of neural networks. The parameters � and ✓ of
q�(z|x) and p✓(x|z) are learned through two di↵erent neural networks: encoder
and decoder.

sampling layer

Encoder Network Decoder Network
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Applications

Encode: learn a lower dimensional representation of the dataset, by sampling
from q�(·|x).
The dimension of the latent variable Z is assumed to be much smaller than
the dimension of the dataset.

Generate from noise examples that resemble the ones seen during training.
The prior p✓(z) on the latent variable is assumed Gaussian N (0, I) and
samples are fed through the network to output the conditional probabilities
p✓(x | z).
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Details of the Algorithm

Encoder: q�(z|x) - Gaussian N (µ,D) with diagonal covariance;
� - the set of parameters of the encoder

Decoder: p✓(x|z) - Gaussian with diagonal covariance (continuous data) or
Bernoulli vector (discrete data);
✓ - the set of parameters of the decoder

For a data point x, rewrite the lower bound L(✓,�; x)

L(✓,�; x) = Eq�(z|x)[ln p✓(x|z)] � KL(q�(z|x) || p✓(z))

Reconstruction error Regularization

Cost function to be optimized:
1

N

NX

n=1

L(✓,�; xn), from dataset X = {xn}n=1,N
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Backpropagating through Stochastic Layers

Training neural networks requires computing the gradient of the cost
function, using backpropagation

Di�culty when computing r�Eq�(z|x)[ln p✓(x|z)] - Monte Carlo estimation of
the gradient has high variance

The reparameterization trick: find g�(·) di↵erentiable transformation and
random variable � with pdf p(·), such that Z = g�(� ).

Eq�(z|x)[ln p✓(x|z)] = Ep(�)[ln p✓(x |g�(�))]
r�Eq�(z|x)[ln p✓(x|z)] = Ep(�)[r� ln p✓(x |g�(�)]

Example for X ⇠ N(µ,⌃), with ⌃ = LL

T Cholesky decomposition:
X = µ+ L� , with � ⇠ N (0, I).
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Limitations and Challenges

Limitations
The conditional independence assumption on the latent variables given the
observations limits the expressive power of the approximate posterior

Limitation on the number of active latent variables when using a hierarchy of
stochastic layers [13]

Challenges
Di�culty when training on text data: empirical observation that the learned
latent representation is not meaningful [2]

How to improve the quality of the generated samples, in case of a dataset of
images? How can we find a better correlation between the images generated
and the maximization of the lower bound?

How to estimate the tightness of the bound?
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Research Directions

More complex representations for q�(z|x), by transforming a simple
distribution through invertible di↵erentiable functions, as in [10] and [5]

Increased complexity of the graphical models, e.g. a hierarchy of latent

variables or auxiliary variables as in [13] and [9]

Designing tighter bounds:
importance weighting estimates of the log-likelihood [3]

LK (�, ✓; x) = Ez1,z2,...zK⇠q�(z|x)


log

1

K

KX

k=1

p✓(x, z
k)

q�(zk|x)

�

minimizing di↵erent divergences (Renyi [8], ↵-divergence [4])

Overcoming the challenge of training VAE on text data [2]
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Gaussian Graphical Models for VAE

Gaussian Graphical Models [7] introduce correlations in the latent variables.

Chain and 2D grid topologies =) sparse precision matrix P = ⌃�1, with the
number of non-zero components linear in the dimension of the latent variable

The encoder network outputs the mean µ and the Cholesky factor L of the
precision matrix. L will have a special sparse structure and will ensure the
positive definiteness of ⌃.

To sample from N (µ,⌃): solve linear system LT⌫ = ✏, where ✏ ⇠ N (0, I),
and output z = µ+ ⌫.

Sampling from N (µ,⌃) and computing KL(N (µ,⌃) k N (0, I)) can be done
in linear time =) introduce expressiveness without extra computational
complexity.
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Chain Topology

z1 z2 ... zk

Chain Model

P =

0

BBB@

�1 �1 0
�1 �2 �2

. . .
0 �k�1 �k

1

CCCA

The precision matrix P is tridiagonal;

the Cholesky factor of such a matrix is lower-bidiagonal.
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Grid Topology

z1 z2 z3

z4 z5 z6

z7 z8 z9

Regular Grid

z1 z2 z3

z4 z5 z6

z7 z8 z9

Extended Grid

We use in our experiments the extended grid, which corresponds to a block
tridiagonal precision matrix P;

we assume the Cholesky factor has a lower-block-bidiagonal structure.
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Motivation for Next Research Direction

The purpose was to approximate

the posterior with more complex

distributions.

Although the results show a slight

improvement, they do not
motivate the future use of these
models.

A more comprehensive analysis
should be made to understand the
geometry of the latent space.
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Analysis of the Representations in the Latent Space

Experiments on MNIST dataset to understand the representation of the

images in the learned latent space.

Principal Components Analysis of the latent means will give us insights about
which components are relevant for the representation.

Claim: components with a low variation along the dataset are the ones not
meaningful.

PCA eigenvalues of the posterior samples are very close to 1 =) the KL
minimization forces some components to be N (0, I).
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1/5

PCA Analysis 1/2

k = 20, RELU k = 30, RELU



2/5

PCA Analysis 2/2

k = 30, RELU k = 30, ELU



PCA Plots
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Interpretation of the Plot

When training a VAE with latent size 20 on MNIST, only around 15 of the
latent variables are relevant for the representation.

The number remains constant when training with a larger latent size.

This is a consequence of the KL regularization term in the cost function,
which forces some components to be Gaussian noise.

Is this number a particularity of the dataset?

What is the impact on this number when using more complicated network
architectures?

Would we observe the same behavior with other bounds derived from
di↵erent divergences (e.g. Rényi)?

L.Malagò, A.Peşte (RIST) Variational Autoencoders 23 / 36



Interpretation of the Plot

When training a VAE with latent size 20 on MNIST, only around 15 of the
latent variables are relevant for the representation.

The number remains constant when training with a larger latent size.

This is a consequence of the KL regularization term in the cost function,
which forces some components to be Gaussian noise.

Is this number a particularity of the dataset?

What is the impact on this number when using more complicated network
architectures?

Would we observe the same behavior with other bounds derived from
di↵erent divergences (e.g. Rényi)?
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Correlations Plot
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Interpretation of the Plot

With the previous plot we want to better understand the distribution of the latent
means vector across the dataset to identify the inactive components.

Distribution of (µi , µj), samples
corresponding to the points in the
dataset.

Inactive components are close to 0
and remain constant along the
data set.
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Generated images

Images generated by training VAE on MNIST, with the encoder and decoder
feed-forward neural networks with two hidden layers:

Samples from MNIST
dataset

Generated after 100
epochs

Generated after 1000
epochs
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Linear Separability in the Latent Space

VAE is trained on MNIST with 2 latent variables. The plot represents the means
of the posterior for each point in the dataset, colored by corresponding class.

Linear separability of the classes
in the space of latent
representations

Sampling in the latent space from
the empty regions =) images
that are not digits

Linear interpolation property
=) continuous deformation in the
latent space between two di↵erent
images.
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Classification Performance
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Short-Term

Linear separability of the dataset in the space of multi-dimensional latent
representations

Use skew distributions to model the posterior

Study the behavior of the latent relevant components in the case of more
complex posteriors, like the ones presented in [10] and [5]
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Medium-Term

Bounds derived from di↵erent divergences (e.g. Rényi, ↵-divergence)
impact of the ↵ parameter on the tightness of the bounds
relevant components in the latent space and see how their number changes

Geometric methods for training VAE
the use of natural gradient
study the geometry of the latent space
use Riemannian optimization methods that exploit some properties of the
space of the latent variables

Extend the study to di↵erent types of generative models, e.g. Generative
Adversarial Networks (GANs), Restricted Boltzmann Machines (RBMs).
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L.Malagò, A.Peşte (RIST) Variational Autoencoders 31 / 36



References II

[5] Diederik P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever,
and Max Welling.
Improving variational autoencoders with inverse autoregressive flow.
In Advances In Neural Information Processing Systems, pages 4736–4744,
2016.

[6] Diederik P Kingma and Max Welling.
Auto-encoding variational bayes.
2013.

[7] Ste↵en L Lauritzen.
Graphical models, volume 17.
Clarendon Press, 1996.

[8] Yingzhen Li and Richard E Turner.
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Questions?
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Thank You!
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