based on Manuela M. Veloso lectures on

8 POLITECNICO PLANNING, EXECUTION AND LEARNING

UILY MILANO 1863

Cognitive Robotics
2017/2018

Planning: State, Actions and Goal Representation

Matteo Matteucci
matteo.matteucci@polimi.it

Artificial Intelligence and Robotics Lab - Politecnico di Milano

Recall: «Think hard, act later»

Deliberative paradigm

Recall: «Think hard, act later»

WHAT ABOUT SOMETHING COMPLETELY UNEXPECTED -
SOMETHING YOU COULD HAVE NEVER PLANNED FOR?

Planning is about «thinking» et |

° Given the actions available in a task domain.
° Given a problem specified as:

« an initial state of the world

e a goal statement (set of goals) to be achieved
° Find a solution to the problem

NOT HANG
A PLAN:

Plan: a way, in terms of a sequence of actions,
to transform the initial state into *“*®
a new state of the world where
the goal statement is true.

It’s all about states,
actions, and plans!

Newell and Simon 1956

G55\ bOLITECNICO MILANO 1863

)

The Block World

The Block World is a useful abstraction to introduce States, Actions and Plans

° Blocks are on the Table, or on top of each other.
° There is an Arm — the Arm can be empty or holding one block.
° The table is always clear.

B B
A
Table Table

POLITECNICO MILANO 1863

The Block World: States

Obijects
° Blocks: A, B, C

* Table: Table Some predicates
might be

redundant

Predicates 0
°* On(B, A), On(C, Table)
* Clear(B), Handempty, Holding(C)
° On-table(A), On(A,B), Top(B),...

States — Conjunctive

On-Table(A), On-Table(C),
On(A,B), Clear(C),
Clear(B), Handempty

On-Table(A), On-Table(C),
Clear(A), Clear(C),
Holding(B)

°* On(B,A) and On(C,Table) and Clear(B) and Handempty

1; POLITECNICO MILANO 1863

The Block World: Assumptions/Limitations

The Block World models Classical Deterministic Planning ...
° Thereis a.5|.ngle. Initial state N Gl
° The description is complete World Assumption
* The plan is deterministic o ®
° What is not true in the state is false

The basic operators perform queries on states
° On(A,B) — returns true or false

°* On(A,x) — returns x=Table or x=B £ B
* On-table (x) — returns x=A and x=C A ‘ A ‘ ‘ C ‘
. Table Table

POLITECNICO MILANO 1863

The Block World: State Description with Two Blocks

A-on-B All these define
A-on-Table the State Space

B-on-A . ® @
B-on-Table

Holding-A -A-on-B A -A-on-Table ~ 274 Possible states
Holding-B -B-on-A A =B-on-Table

Handempty ~Holding-A A =Holding-B

Clear-A -~B-on-A

Clear-B -~A-on-B

J\

A-on-x {@, table, B}
B-on-x {9, table, A}

~ 372 Possible States

POLITECNICO MILANO 1863

C
B
B

v

I

T

l

[B]
I
8
A

The Block World: Planning as State-Space Search

m
O
00
-
O
Z
<
—
=
O
O
Z
)
11
-
=
O
o

Different Models for State Spaces

Different models for states exist ...
* Atomic identification of states (s1, s2,...)

* Symbolic feature based states BBO 0= 1 = Tables = blockk + 1
* Symbolic predicate based states — 2 -
. @4)—(sa1)

... together with different ways of combining them
* Conjunctive — observable _ -
o , Predicates, conjunctive,
([
Probabilistic — approximate complete, correct,
° Incremental — on-demand deterministic
* Temporal — dynamic

OLITECNICO MILANO 1863

Goal Specification

We can specify a Goal according to different levels of generality:

* Goal State — Completely specified state Increased
° Goal Statement — Partially specified state Generality
° Objective function — Defines “good” or “optimal” plan |

13)—(019)—(113
Goal Statement example: i
* Initial: A-on-x = Table; (142 —(102)e—(112)—(110)—(111

s-on-x = A (sl i21 (a00)
C-on-x = Table 0 = : 1 = Table; n = block# + 1

* Goal: A-on-x=B ® (41
Same problem, different
representation. @431,

) POLITECNICO MILANO 1863

What is an Action?

Plan: a way, in terms of a sequence of actions,
to transform the Initial state into
a new state of the world where
the goal statement is true.

Newell and Simon 1956

Action: a transition from one (partial) state to another
° May be applicable only in particular states
* (Generates new state
« Deterministic: ty,: SXA— 'S
* Non-deterministic: t , get - S XA — 25
» Probabilistic: t,,: S X A — <23, 1>

%‘:}; POLITECNICO MILANO 1863

011

013

041 | 101 | 102 | 110 | 111 | 102 | 113 | 1200 | 121 | 123 | 141 | 142] 310 | 311 | 312 | 341 | 401 | 411

413 | 42

1

1

Explicit Action Representation

The Block World Dynamics: Actions

B B

Table transform a state
into another?

° Blocks are on the Table, or on top of each other .
° Blocks are picked up and put down by the arm
° Ablock can be picked up only if it is clear, i.e., without a block on top

° The arm can pick up a block only if the arm is empty, i.e., if it is not holding
another block, i.e., the arm can pick up only one block at a time

° The arm can put down blocks on blocks or on the table
° The table is always clear

i, POLITECNICO MILANO 1863

STRIPS Action Representation

STRIPS (Stanford Research Institute Problem Solver) was the planner used by Shakley,
It was developed at SRI International by Richard Fikes and Nils Nilsson in 1971.

Explicit action a representation
* {preconds(a), effects—(a), effects*(a)}
* effects~(a) N effects*(a) = @

* 1(s, a) = {5 — effects—(a) U effects*(a)},
where s € 25

Example in the Block World
° Pickup_from_table(?b)

Pre._... ‘e
Add: ... Let’s try this out
Delete: ... together!

POLITECNICO MILANO 1863

Actions in the Block World

B B
Al [C A
Table Table

In the Block World:
° An action a is applicable in s if all its preconditions are satisfied by s.
° RESULT(s,a) = (s — Del (a)) U Add (a)
* No explicit mention of time
- The precondition always refers to time t
- The effect always refers to time t+1

POLITECNICO MILANO 1863

The Block World: Actions

Pickup from table (b) Pickup from block(bl, b2)
Pre: Block(b), Handempty Pre: Block (bl),Block (b2), Handempty
Clear (b), On (b, Table) Clear (bl), On(bl,b2)
Add: Holding (b) Add: Holding(bl), Clear (b2)
Delete: Handempty, On (b, Table) Delete: Handempty, On (bl,b2)
Clear (b) Clear (bl)
Putdown on table (b) Putdown on block(bl, b2)
Pre: Block(b), Holding(b) Pre: Block (bl), Holding(bl)
Add: Handempty, Block (b2), Clear(b2), bl # b2
On (b, Table) Add: Handempty, On(bl, b2)
Delete: Holding (b) Delete: Holding(bl), Clear (b2)

OLITECNICO MILANO 1863

More Realistic Actions Representations

Conditional Effects

* Pickup (b)
Pre: Block(b), Handempty, Clear(b), On (b, x)
Add: Holding (b)
if (Block(x)) then Clear (x)

Delete: Handempty, On (b, x)
Quantified Effects

* Move (o0, X)
Pre: At (o, y), At (Robot, vy)
Add: At (o, x), At (Robot, x)

All these extensions
can be emulated

adding actions!

forall (Object(u)) [i1f (In(u, o)) then At(u, vy)]
Delete: At (o, vy), At (Robot, V),
forall (Object(u)) [i1f (In(u, o)) then At(u, vy)]

Disjunctive and Negated Preconditions
® Holding(x) Or Not[Lighter Than Air (x)]

; POLITECNICO MILANO 1863

More Realistic Actions Representations

These extensions make

Inference Operators / Axioms the planning problem
° Clear(x) iff forall (Block(y))[Not[On(y, x)]] significantly harder

Functional effects
* Move (o0, X)
Pre: At (o, y), At(Robot, y), Fuel(f), f 2 Fuel Needed(y, x)

Add: At (o, x), At(robot, x), Fuel(f - Fuel Needed(y, X)),

forall (Object(u)) [i1f (In(u, o)) then At(u, vy)]
Delete: At (o, vy), At (Robot, vy), Fuel(f),
forall (Object(u)) [i1f (In(u, o)) then At(u, vy)]

. : Much hard d
Disjunctive Effects Uerhrlelreigrelael ol

® Pickup from block (b) ®
Pre: Block(b), Handempty, Clear(b), On(b, c), Block(c)
Cl: Add: Clear(c), Holding(b); Delete: On (b, c), Handempty
C2: Add: Clear(c), On(b, Table),; Delete: On(b, c)
C3: Add: ; Delete:

can add probability!!!

POLITECNICO MILANO 1863

Wy,
\\\\\\\\ II/,/ w,
N 2
5 %,
3
2 Z
L E
= =

LIS MILANO 1863

Cognitive Robotics

Planning: Plan Generation

Matteo Matteucci
matteo.matteucci@polimi.it

Artificial Intelligence and Robotics Lab - Politecnico di Milano

Different Plans ...

A plan can have different degrees of generality ...
° Sequence of Instantiated Actions
* Partial Order of Instantiated Actions Increased
* Set of Instantiated Actions Generality
° Policy (a direct mapping from states to actions)

¢

... and adopt different search strategies:

* Progression, a.k.a. forward state space search,

a.k.a. forward chaining AP,
* Regression, a.k.a. backward state-space search, e,
a.k.a. backward chaining i
AtP,, B) :

ALP,, A)

%

) POLITECNICO MILANO 1863

Plan Generation

Backtracking Search Through a Search Space Al[E] [c
° How to conduct the search - / B
* How to represent the search space ~ B A i

°* How to evaluate the solutions

Non-Deterministic Choices Determine Backtracking

1 B
o
w
oB]
|>|UJ
o
>
—olx]

* Choice of actions
* Choice of variable bindings | 1
* Choice of temporal orderings

* Choice of subgoals to work on

E
I

Properties of Planning Algorithms

Soundness

* A planning algorithm is sound Iif all solutions are legal plans, i.e., all
preconditions, goals, and any additional constraints are satisfied

Completeness

° Anplanning algorithm is complete if a solution can be found
whenever one actually exists

° Aplanning algorithm is strictly complete if all solutions are included
In the search space

Optimality
* Aplanning algorithm is optimal if it maximizes a predefined
measure of plan quality

7)) POLITECNICO MILANO 1863

Linear Planning and Means-ends Analysis

Linear Planning

* Uses a Goal stack and work on one goal until completely solved before
moving on to the next goal

Mean-ends Analysis

° Search by reducing the difference between the state and the goals, i.e.,
what means (operators) are available to achieve the desired ends (goal)?

GPS Algorithm (state, goals, plan) Newell and Simon 60s
If goals € state, then return (state, plan) o
Choose a difference d € goals between state and goals
Choose an operator o to reduce the difference d
If no applicable operators, then return False
(state, plan) = GPS (state, preconditions (o), plan)
If state, then return GPS (apply (o, state), goals, [plan,o])

Initial call: GPS (initial-state, initial-goals, [])

%

) POLITECNICO MILANO 1863

The Block World: GPS at Work

1. Search Stack

2. Search Stack

State

Clear(B)
Clear(C)
On(C, A)
On(A, Table)
On(B, Table)
Handempty

State

Clear(B)
Clear(C)
On(C, A)
On(A, Table)
On(B, Table)
Handempty

; POLITECNICO MILANO 1863

Al le

State

3. Search Stack

State

Clear(B)
Clear(C)
On(C, A)
On(A, Table)
On(B, Table)
Handempty

The Block World: GPS at Work

4. Search Stack State
BRI | onca |
On(C, A)
G | 0 o
On(B, Table)
_ Handempty “ n
_ State Goal
6. Search Stack State
S. Search Stack State T Clear(B)
Clear(B) Clear((C)
Clear(C) On(C, A)

On(C, A)

B |0 11

On(A, Table)
On(B, Table)

On(B, Table) Handempty

Handempty

POLITECNICO MILANO 1863

The Block World: GPS at Work

7. Search Stack

State

Clear(B)
Clear(C)
On(C, A)
On(A, Table)
On(B, Table)
Handempty

POLITECNICO MILANO 1863

>o

State

The Block World: GPS at Work

7. Search Stack

8. Search Stack

[Pick_Block(C)]

State

Clear(B)
Clear(C)
On(C, A)
On(A, Table)
On(B, Table)
Handempty

State

Clear(B)
Clear(C)
On(A, Table)
On(B, Table)
Holding(C)
Clear(A)

POLITECNICO MILANO 1863

9. Search Stack

[Pick_Block(C)]

State

Clear(B)
Clear(C)
On(A, Table)
On(B, Table)
Holding(C)
Clear(A)

The Block World: GPS at Work

10. Search Stack

State

Clear(C)
On(A, Table)
On(B, Table)
Clear(A)
Handempty
On(C, B)

[Pick Block(C); Put_Block(C, B)]

11. Search Stack

State

[Pick Block(C)
Put_Block(C, B)]

Clear(C)
On(A, Table)
On(B, Table)
Clear(A)
Handempty
On(C, B)

POLITECNICO MILANO 1863

12. Search Stack
On(4,0)On(C,B)
Put_Block(a, ©).
Holding(4) Clear(C)
Holding(a)
Clear(©)

[Pick Block(C)
Put_Block(C, B)]

Goal

State

Clear(C)
On(A, Table)
On(B, Table)
Clear(A)
Handempty
On(C, B)

The Block World: GPS at Work

13. Search Stack

State

Clear(C)
On(A, Table)
On(B, Table)
Clear(A)
Handempty
On(C, B)

[Pick_Block(C); Put_Block(C, B)]

14. Search Stack

State

Clear(C)
On(A, Table)
On(B, Table)
Clear(A)
Handempty
On(C, B)

[Pick_Block(C); Put_Block(C, B)]

POLITECNICO MILANO 1863

15. Search Stack

Goal

State

Clear(C)
On(A, Table)
On(B, Table)
Clear(A)
Handempty
On(C, B)

[Pick_Block(C); Put_Block(C, B)]

The Block World: GPS at Work

16. Search Stack

State

[Pick Block(C);
Put Block(C, B);
Pick Table(A)]

Clear(C)
On(B, Table)
Clear(A)
On(C, B)
Holding(A)

17. Search Stack State
On(B, Table)
L e
On(C, B)
Holding(A)

[Pick Block(C);
Put Block(C, B);
Pick Table(A)]

POLITECNICO MILANO 1863

Goal

The Block World: GPS at Work

16. Search Stack State
On(B, Table) “
PSS | o)
otdng(a)Clas)| | 0.
Holding(A) n
[Pick_Block(C); State

Put Block(C, B);
Pick Table(A)]

17. Search Stack State 18. Search Stack State
Toun oG [| owachoue B [on, T
On(B, Table) Clear(A)
_ Clear(A) On(C, B)
On(C, B) Handempty
Holding(A) OH(A, C)

[Pick Block(C);
Put_Block(C, B);
Pick Table(A);
Put_Block(A, O)]

[Pick Block(C);
Put Block(C, B);
Pick Table(A)]

POLITECNICO MILANO 1863

The Block World: GPS at Work

16. Search Stack

State

[Pick Block(C);
Put Block(C, B);
Pick Table(A)]

17. Search Stack State

Clear(C)
On(B, Table)
Clear(A)
On(C, B)
Holding(A)

18. Search Stack

Clear(A)
On(C, B)

On(B, Table)

Holding(A)

[Pick Block(C);
Put Block(C, B);
Pick Table(A)]

[Pick Block(C);
Put_Block(C, B);
Pick Table(A);
Put_Block(A, O)]

POLITECNICO MILANO 1863

-

State

=lo]>

State

Sound? Optimal?

. Search Stack

State

On(B, Table)
Clear(A)
On(C, B)
Handempty
On(A, ©)

[Pick Block(C);
Put_Block(C, B);
Pick Table(A);
Put_Block(A, C)]

On(B, Table)
Clear(A)
On(C, B)
Handempty
On(A, C)

The Sussman Anomaly

Pickup (?b)

Pre: (handempty)
(clear ?b)
(on—-table ?b)

Add: (holding ?b) “ B

Delete: (handempty)

State
(on—-table ?b)
(clear 7?b)
Putdown (?b) Unstack (?a, ?b) Stack(?a, 7?b)
Pre: (holding ?b) Pre: (handempty) Pre: (holding ?a)
Add: (handempty) (clear ?a) (on ?a ?b) (clear ?Db)
(on—-table ?Db) Add: (holding ?a) (clear ?b) Add: (handempty) (on ?a ?b)
(clear ?b) Delete: (handempty) Delete: (holding ?a)
Delete: (holding ?b) (on ?a ?b) (clear ?a) (clear 7?Db)

; POLITECNICO MILANO 1863

The Sussmann Anomaly — Linear Solution 1 |

(on B C)
* Pickup (B)
* Stack (B, C) “ n

State Goal

State State

POLITECNICO MILANO 1863

The Sussmann Anomaly — Linear Solution 1

(on B C)

* Pickup (B)

* Stack (B, C)
(on A B)

®* Unstack (B, C)
® Putdown (B)
® Unstack (C, A)
® Putdown (C)

* Pickup(d)
* Stack (A, B)

POLITECNICO MILANO 1863

The Sussmann Anomaly — Linear Solution 1 |

(on B C) | |
°* Pickup (B) n
* Stack (B, C)

(on A B) State Goal

ol=|>]

®* Unstack (B, C)
® Putdown (B)
® Unstack (C, A)
® Putdown (C)

* Pickup(d)

* Stack (A, B)
(on B C)

®* Unstack (A, B)

®* Putdown (A)

* Pickup (B)

* Stack (B, C)

; POLITECNICO MILANO 1863

The Sussmann Anomaly — Linear Solution 1

| | | | :
(on B C) IEI B
* Pickup (B) - I .
* Stack (B, C) “
(on A B) State Goal
®* Unstack (B, C)
* Putdown (B)
® Unstack (C, A)
* Putdown (C)

° Pickup ()

° Stack (A, B)
(on B C)

° Unstack (&, B) State State

® Putdown (A)

° Pickup (B)

® Stack (B, C)
(on A B)

° Pickup (A)

° Stack (A,B)

; POLITECNICO MILANO 1863

The Sussmann Anomaly — Linear Solution 2 —
|J~| | A
(on A B) B
®* Unstack (C, A)
I . .c
* Putdown (C) “ n .
* Pickup (A) State Goal

® Stack (A, B)

POLITECNICO MILANO 1863

(on A B)
®* Unstack (C, A)
® Putdown (C)
* Pickup(d)
* Stack (A, B)
(on B C)
® Unstack (A, B)
® Putdown (A)
* Pickup (B)
* Stack (B, C)

The Sussmann Anomaly — Linear Solution 2 |

POLITECNICO MILANO 1863

The Sussmann Anomaly — Linear Solution 2

I'LI 5 I'LI A
°* Unstack (C, A)
* Putdown (C) “
* Pickup (A) State Goal
* Stack (A, B)
(on B C)

® Unstack (A, B)

® Putdown (A)

* Pickup (B)

* Stack (B, C)
(on A B)

* Pickup (A)

®* Stack (A,B)

Is it Optimal? Can we
do it with less actions ?

POLITECNICO MILANO 1863

The Sussmann Anomaly

(on A B)

® Unstack (C, A)

® Putdown (C)
(on B C)

* Pickup (B)

¢ Stack (B, C)
(on A B)

® Pickup(A)

®* Stack (A, B)

: Non Linear (Optimal) Solution

o]=|

State

Goal

State

7/} POLITECNICO MILANO 1863

Linear Planning and the Goal Stack

Advantages

° Reduced search space, since goals are solved one at a time,
and not all possible goal orderings are considered

° Advantageous if goals are (mainly) independent

° Linear planning is sound What about

completeness?

Disadvantages 0

° Linear planning may produce suboptimal solutions
(based on the number of operators in the plan)

° Planner's efficiency is sensitive to goal orderings
« Control knowledge for the “right” ordering
« Random restarts
« lterative deepening

i.;; POLITECNICO MILANO 1863

One Way Rocket (Veloso ‘89)

(OPERATOR LOAD-ROCKET (O
:preconds :
?roc ROCKET
?20bj OBJECT
?loc LOCATION

PERATOR UNLOAD-ROCKET
:preconds

?roc ROCKET

20bj OBJECT

?loc LOCATION

(OPERATOR MOVE-ROCKET
:preconds
?roc ROCKET
?from-1 LOCATION
?to-1 LOCATION

(and (at 2obj 2loc) (and (inside ?0bj ?roc) (and (at ?roc ?2from-1)
(at ?roc ?loc)) (at ?roc ?loc)) (has—-fuel ?roc))
:effects :effects :effects
add (inside ?2o0b]j ?roc) add (at ?7obj ?loc) add (at ?2roc ?to-1)
del (at 20bj ?locq)) del (inside ?0bj ?roc)) del (at ?roc 2from-1)
del (has—-fuel ?roc))
Initial state: f\
(at objl loca) Goal Plan
(at obj2 loch) Goal statement:) .
(at ROCKET lock) (and (at objl locB) (LOAD-ROCKET objl locA)
(has-fuel ROCKET) . (MOVE-ROCKET) .
(at objl locB) (UNLOAD-ROCKET objl locB)
(at obj2 locB)) (at obj2 locB) failure

POLITECNICO MILANO 1863

State Space Non Linear Planning

Extend linear planning:
° From stack to set of goals
° Include in the search space all possible interleaving of goals

State-space nonlinear planning is complete

Goal Plan
(at objl locB) | (LOAD-ROCKET objl 1locA)

(at obj2 locB)
(at objl locB)

LOAD-ROCKET obj2 locA)

MOVE-ROCKET)
UNLOAD-ROCKET objl locB)

(
(
(
(

(at obj2 locB) UNLOAD-ROCKET objl locB)

%

) POLITECNICO MILANO 1863

Prodigy4.0 (Veloso et al. 90)

1. Terminate 1f the goal statement 1s satisfied 1n the current state.
Initially the set of applicable relevant operators 1s empty.
2. Compute the SET of pending goals G, and the SET of applicable relevant
operators A.
* A goal 1s pending if 1t 1s a precondition, not satisfied in the
current state, of a relevant operator already 1n the plan.
* A relevant operator 1is applicable when all its preconditions are
satisfied in the state.
3. Choose a pending goal G in G or choose a relevant applicable operator A
in A.
4. If the pending goal G has been chosen, then
* Expand goal G, i1.e., get the set O of relevant instantiated
operators that could achieve G,
* Choose an operator O from O, as a relevant operator for goal G.
* Go to step 1.
5. If a relevant operator A has been selected as directly applicable, then
°* Apply A,
* Go to step 1.

OLITECNICO MILANO 1863

Prodigy4.0 Search Representation

—= S = T Z
=
y
] Y I Y | v)

Head plan gap Tail plan
Applying and Operator s Adding and operator
(moving it to the head) to the tail plan

X |
[—= s |= x|—= Yr—==Z —== g - 7
t =Y

; POLITECNICO MILANO 1863

After all, it is all about graph exploration

move A B move A B
loadol A/inol R
load 02 A
load 02 A
move A B
load ol A

POLITECNICO MILANO 1863

mol R
at 02 A
atR B

unload ol A

move A B

unload 02 A
>

Multiple solutions
are possible.

No need to explore the
whole graph, but you
should be able to do jt!

Planning issues

State representation
* The frame problem

* The “choice” of predicates
(e.g., On-table (x), On (X, table), On-table-A, On-table-B,...)

Action representation

° Many alternative definitions v hicarmics com
_ =] piog pem gofnd e seemic win proatons
* Reduce to “needed” definition A T I
meet college | maried | §ie® | tesis | house et tenure ive happi
* Conditional effects R 'Er '"I A “|' | Lwr'l‘a »
¢ U nce rtal nty age. age20 age22? age24 age26 age28 age30 ageld2 age M4 old age
* Quantification T o e
college inii 50U 1) [ess D.GDSE SIS N . WO
* Functions %m&f; :ulf““ w T e g)
. . . | | I
Generatlon - plannlng algOrlthm(S) age. age 20 age 22 age24 age2§ age28 age30 age 32 age 34 old age

7/} POLITECNICO MILANO 1863

Wrap-up slide on “Planning and Plan Generation”

What should remain from this lecture?

° Planning: selecting one sequence of actions (operators) that transform
(apply to) an initial state to a final state where the goal statement is true.

° Means-ends analysis: identify and reduce, as soon as possible, differences
between state and goals.

° Linear planning: backward chaining with means-ends analysis using
a stack of goals, potentially efficient, possibly unoptimal, incomplete; GPS

° Nonlinear planning with means-ends analysis: backward chaining using
a set of goals; reason about when “to reduce the differences;” Prodigy4.0.

References

° S. Russell, P. Norvig. «Atrtificial Intelligence: A Modern Approach». Chapter 11.:
Planning, pages 375-416.Pearson, 2010.

%iy POLITECNICO MILANO 1863

WU
aw hy,
\\\\\ ///,////
Z
5
5 A Z
I =z
= £

SUALS MILANO 1863

Cognitive Robotics

Planning: Plan Domain Description Language

Matteo Matteucci
matteo.matteucci@polimi.it

Artificial Intelligence and Robotics Lab - Politecnico di Milano

Planning Problems in Artificial Intelligence

Planning Problem := <P,A,S5,G>
* P:=a SET of Predicates | ’J_‘ “
° A:= a SET of Operators (Actions) ﬂ
» S:= initial State I]
° G:= Goal(s) State Goal

A Plan Domain or Domain Theory is defined as .= P + A

A Problem Solution or Plan is := a sequence of Actions that
° If executed from the initial state S
* will result in a state satisfying the Goal

7% POLITECNICO MILANO 1863

STRIPS as a Language

STRIPS has been used as formal language for Planning Problems

* |ist of Predicates: atomic formulae
* [ist of Actions:
 NAME: string

« PRECONDITIONS: PartiallySpecifiedState

“A State S satisfies a
PartiallySpecifiedState G if S
contains all the atoms of G”

« EFFECTS: ADDlist, DELETElIist

« + “STRIPS assumption”
* Initial State: State

° Goal: PartiallySpecifiedState

* Atomic formula (atom):= predicate + arguments
* State:= set of positive atoms + CWA!
* PartiallySpecifiedState:= set of positive atoms

POLITECNICO MILANO 1863

The Block World in STRIPS

° empty: the gripper is not holding a block

° holding(B): the gripper is holding block B ’J—‘ “
* on(B1,B2): block B1 is on top of block B2 ’J-\
* ontable(B): block B is on the table “ n n
* clear(B): block B has no blocks on top of it State Goal

and is not being held by the gripper

Action Preconditions Add List Delete List

unstack(B1, B2) empty & clear(B1) & holding(B1), empty, on(B1, B2),
on(B1, B2) clear(B2) clear(B1)

pickup(B) empty & clear(B) & holding(B) empty, ontable(B),
ontable(B) clear(B)

stack(B1, B2) holding(B1) & empty, on(B1, B2), clear(B2),
clear(B2) clear(B1) holding(B1)

putdown(B) holding(B) empty, ontable(B), holding(B)

clear(B)

%

) POLITECNICO MILANO 1863

PDDL: Planning Domain Definition Language

PDDL (Planning Domain Definition Language) is a standard encoding language for “classical”
planning tasks

° Objects: Things in the world that interest us

Predicates: Properties of objects that we are interested in (true/false).
Initial state: The state of the world that we start in.

Goal specification: Things that we want to be true.
Actions/Operators: Ways of changing the state of the world.

Planning tasks specified in PDDL are separated into two files
* A domain file for predicates and actions
* A problem file for objects, initial state and goal specification

PDDL was invented in 1998 for the first IPC and nowadays most common planners read PDDL
files ...

5\ POLITECNICO MILANO 1863

PDDL: Domain files

(define (domain <DOMAIN_NAME>)
(:requirements :strips)
(:predicates (<PREDICATE_1_NAME> ?<arg,> ?<arg,> ...)
(<PREDICATE_2 NAME> ...)
.t
(:action <ACTION_1 NAME>
‘parameters (?<par,> ?<par,> ...)
:precondition <COND_FORMULA: PartiallySpecifiedState>
-effect <EFFECT_FORMULA: ADDIist + DELETEIist>

)
(:action <ACTION_2 NAME>

)

POLITECNICO MILANO 1863

PDDL: Problem Files

(define (problem <PROBLEM_NAME>)
(:domain <DOMAIN_NAME>)
(:objects <obj,> <obj,> ...)
(:init <ATOM > <ATOM,> ...)
(:goal <COND_FORMULA: PartiallySpecifiedState>)

)

Where we have:
* Init and Goal are ground! (not parameterised, i.e., not ?x kind of things)

° COND FORMULA: conjunction of atoms
(AND atom:... atomn)

* EFFECT _FORMULA: conjunction of ADDED & DELETED (NOT) atoms
(AND atomai ... (NOT atomn))

POLITECNICO MILANO 1863

Basic PDDL Example: Gripper Domain

Gripper task with four balls:

There is a robot that can move between two rooms and pick up or drop balls with either
of his two arms. Initially, all balls and the robot are in the first room. We want the balls to
be in the second room.

Objects: The two rooms, four balls and two robot arms.

° Predicates: Is x aroom? Is x a ball? Is ball x in room y? Is robot arm x empty? [...]
Initial state: All balls and the robot are in the first room. All robot arms are empty. [...]
* Goal specification All balls must be in the second room.

* Actions/Operators: The robot moves between rooms, pick up a ball or drop a ball.

7)) POLITECNICO MILANO 1863

Gripper Domain: Objects

Obijects in the gripper domain
° Rooms: rooma, roomb
* Balls: balll, ball2, ball3, ball4
° Robotarms: left, right

In PDDL without typing
° (:objects rooma roomb balll ball2 ball3 ball4 left right)

In PDDL with typing
° (itypes room ball robot-arm)

° (.objects rooma - room roomb —room
balll — ball ball2 — ball ball3 — ball ball4 — ball
left — robot-arm right — robot-arm)

POLITECNICO MILANO 1863

Gripper Domain: Predicates (without typing)

Predicates in the gripper domain without typing
* ROOM(X) — true iff x is a room
° BALL(X) —true iff x is a ball
°* GRIPPER(X) —true iff x is a gripper (robot arm)
° at-robby(x) — true iff X is a room and the robot is in x
° at-ball(x, y) — true iff x is a ball, y is a room, and x is in y
* free(x) —true iff x is a gripper and x does not hold a ball
° carry(x,y) —true iff x is a gripper, y is a ball, and x holds y

In PDDL this translates into:

° (:predicates
(ROOM ?x) (BALL ?x) (GRIPPER ?x)

(at-robby ?x) (at-ball ?x ?y)
(free ?x) (carry ?x ?y)

(X7 POLITECNICO MILANO 1863

Gripper Domain: Predicates (with typing)

Predicates in the gripper domain with typing
° at-robby(x) — true iff x is a room and the robot is in x
* at-ball(x, y) —true iff x is a ball, y is a room, and x is iny
* free(x) — true iff x is a gripper and x does not hold a ball
° carry(x, y) — true iff x is a gripper, y is a ball, and x holds y

In PDDL this translates into:

° (:predicates
(at-robby ?x — room)
(at-ball ?x — balll ?y — room)
(free ?x — robot-arm)
(carry ?x — robot-arm ?y — ball)

*) POLITECNICO MILANO 1863

Gripper Domain: Initial State

The Initial state (according to the example text):
°* ROOM(rooma) and ROOM(roomb) are true.
° BALL(balll), ..., BALL(ball4) are true.
° GRIPPER(left), GRIPPER(right), free(left) and free(right) are true.
° at-robby(rooma), at-ball(balll, rooma), ..., at-ball(ball4, rooma) are true.
* Everything else is false.

In PDDL this translate into:

° (:init
(ROOM rooma) (ROOM roomb)
(BALL balll) (BALL ball2) (BALL ball3) (BALL ball4)
(GRIPPER left) (GRIPPER right) (free left) (free right)
(at-robby rooma) (at-ball balll rooma) (at-ball ball2 rooma)
(at-ball ball3 rooma) (at-ball ball4 rooma)
)

(X7 POLITECNICO MILANO 1863

Gripper Domain: Goal State

The Goal state (according to the example text):
° at-ball(balll, roomb), ..., at-ball(ball4, roomb) must be true.
* Everything else we don’t care about.

In PDDL this translates into:

° (:goal
(and (at-ball balll roomb)
(at-ball ball2 roomb)
(at-ball ball3 roomb)
(at-ball ball4 roomb)
)
)

OLITECNICO MILANO 1863

Gripper Domain: Movement Operator

The robot can move from x to y:
* Precondition: ROOM(x), ROOM(y) and at-robby(x) are true.
* Effect: at-robby(y) becomes true and at-robby(x) becomes false.
° Everything else doesn’t change.

In PDDL this translates into:

° (:action move
‘parameters (?x ?y)
:precondition (and (ROOM ?x) (ROOM ?y) (at-robby ?x))
.effect (and (at-robby ?y) (not (at-robby ?x)))

T77)) POLITECNICO MILANO 1863

Gripper Domain: Pick-up Operator

The robot can pick up x in y with z.

* Precondition: BALL(x), ROOM(y), GRIPPER(z), at-ball(x, y), at-robby(y)
and free(z) are true.

* Effect: carry(z, X) becomes true while at-ball(x, y) and free(z) become false.
° Everything else doesn’t change.

In PDDL this translates into:
* (:action pick-up
:parameters (?x ?y ?z)
:precondition (and (BALL ?x) (ROOM ?y) (GRIPPER ?z)
(at-ball ?x ?y) (at-robby ?y) (free ?z))
.effect (and (carry ?z ?x) (not (at-ball ?x ?y)) (not (free ?z)))

T77)) POLITECNICO MILANO 1863

Gripper Domain: Drop Operator

The robot can drop x iny from z
* Precondition: BALL(x), ROOM(y), GRIPPER(z), carry(z,x), at-robby(y) are true.
* Effect: at-ball(x, y) and free(z) become true while carry(z, x) becomes false.
° Everything else doesn’t change.

In PDDL this translates into:
° (:action drop :parameters (?x ?y ?z)
:precondition (and (BALL ?x) (ROOM ?y) (GRIPPER ?z)
(carry ?z ?X) (at-robby ?y))
.effect (and (at-ball ?x ?y) (free ?z) (not (carry ?z ?x)))

T77)) POLITECNICO MILANO 1863

Let’s solve it!

Using satplan to solve the gripper problem
* Download satplan (2006 version, winner of IPC)
— http://www.cs.rochester.edu/users/faculty/kautz/satplan/index.htm
— tar -zxvf SatPlan2006.tgz

* Compile satplan by issuing
— cd SatPlan2006
— make

° Run vanilla satplan (i.e., default options)
— cd include/bin/

— ./satplan -path ../../gripper/ -domain gripper_domain.pddl| -problem
gripper_problem.pddl

° Observe the plan
— less gripper_problem.pddl.soln

'} POLITECNICO MILANO 1863

PDDL 1.2 (IPC 2000)

In successive revisions of the language requirements where added:
° :strips
° :typing In :predicates, :parameters and :objects
° :equality =
° :negativepreconditions not
* .disjunctivepreconditions or
° :.existentialpreconditions exists
° :universalpreconditions forall
° :quantifiedpreconditions = :existentialpreconditions + :universalpreconditions
° :conditionaleffects when
* :adl = all the above (Action Description Language)

7)) POLITECNICO MILANO 1863

PDDL: Typing in Domain and Problem Files

(define (domain <DOMAIN_NAME>)

(:requirements :strips :typing)

(itypes <type,> <type,> ...)

(:predicates (<PREDICATE_1_NAME> ?<arg,> - <type,> ...)

(<PREDICATE_2 NAME> ..))

(-action <ACTION_1 NAME>
‘parameters (?<par,> - <type,> ?<par,> - <type,> ...)
:precondition < COND_FORMULA: PartiallySpecifiedState>
-effect < EFFECT_FORMULA: ADDIist + DELETElIist>)

)

(define (problem <PROBLEM_NAME>)
(:domain <DOMAIN_NAME>)
(:objects <obj,> - <type,> <obj,> - <type,> ...)
(:init <ATOM > <ATOM,> ...)
(:goal < COND_FORMULA: PartiallySpecifiedState >)

7/} POLITECNICO MILANO 1863

STRIPS vs ADL Conditional Formulas

The :requirement clause defines the power of the language that should be understood by the planner

° :strips
« Conjunction of atoms (AND atom, ... atom,)
* If :equality added atoms my be in the form (= arg, arg,)
* Only positive

° :adl
* equality (=) (= arg, arg,)
* negation (NOT) (NOT atom,)
» conjunction (AND) (AND atom, ... atom,)
« disjunction (OR) (OR atom, ... atom,,)
 uantifier (FORALL, EXISTS)

(FORALL (?v - t) (PREDICATE ?v))
(EXISTS (?v - t) (PREDICATE ?v))

POLITECNICO MILANO 1863

STRIPS vs ADL Effect Formulas

The :requirement clause defines the power of the language that should be understood by the planner

° .strips
« Conjunction of added and deleted atoms (AND atom; ... (NOT atom,,))

« Conditional effect:
(WHEN PRECOND_ FORMULA EFFECT_FORMULA)
« Universal quantified formula:
(FORALL (?<v;> - <t;> ?<v,> - <t,>) EFFECT_FORMULA)

POLITECNICO MILANO 1863

PDDL 2.1: Time (the idea)

A feasible plan is sometimes not enough, thus a new version of planner was introduced
to take into account:

= Durative actions: time E—
" Fluents: numbers
* Metrics: optimal plan

Time in planning (scheduling)
° actions take time to execute
° how long an action takes to execute may depend on the preconditions
* preconditions may need to hold when the action begins, or throughout its execution
* effects may not be true immediately and they may persist for only a limited time
° an action can have multiple effects on a fluent at different times

(X7 POLITECNICO MILANO 1863

PDDL 2.1: Time (the code)

A feasible plan is sometimes not enough, thus a new version of planner was introduced to take
into account:

= Durative actions: time (o
" Fluents: numbers
= Metrics: optimal plan

In the Domain file
° (:durative-action <name>
:parametes (...)
.duration (= ?duration <time>)
:condition (...)
-effect (...))
= CONDITIONAL_FORMULA: at_start, overall, at_end
= EFFECT_FORMULA: at_start, at_end

OLITECNICO MILANO 1863

PDDL 2.1: Resources (the idea)

A feasible plan is sometimes not enough, thus a new version of planner was introduced to take
into account:

= Durative actions: time

* Fluents: numbers CE—

= Metrics: optimal plan

Resources in planning

° Aresource is any guantity or (set of) object(s) whose value or availability determines
whether an action can be executed

* Resources may be consumable (examples: money, fuel) or reusable
(example: a car which becomes available again after a trip)

° In some cases, actions may produce resources (examples: refueling, hiring more staff, etc)

* When planning with resources, a solution is defined as a plan that achieves the goals while
allocating resources to actions so that all resource constraints are satisfied

%

) POLITECNICO MILANO 1863

PDDL 2.1: Resources (the code)

A feasible plan is sometimes not enough, thus a new version of planner was introduced to take
into account:

= Durative actions: time

" Fluents: numbers mm—

= Metrics: optimal plan

In the Domain definition
° (:functions (<namel> ?<objl> - <typel>)
(<name2> ?<0bj2> - <type2>)
(---))
* CONDITIONAL FORMULA: =><<==>+-*/
= EFFECT FORMULA:
— assign, increase, decrease, scale-up, scale-down

In the Problem definition
" (cinit (= (<KATOM>) <#>))

POLITECNICO MILANO 1863

PDDL 2.1: Metrics (the idea)

A feasible plan is sometimes not enough, thus a new version of planner was introduced
to take into account:

= Durative actions: time
" Fluents: numbers
= Metrics: optimal plan (—

Optimal planning (and scheduling)

° As with search problems, we can distinguish between
optimal and satisficing solutions

* A satisficing plan is one that achieves the goal(s) without
violating any temporal or resource constraints

° An optimal plan is one that achieves the goal(s) while minimising (or maximising)
some metric (metric is often defined in terms of resource usage)

7)) POLITECNICO MILANO 1863

PDDL 2.1: Metrics (the code)

A feasible plan is sometimes not enough, thus a new version of planner was introduced
to take into account:

= Durative actions: time
" Fluents: numbers
= Metrics: optimal plan ~ ¢

In the problem definition
° (:metric minimize[maximize] <objective_function>)

Built-in function:
* total-time

POLITECNICO MILANO 1863

PDDL 2.1 - IPC-2002

“We have a Four Gallon Jug of Water and a Three
Gallon Jug of Water and a Water Pump.

The challenge of the problem is to be able to put
exactly two gallons of water in the Four Gallon Jug,
even though there are no markings on the Jugs.”

Drew McDermott.
“The 1998 Al Planning Systems Competition”.
Al Magazine (21):2, 2000.

7/} POLITECNICO MILANO 1863

