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Plan of the presentation

o Overview of variational inference in deep learning: general algorithm,
research directions and fast review of the existing literature

@ Present some of the work we have done so far:

e the use of graphical models for introducing correlations between the latent
variables
e analysis of the geometry of the latent space

@ Present some ideas and questions that we have been thinking about, along
with possible research directions
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Outline

© General View of Variational Autoencoders
@ Introduction
@ Research Directions
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Generative Models in Deep Learning

Real images Generated images [12]

L.Malagd, A.Peste (RIST) Variational Autoencoders 5/36



Notations for Bayesian Inference

@ X, Z multivariate random variables, Z continuous, with probability density
functions (pdf) pg(x) and py(z) respectively, with parameters 6; py(z) is the
prior and py(x) the marginal;

@ py(x,z): pdf of the joint random variable (X, Z), with parameters 0;

@ py(x|z), po(z|x): pdfs of the random variables X|Z = z and Z|X = x;
po(z|x) is the posterior.
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General Setting

Formulation of the problem: The continuous latent r.v.
Z generates X, through fp(+) a differentiable function,

such that x|z)pg(z)dz is intractable.
po(x|z)po(2) 2 qs(z]x) | fo(")
The goal is inference, i.e., finding py(z|x). :
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General Setting

Formulation of the problem: The continuous latent r.v.
Z generates X, through fp(+) a differentiable function,

such that /PO(X|Z)p9(Z)dZ is intractable. as(z %) | f()

The goal is inference, i.e., finding py(z|x).

Variational inference [1] approximates -
the true posterior py(z|x) with g4(z|x), by minimizing
the Kullback-Leibler divergence KL(gy(z|x) || pa(z|x)).
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General Setting

Formulation of the problem: The continuous latent r.v.
Z generates X, through fp(+) a differentiable function,

h that dz is intractable.
such that | pg(x|z)ps(z)dz is intractable Loz 1) [ f()
The goal is inference, i.e., finding py(z|x). :

Variational inference [1] approximates 1.

the true posterior py(z|x) with g4(z|x), by minimizing
the Kullback-Leibler divergence KL(gy(z|x) || pa(z|x)).

Approach to the solution: maximizing a lower bound of the
log likelihood.
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Variational Inference |

Deriving the lower bound:

In po(x) = In/q¢(z|x) Po(x. z)dz > /q¢(z|x) In po(x.2) dz (Jensen's inequality)

94 (z[x) 94 (z|x)
. PG(XJ)}
Evidence lower bound: £(0,¢;x) :=E_, ;1| In < In pg(x
(6,420 1= Baue >[ au(zi)| ="
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Variational Inference |

Deriving the lower bound:

=In z|x Po(x,2) z z|x npg(x,z) z (Jensen’s inequali
inpo) = In [ au(eh) 225 Hdz > [ ay(alin 22 Eaz (1 quality)

. pg(X,Z):l
Evidence lower bound: £(0,¢;x) :=E_, ;1| In < In pg(x
(0,60%) = g [ 5] < o

Minimizing KL <= maximizing the lower-bound:

po(x,z)
q4(z[x)

E e [ln ] — In po(x) — KL(qu(zlx) | pa(zlx))

The maximum of the lower-bound is the log-likelihood, and it is obtained when
KL(gg(z|x) || pe(z|x)) = 0. Thus, the problems are equivalent.
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Variational Inference Il

@ Optimizing the lower bound maximizes the log likelihood . The distribution
of X can be approximated with importance sampling:

S
1 po(x|20)py(zM)

I )~ In— _

() in g 3 P

where z® ~ g4(-|x).
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Variational Inference Il

@ Optimizing the lower bound maximizes the log likelihood . The distribution
of X can be approximated with importance sampling:

S
1 po(x|20)py(zM)
I )~ In— _
(g =y ARt
where z® ~ g4(-|x).

o Fixing the family of distributions for the r.v., e.g. we assume they are
Gaussians, we move from variational calculus to regular optimization of the
parameters. The problem becomes:

VQ%X]E%(dx)['n Po(x,z) — In gy (z]x)]
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Variational Autoencoders

Variational Autoencoders ([6], [11]) tackle the problem of
variational inference in the context of neural networks. The parameters ¢ and 6 of

q4(z|x) and pg(x|z) are learned through two different neural networks: encoder
and decoder.

sampling layer

0000 0000
v
Cﬁﬁﬁﬁﬂﬁ 000000
Cﬁﬁéﬁﬁﬁée 000000060

reconstructed input

Encoder Network Decoder Network
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Applications

@ Encode: learn a lower dimensional representation of the dataset, by sampling

from gy (-|x).
The dimension of the latent variable Z is assumed to be much smaller than

the dimension of the dataset.
11 / 36

L.Malagd, A.Peste (RIST) Variational Autoencoders



Applications

@ Encode: learn a lower dimensional representation of the dataset, by sampling
from gy (-|x).
The dimension of the latent variable Z is assumed to be much smaller than
the dimension of the dataset.

@ Generate from noise examples that resemble the ones seen during training.
The prior pg(z) on the latent variable is assumed Gaussian A/(0, 1) and
samples are fed through the network to output the conditional probabilities

po(x | 2).
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Details of the Algorithm

e Encoder: gy(z|x) - Gaussian NV(u, D) with diagonal covariance;
¢ - the set of parameters of the encoder

e Decoder: py(x|z) - Gaussian with diagonal covariance (continuous data) or
Bernoulli vector (discrete data);
0 - the set of parameters of the decoder
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Details of the Algorithm

e Encoder: gy(z|x) - Gaussian NV(u, D) with diagonal covariance;
¢ - the set of parameters of the encoder

e Decoder: py(x|z) - Gaussian with diagonal covariance (continuous data) or
Bernoulli vector (discrete data);
0 - the set of parameters of the decoder

@ For a data point x, rewrite the lower bound £(6, ¢; x)

L(0,0:x) = Eqyepin pa(x[2)] — KL(ap(2[x) || pa(2))

Reconstruction error Regularization

==
Mz

Cost function to be optimized: L(0, ¢;xn), from dataset X = {x,} ,_1

n=1
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Backpropagating through Stochastic Layers

@ Training neural networks requires computing the gradient of the cost
function, using backpropagation

o Difficulty when computing V4Eg, ;1) [In ps(x|2)] - Monte Carlo estimation of
the gradient has high variance
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Backpropagating through Stochastic Layers

@ Training neural networks requires computing the gradient of the cost
function, using backpropagation

o Difficulty when computing V4Eg, ;1) [In ps(x|2)] - Monte Carlo estimation of
the gradient has high variance

@ The reparameterization trick: find gg(-) differentiable transformation and
random variable I" with pdf p(-), such that Z = g4(I").

Eq, (210N po(x[2)] = Ep() [In po(x|gs(7))]
VEq, @z0[In po(x[2)] = Ep()[ Ve In pa(x|gs(7)]

o Example for X ~ N(y, X), with ¥ = LLT Cholesky decomposition:
X=pu+ LI, with I" ~ N(0,1).
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Limitations and Challenges

o Limitations
e The conditional independence assumption on the latent variables given the
observations limits the expressive power of the approximate posterior

e Limitation on the number of active latent variables when using a hierarchy of
stochastic layers [13]
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Limitations and Challenges

o Limitations
e The conditional independence assumption on the latent variables given the
observations limits the expressive power of the approximate posterior

e Limitation on the number of active latent variables when using a hierarchy of
stochastic layers [13]

o Challenges

o Difficulty when training on text data: empirical observation that the learned
latent representation is not meaningful [2]

e How to improve the quality of the generated samples, in case of a dataset of
images? How can we find a better correlation between the images generated
and the maximization of the lower bound?

e How to estimate the tightness of the bound?
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Research Directions

e More complex representations for q,(z|x), by transforming a simple
distribution through invertible differentiable functions, as in [10] and [5]
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Research Directions

e More complex representations for q,(z|x), by transforming a simple
distribution through invertible differentiable functions, as in [10] and [5]

@ Increased complexity of the graphical models, e.g. a hierarchy of latent
variables or auxiliary variables as in [13] and [9]
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Research Directions

e More complex representations for q,(z|x), by transforming a simple
distribution through invertible differentiable functions, as in [10] and [5]

@ Increased complexity of the graphical models, e.g. a hierarchy of latent
variables or auxiliary variables as in [13] and [9]

@ Designing tighter bounds:
e importance weighting estimates of the log-likelihood [3]

K k
1 >y Po(x,z")
£K(¢a 91 X) = IE“Zl,zz,...szqu(zh() |: |Og R Q¢(Zk|X)
k=1

e minimizing different divergences (Renyi [8], a-divergence [4])
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Research Directions

e More complex representations for q,(z|x), by transforming a simple
distribution through invertible differentiable functions, as in [10] and [5]

Increased complexity of the graphical models, e.g. a hierarchy of latent
variables or auxiliary variables as in [13] and [9]

@ Designing tighter bounds:
e importance weighting estimates of the log-likelihood [3]
K k
1 < Po(x,29)
6;x) = E log — ’
£K(¢a ,X) zl,zz,...zK~q¢(z|x)|: og K ; q¢(z"|x)
e minimizing different divergences (Renyi [8], a-divergence [4])

@ Overcoming the challenge of training VAE on text data [2]
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© Work-in-progress
@ Using Gaussian Graphical Models
o Geometry of the Latent Space
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Gaussian Graphical Models for VAE

@ Gaussian Graphical Models [7] introduce correlations in the latent variables.

e Chain and 2D grid topologies = sparse precision matrix P = ¥ 1, with the
number of non-zero components linear in the dimension of the latent variable

@ The encoder network outputs the mean p and the Cholesky factor L of the
precision matrix. L will have a special sparse structure and will ensure the
positive definiteness of ¥.
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Gaussian Graphical Models for VAE

@ Gaussian Graphical Models [7] introduce correlations in the latent variables.

e Chain and 2D grid topologies = sparse precision matrix P = ¥ 1, with the
number of non-zero components linear in the dimension of the latent variable

@ The encoder network outputs the mean p and the Cholesky factor L of the
precision matrix. L will have a special sparse structure and will ensure the
positive definiteness of ¥.

To sample from N(p, X): solve linear system L™ v = ¢, where € ~ N(0,1),
and output z = p + v.

Sampling from N (1, L) and computing KL(N (i, Z) || A(0,1)) can be done
in linear time = introduce expressiveness wnthout extra computational
complexity.
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Chain Topology

At o2 A

Chain Model

@ The precision matrix P is tridiagonal,

o the Cholesky factor of such a matrix is lower-bidiagonal.
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Grid Topology

Regular Grid Extended Grid

@ We use in our experiments the extended grid, which corresponds to a block
tridiagonal precision matrix P;

@ we assume the Cholesky factor has a lower-block-bidiagonal structure.
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Motivation for Next Research Direction

@ The purpose was to approximate
the posterior with more complex
distributions.

93

— diagonal
— grid
— chain

@ Although the results show a slight 2
improvement, they do not
motivate the future use of these
models.

marginalTest

g
8

89

@ A more comprehensive analysis
should be made to understand the o
(] 200 400 600 800 1000
geometry of the latent space. Fochs
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Analysis of the Representations in the Latent Space

@ Experiments on MNIST dataset to understand the representation of the
images in the learned latent space.

@ Principal Components Analysis of the latent means will give us insights about
which components are relevant for the representation.

o Claim: components with a Jow variation along the dataset are the ones not
meaningful.

@ PCA eigenvalues of the posterior samples are very close to 1 = the KL
minimization forces some components to be N(0,1).
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PCA Analysis 1/2
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PCA Analysis 2/2

k =30, RELU k=30, ELU
—— alpha=0.01 12§ alpha=0.01
alpha=0.1 : alpha=0.1
—— alpha=0.3 109 alpha=0.3
alpha=0.5 alpha=0.5
() @ 0.8+
s —— alpha=0.7 S alpha=0.7
2 alpha=0.9 g alpha=0.9
g° —F— alpha=0.99 _ﬂgg"'ﬁ’ alpha=0.99
[ ()
— 0.4+
0.2 4
0.0
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30

component component



PCA Plots

PCA eigenvalue

PCA eigenvalue
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Interpretation of the Plot

@ When training a VAE with latent size 20 on MNIST, only around 15 of the
latent variables are relevant for the representation.

@ The number remains constant when training with a larger latent size.

@ This is a consequence of the KL regularization term in the cost function,
which forces some components to be Gaussian noise.
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Interpretation of the Plot

@ When training a VAE with latent size 20 on MNIST, only around 15 of the
latent variables are relevant for the representation.

@ The number remains constant when training with a larger latent size.

This is a consequence of the KL regularization term in the cost function,
which forces some components to be Gaussian noise.

Is this number a particularity of the dataset?

@ What is the impact on this number when using more complicated network
architectures?

Would we observe the same behavior with other bounds derived from
different divergences (e.g. Rényi)?
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Interpretation of the Plot

With the previous plot we want to better understand the distribution of the latent
means vector across the dataset to identify the inactive components.
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Images generated by training VAE on MNIST, with the encoder and decoder

feed-forward neural networks with two hidden layers:
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Linear Separability in the Latent Space

VAE is trained on MNIST with 2 latent variables. The plot represents the means
of the posterior for each point in the dataset, colored by corresponding class.

o Linear separability of the classes
in the space of latent
representations

@ Sampling in the latent space from
the empty regions =—> images
that are not digits

o Linear interpolation property
— continuous deformation in the
latent space between two different T T 0
images.
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Classification Performance
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accuracy classification
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Outline

© Future Work
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@ Linear separability of the dataset in the space of multi-dimensional latent
representations

@ Use skew distributions to model the posterior

@ Study the behavior of the latent relevant components in the case of more
complex posteriors, like the ones presented in [10] and [5]
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@ Bounds derived from different divergences (e.g. Rényi, a-divergence)

e impact of the o parameter on the tightness of the bounds
o relevant components in the latent space and see how their number changes

@ Geometric methods for training VAE
o the use of natural gradient
e study the geometry of the latent space
e use Riemannian optimization methods that exploit some properties of the
space of the latent variables

o Extend the study to different types of generative models, e.g. Generative
Adversarial Networks (GANs), Restricted Boltzmann Machines (RBMs).
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