
1 Meglio prevenire che curare

In qualità di consultenti presso una nota ditta automobilistica ci è stato chiesto
di realizzare un sistema automatico per la diagnosi preventiva dei loro moto-
ri. Tale sistema deve essere in grado di classificare un motore come “BUO-
NO” o “NON BUONO” durante il suo funzionamento sulla base di misurazioni
meccaniche, analisi chimiche dei gas di scarico e rumore di funzionamento.

Affascinati da questa nuova tecnologia chiamata Reti Neurali, decidiamo
di utilizzarla nello sviluppo del sistema in questione e in particolare facciamo
riferimento alla seguente figura.

y
.
.
.

x
 1

x
 2

x
 I

g(.)

h(.)

h(.)

h(.)

w

W

.

.

.

1.1 I dati a disposizione [Punti 2]

Il nostro committente non è in grado di darci chiare indicazioni sui parametri
caratteristici di un motore buono o meno, quello che può fornirci è semplice-
mente un archivio di misurazioni prese sulle macchine portate nelle loro officine
autorizzate in corrispondenza dei tagliandi periodici e del giudizio sul motore
fatto da un tecnico specializzato in quei casi. La cosa ci preoccupa? Perchè?

La cosa non ci preoccupa perchè il problema si configura come un tipico caso di
apprendimento supervisionato. Il compito della rete neurale sarà apprendere la
funzione ignota che lega le quantità misurate al giudizio del tecnico sul motore
direttamente a partire dai dati. Qualora avessimo già avuto indicazioni sui pa-
rametri caratteristici di motori buoni o meno, avremmo probabilmente utilizzato
un sistema esperto e non una rete neurale.

1.2 La scelta del modello (Parte 1) [Punti 2]

Il primo problema che ci si presenta nella realizzazione del sistema è la scelta
dell’architettura della rete neurale e qui la cosa è piuttosto semplice, tra un
singolo percettrone e un percettrone multistrato scegliamo il secondo. Si, ma
perchè?

Il percettrone singolo possiede minime capacità di discriminazione; in uno spazio
a N dimensioni la superfice di separazione è un ierpiano. Nel nostro caso non
sappiamo a priori quale sarà la forma della superfice di sepaazione tra le due

1

classi, ma difficilmente sarà un semplice iperpiano. Scegliamo quindi di usare un
percettrone multistrato dato che riesce ad approssimare superfici di separazione
complesse e, all’occorrenza, anche iperpiani.

1.3 Funzioni di attivazione [Punti 2]

Perfetto! Abbiamo la nostra bella architettura multistrato; diciamo che ci basta
un solo strato nascosto per questione di semplicità e leggiamo un pò in giro per
capire che funzioni di attivazione mettere nello strato in questione. Quasi tutti,
citando un articolo che non abbiamo voglia di andare a cercare, dicono che la
scelta giusta è la sigmoide e noi decidiamo di fare altrettanto, ma leggiamo
anche che la funzione di attivazione dello strato di uscita dipende dalla codifica
scelta per il particolare problema.

Nel nostro caso, anche sforzandosi, non ci sono molte possibilità abbiamo
una sola uscita con due soli valori “BUONO” o “NON BUONO” che scelgliamo
di rappresentare con i valori “1” e “0” per comodità implementativa del circuito
a valle del classificatore neurale. Posto questo vincolo quale sarà la funzione di
attivazione dello strato di uscita e perchè?

La funzione di attivazione dovrà essere limitata tra 0 e 1 per compatibilità con il
resto del sistema. Inoltre lavorando con un percettrone multistrato è necessario
che sia derivabile per permettere un addestramento tramite back-propagation.
La scelta ricade quindi sulla funzione sigmoide anche per lo strato di uscita in
quano limitata all’intervallo (0 1) e derivabile.

1.4 La funzione d’errore [Punti 3]

Un tempo lavoravamo per conto di una società che faceva analisi dei dati e
sappiamo benissimo che in caso di variabili binarie la distrbuzione di probabilità
che descrive meglio il fenomeno osservato è una Bernulliana tn ∼ Be(θ) con
parametro caratteristico θ pari alla probabilità che si verifichi l’evento “1”. La
probabilità di un’osservazione in questo caso quindi è P (tn) = θtn(1 − θ)(1−tn).

Cerchiamo di usare questa informazione a nostro vantaggio e decidiamo di
usare la nostra rete neurale come modello non lineare che, dalle osservazioni sul
campo, cerca di prevedere la probabilità che si verifichi l’evento tn. Questo vuol
dire in pratica che l’uscita della mia rete y dovrà approssimare la probabilità θ

che descrive il mio fenomeno e che quindi la probabilità di un particolare evento
diventa P (tn) = ytn(1− y)(1−tn). Usando una stima a massima verosomiglianza
questo mi riporta al semplice problema di minimizzare la seguente funzione
d’errore:

−

N
∑

n

tn log yn + (1 − tn) log(1 − yn)

Quali sono i passaggi matematici che portano dalla probabilità del singolo evento
a tale funzione d’errore?

Per usare una stima a massima verosomiglianza bisogna calcolarsi come prima
cosa la probabilità del campione osservato in funzione dei parametri del modello

2

(uscita y della rete neurale). Nel nostro caso per l’indipendenza del campione
osservato abbiamo:

P (t1, t2, . . . , tN) = P (t1) · P (t2) · . . . · P (tN) =

N
∏

n

P (tn)

dato che la probabilità del singolo campione è data da P (tn) = ytn(1 − y)(1−tn)

otteniamo per la verosomiglianza:

L =
N
∏

n

ytn(1 − y)(1−tn).

Ricordando che a noi interessa il massimo di tale funzione e che la funzione lo-
garitmo, essendo monotona, preserva il massimo ottenimo la seguente funzione
da massimizzare:

l = log L = log

(

N
∏

n

ytn(1 − y)(1−tn)

)

=
N
∑

n

(

log ytn(1 − y)(1−tn)
)

=

N
∑

n

(

log ytn + log(1 − y)(1−tn)
)

=
N
∑

n

(tn log y + (1 − tn) log(1 − y))

Massimizzare la veromisglianza equivale quindi a minimizzare l’opposto della
precedente funzione −l = −

∑N

n (tn log y + (1 − tn) log(1 − y)) .

1.5 L’algoritmo di apprendimento [Punti 3]

Cosa ci resta da fare? Ah si, dobbiamo trovarci i pesi che minimizzano questo
errore. Basta applicare la regola di back-propagation anche nota come discesa
del gradiente. Calcoliamoci quindi il gradiente del nostro errore rispetto ai pesi
Wj e wji della nostra rete.

Ricordiamo che, come da disegno di riferimento, l’uscita di una rete neurale con
I ingressi, J neuroni nello strato nascosto e una sola uscita è:

y = g(

J
∑

j

Wjh(

I
∑

i

wijxi)).

Posto aj =
∑I

i wijxi, bj = h(aj) e A =
∑J

j Wjbj Calcoliamo le derivate della
funzione da minimizzare rispetto a Wj e wij .

3

∂E

∂Wj

= −

N
∑

n

[

∂(tn log y)

∂Wj

+
∂((1 − tn) log(1 − y))

∂Wj

]

= −

N
∑

n

[

tn
1

y

∂y

∂Wj

+ (1 − tn)
1

(1 − y)

∂(−y)

∂Wj

]

= −

N
∑

n

[

tn

y
g′(A)

∂A

∂Wj

−

1 − tn

1 − y
g′(A)

∂A

∂Wj

]

= −

N
∑

n

[

tn

y
g′(A)bj −

1 − tn

1 − y
g′(A)bj

]

,

∂E

∂wij

= −

N
∑

n

[

∂(tn log y)

∂wij

+
∂((1 − tn) log(1 − y))

∂wij

]

= −

N
∑

n

[

tn
1

y

∂y

∂wij

+ (1 − tn)
1

(1 − y)

∂(−y)

∂wij

]

= −

N
∑

n

[

tn

y
g′(A)

∂A

∂wij

−

1 − tn

1 − y
g′(A)

∂A

∂wij

]

= −

N
∑

n

[

tn

y
g′(A)Wj

∂h(aj)

∂wij

−

1 − tn

1 − y
g′(A)Wj

∂h(aj)

∂wij

]

= −

N
∑

n

[

tn

y
g′(A)Wjh

′(aj)
∂aj

∂wij

−

1 − tn

1 − y
g′(A)Wjh

′(aj)
∂aj

∂wij

]

= −

N
∑

n

[

tn

y
g′(A)Wjh

′(aj)xi −
1 − tn

1 − y
g′(A)Wjh

′(aj)xi

]

.

1.6 Attenzione all’ overfitting [Punti 2]

Ben fatto, l’esame di analisi è servito a qualcosa! Adesso mi basta lanciare il
mio programma di minimizzazione sul mio corposo dataset e ottenere il mio
classificatore neurale. Ma come faccio a evitare minimi locali? E come faccio a
evitare il temutissimo fenomeno dell’overfitting?

Il problema dei minimi locali non è completamente risolvibile, un modo per
migliorare le performance è far ripartire l’algoritmo di ottimizzazione più volte
e scegliendo poi il risultato migliore. Anche l’uso di metodi più raffinati per la
minimizzazione di funzioni potrebbe aiutare in questo senso (e.g., discesa del
gradiente con momento, gradiente coniugato, etc.).

Il problema dell’overfitting è dovuto principalmente a una sovraparametriz-
zazione del modello. Una tecnica per ovviare al problema è l’early stopping: uso

4

parte dei dati di addestramento per stimare l’errore di generalizzazione anzi-
chè usarli come dati per la minimizzazione dell’errore e fermo l’apprendimento
quando l’errore di generalizzazione non decresce più. Un’altra tecnica per ridur-
re l’overfitting è nota con il nome di weight decay: in questo caso la funzione
da minimizzare include anche un termine di penalizzazione per pesi sinaptici
troppo grandi dovuto a considerazioni sia empiriche sia statistiche.

1.7 La scelta del modello (Parte 2) [Punti 2]

A questo punto ci manca un solo dettaglio scegliere il numero di neuroni nello
strto nascosto ... avete qualche idea degna di lode?

Il dimensionamento di una rete neurale è un problema ancora aperto, una tec-
nica comunemente usata nel caso di percettroni multistrato è, ancora una volta,
procedere per tentativi. Si comincia con un numero minimo di neuroni (al li-
mite anche uno solo) e si addestrano diverse reti con numero di neuroni nello
strato nascosto sempre crescente. Osservando l’andamento d’errore sul dataset
di validazione si noterà che questo decresce fino a un punto per cui aumentare
la complessità del modello non comporta significativi miglioramenti ... quello è
un buon punto dove fermarsi.

5

