
Cognitive Robotics
2017/2018

Matteo Matteucci
matteo.matteucci@polimi.it

Artificial Intelligence and Robotics Lab - Politecnico di Milano

Planning: State, Actions and Goal Representation

based on Manuela M. Veloso lectures on

PLANNING, EXECUTION AND LEARNING

2

Recall: «Think hard, act later»

3

Recall: «Think hard, act later»

Planning is about «thinking»

• Given the actions available in a task domain.

• Given a problem specified as:

• an initial state of the world

• a goal statement (set of goals) to be achieved

• Find a solution to the problem

Plan: a way, in terms of a sequence of actions,

to transform the initial state into

a new state of the world where

the goal statement is true.

Newell and Simon 1956

It’s all about states,
actions, and plans!

4

The Block World

The Block World is a useful abstraction to introduce States, Actions and Plans

• Blocks are on the Table, or on top of each other.

• There is an Arm – the Arm can be empty or holding one block.

• The table is always clear.

5

The Block World: States

Objects

• Blocks: A, B, C

• Table: Table

Predicates

• On(B, A), On(C, Table)

• Clear(B), Handempty, Holding(C)

• On-table(A), On(A,B), Top(B),…

States – Conjunctive

• On(B,A) and On(C,Table) and Clear(B) and Handempty

• …

On-Table(A), On-Table(C),
On(A,B), Clear(C),

Clear(B), Handempty

On-Table(A), On-Table(C),
Clear(A), Clear(C),

Holding(B)

Some predicates
might be

redundant

6

The Block World: Assumptions/Limitations

The Block World models Classical Deterministic Planning ...

• There is a single initial state

• The description is complete

• The plan is deterministic

• What is not true in the state is false

The basic operators perform queries on states

• On(A,B) → returns true or false

• On(A,x) → returns x=Table or x=B

• On-table (x) → returns x=A and x=C

• …

CWA: Closed
World Assumption

7

The Block World: State Description with Two Blocks

A-on-B

A-on-Table

B-on-A

B-on-Table

Holding-A

Holding-B

Handempty

Clear-A

Clear-B

A-on-x {∅, table, B}

B-on-x {∅, table, A}

¬A-on-B ∧ ¬A-on-Table

¬B-on-A ∧ ¬B-on-Table

¬Holding-A ∧ ¬Holding-B

¬B-on-A

¬A-on-B

2^4 Possible states

3^2 Possible States

All these define
the State Space

8

The Block World: Planning as State-Space Search

9

Different Models for State Spaces

Different models for states exist ...

• Atomic identification of states (s1, s2,...)

• Symbolic feature based states

• Symbolic predicate based states

• …

… together with different ways of combining them

• Conjunctive → observable

• Probabilistic → approximate

• Incremental → on-demand

• Temporal → dynamic

Predicates, conjunctive,
complete, correct,

deterministic

10

Goal Specification

We can specify a Goal according to different levels of generality:

• Goal State → Completely specified state

• Goal Statement → Partially specified state

• Objective function → Defines “good” or “optimal” plan

Goal Statement example:

• Initial: A-on-x = Table;

B-on-x = A;

C-on-x = Table

• Goal: A-on-x = B

Increased
Generality

Same problem, different
representation.

11

What is an Action?

Plan: a way, in terms of a sequence of actions,

to transform the initial state into

a new state of the world where

the goal statement is true.

Action: a transition from one (partial) state to another

• May be applicable only in particular states

• Generates new state

• Deterministic: tdet: S x A → S

• Non-deterministic: tnon-det : S x A → 2S

• Probabilistic: tprob: S x A → <2S, r>

Newell and Simon 1956

Explicit Action Representation

12

The Block World Dynamics: Actions

• Blocks are on the Table, or on top of each other

• Blocks are picked up and put down by the arm

• A block can be picked up only if it is clear, i.e., without a block on top

• The arm can pick up a block only if the arm is empty, i.e., if it is not holding

another block, i.e., the arm can pick up only one block at a time

• The arm can put down blocks on blocks or on the table

• The table is always clear

How do these
transform a state

into another?

13

STRIPS Action Representation

STRIPS (Stanford Research Institute Problem Solver) was the planner used by Shakley,

it was developed at SRI International by Richard Fikes and Nils Nilsson in 1971.

Explicit action a representation

• {preconds(a), effects–(a), effects+(a)}

• effects–(a) ∩ effects+(a) = ∅

• (S, a) = {S – effects–(a) ∪ effects+(a)},

where S ∈ 2S

Example in the Block World

• Pickup_from_table(?b)

Pre: ...

Add: ...

Delete: ...
Let’s try this out

together!

14

Actions in the Block World

In the Block World:

• An action a is applicable in s if all its preconditions are satisfied by s.

• RESULT(s,a) = (s – Del (a)) U Add (a)

• No explicit mention of time

o The precondition always refers to time t

o The effect always refers to time t+1

15

The Block World: Actions

Pickup_from_table(b)

Pre: Block(b), Handempty

Clear(b), On(b,Table)

Add: Holding(b)

Delete: Handempty, On(b,Table)

Clear(b)

Putdown_on_table(b)

Pre: Block(b), Holding(b)

Add: Handempty,

On(b, Table)

Delete: Holding(b)

Pickup_from_block(b1, b2)

Pre: Block(b1),Block(b2), Handempty

Clear(b1), On(b1,b2)

Add: Holding(b1), Clear(b2)

Delete: Handempty, On(b1,b2)

Clear (b1)

Putdown_on_block(b1, b2)

Pre: Block(b1), Holding(b1)

Block(b2), Clear(b2), b1 ≠ b2

Add: Handempty, On(b1, b2)

Delete: Holding(b1), Clear(b2)

16

More Realistic Actions Representations

Conditional Effects
• Pickup (b)

Pre: Block(b), Handempty, Clear(b), On(b, x)

Add: Holding(b)

if (Block(x)) then Clear(x)

Delete: Handempty, On(b, x)

Quantified Effects
• Move (o, x)

Pre: At(o, y), At(Robot, y)

Add: At(o, x), At(Robot, x)

forall (Object(u)) [if (In(u, o)) then At(u, y)]

Delete: At(o, y), At(Robot, y),

forall (Object(u)) [if (In(u, o)) then At(u, y)]

Disjunctive and Negated Preconditions
• Holding(x) Or Not[Lighter_Than_Air(x)]

All these extensions
can be emulated
adding actions!

17

More Realistic Actions Representations

Inference Operators / Axioms
• Clear(x) iff forall(Block(y))[Not[On(y, x)]]

Functional effects
• Move (o, x)

Pre: At(o, y), At(Robot, y), Fuel(f), f ≥ Fuel_Needed(y, x)

Add: At(o, x), At(robot, x), Fuel(f – Fuel_Needed(y, x)),

forall (Object(u)) [if (In(u, o)) then At(u, y)]

Delete: At(o, y), At(Robot, y), Fuel(f),

forall (Object(u)) [if (In(u, o)) then At(u, y)]

Disjunctive Effects
• Pickup_from_block(b)

Pre: Block(b), Handempty, Clear(b), On(b, c), Block(c)

C1: Add: Clear(c), Holding(b); Delete: On(b, c), Handempty

C2: Add: Clear(c), On(b, Table); Delete: On(b, c)

C3: Add: ; Delete:

These extensions make
the planning problem

significantly harder

Much harder and you
can add probability!!!

Cognitive Robotics

Matteo Matteucci
matteo.matteucci@polimi.it

Artificial Intelligence and Robotics Lab - Politecnico di Milano

Planning: Plan Generation

19

Different Plans ...

A plan can have different degrees of generality …

• Sequence of Instantiated Actions

• Partial Order of Instantiated Actions

• Set of Instantiated Actions

• Policy (a direct mapping from states to actions)

… and adopt different search strategies:

• Progression, a.k.a. forward state space search,

a.k.a. forward chaining

• Regression, a.k.a. backward state-space search,

a.k.a. backward chaining

Increased
Generality

20

Plan Generation

Backtracking Search Through a Search Space

• How to conduct the search

• How to represent the search space

• How to evaluate the solutions

Non-Deterministic Choices Determine Backtracking

• Choice of actions

• Choice of variable bindings

• Choice of temporal orderings

• Choice of subgoals to work on

21

Properties of Planning Algorithms

Soundness

• A planning algorithm is sound if all solutions are legal plans, i.e., all

preconditions, goals, and any additional constraints are satisfied

Completeness

• A planning algorithm is complete if a solution can be found

whenever one actually exists

• A planning algorithm is strictly complete if all solutions are included

in the search space

Optimality

• A planning algorithm is optimal if it maximizes a predefined

measure of plan quality

22

Linear Planning and Means-ends Analysis

Linear Planning

• Uses a Goal stack and work on one goal until completely solved before

moving on to the next goal

Mean-ends Analysis

• Search by reducing the difference between the state and the goals, i.e.,

what means (operators) are available to achieve the desired ends (goal)?

GPS Algorithm (state, goals, plan)

If goals ⊆ state, then return (state, plan)

Choose a difference d ∈ goals between state and goals

Choose an operator o to reduce the difference d

If no applicable operators, then return False

(state, plan) = GPS (state, preconditions(o), plan)

If state, then return GPS (apply (o, state), goals, [plan,o])

Initial call: GPS (initial-state, initial-goals, [])

Newell and Simon 60s

23

The Block World: GPS at Work

A

B

C

Goal

A B

C

State

24

The Block World: GPS at Work

A

B

C

Goal

A B

C

State

25

The Block World: GPS at Work

A

B

C

Goal

A B

C

State

26

The Block World: GPS at Work

A

B

C

Goal

A B

C

State

27

The Block World: GPS at Work

A

B

C

Goal

A B

C

State

28

The Block World: GPS at Work

A

B

C

Goal

A B

C

State

29

The Block World: GPS at Work

A

B

C

Goal

A

B

C

State

30

The Block World: GPS at Work

A

B

C

Goal

A

B

C

State

31

The Block World: GPS at Work

A

B

C

Goal

A

B

C

State

Sound? Optimal?
Complete?

32

The Sussman Anomaly

A

B

C

Goal

A B

C

State

Pickup(?b)

Pre:(handempty)

(clear ?b)

(on-table ?b)

Add:(holding ?b)

Delete:(handempty)

(on-table ?b)

(clear ?b)

Putdown(?b)

Pre:(holding ?b)

Add:(handempty)

(on-table ?b)

(clear ?b)

Delete:(holding ?b)

Stack(?a, ?b)

Pre:(holding ?a)

(clear ?b)

Add:(handempty)(on ?a ?b)

Delete:(holding ?a)

(clear ?b)

Unstack(?a, ?b)

Pre:(handempty)

(clear ?a)(on ?a ?b)

Add:(holding ?a)(clear ?b)

Delete:(handempty)

(on ?a ?b)(clear ?a)

33

The Sussmann Anomaly – Linear Solution 1
A

B

C

Goal

A B

C

State

A

B

C

State

A

B
C

State

(on B C)

• Pickup (B)

• Stack (B, C)

34

The Sussmann Anomaly – Linear Solution 1
A

B

C

Goal

A

B

C

State

A B

C

State

A

B
C

State

A B

C

State

A

B C

State

A B C

State

A

B C

State

(on B C)

• Pickup (B)

• Stack (B, C)

(on A B)

• Unstack (B, C)

• Putdown (B)

• Unstack (C, A)

• Putdown (C)

• Pickup(A)

• Stack (A, B)

35

The Sussmann Anomaly – Linear Solution 1

(on B C)

• Pickup (B)

• Stack (B, C)

(on A B)

• Unstack (B, C)

• Putdown (B)

• Unstack (C, A)

• Putdown (C)

• Pickup(A)

• Stack (A, B)

(on B C)

• Unstack (A, B)

• Putdown (A)

• Pickup (B)

• Stack (B, C)

A

B

C

Goal

A

B C

State

A

B C

State

A

B

C

State

A B C

State

A

B

C

State

36

The Sussmann Anomaly – Linear Solution 1

(on B C)

• Pickup (B)

• Stack (B, C)

(on A B)

• Unstack (B, C)

• Putdown (B)

• Unstack (C, A)

• Putdown (C)

• Pickup(A)

• Stack (A, B)

(on B C)

• Unstack (A, B)

• Putdown (A)

• Pickup (B)

• Stack (B, C)

(on A B)

• Pickup (A)

• Stack (A,B)

A

B

C

Goal

A

B

C

State

A B

C

State

A

B

C

State

37

The Sussmann Anomaly – Linear Solution 2

(on A B)

• Unstack (C, A)

• Putdown (C)

• Pickup(A)

• Stack (A, B)

A

B

C

Goal

A B

C

State

A B

C

State

A B C

State

A

B C

State

A

B C

State

38

The Sussmann Anomaly – Linear Solution 2

(on A B)

• Unstack (C, A)

• Putdown (C)

• Pickup(A)

• Stack (A, B)

(on B C)

• Unstack (A, B)

• Putdown (A)

• Pickup (B)

• Stack (B, C)

A

B

C

Goal

A

B C

State

A

B C

State

A

B

C

State

A B C

State

A

B

C

State

39

The Sussmann Anomaly – Linear Solution 2

(on A B)

• Unstack (C, A)

• Putdown (C)

• Pickup(A)

• Stack (A, B)

(on B C)

• Unstack (A, B)

• Putdown (A)

• Pickup (B)

• Stack (B, C)

(on A B)

• Pickup (A)

• Stack (A,B)

A

B

C

Goal

A

B

C

State

A B

C

State

A

B

C

State

Is it Optimal? Can we
do it with less actions?

40

The Sussmann Anomaly: Non Linear (Optimal) Solution

(on A B)

• Unstack (C, A)

• Putdown (C)

(on B C)

• Pickup (B)

• Stack (B, C)

(on A B)

• Pickup(A)

• Stack(A, B)

A

B

C

Goal

A B

C

State

A B

C

State

A B C

State

A

B

C

State

A

B

C

State

A B

C

State

A

B

C

State

41

Linear Planning and the Goal Stack

Advantages

• Reduced search space, since goals are solved one at a time,

and not all possible goal orderings are considered

• Advantageous if goals are (mainly) independent

• Linear planning is sound

Disadvantages

• Linear planning may produce suboptimal solutions

(based on the number of operators in the plan)

• Planner's efficiency is sensitive to goal orderings

• Control knowledge for the “right” ordering

• Random restarts

• Iterative deepening

What about
completeness?

42

One Way Rocket (Veloso ‘89)

43

State Space Non Linear Planning

Extend linear planning:

• From stack to set of goals

• Include in the search space all possible interleaving of goals

State-space nonlinear planning is complete

44

Prodigy4.0 (Veloso et al. 90)

1. Terminate if the goal statement is satisfied in the current state.

Initially the set of applicable relevant operators is empty.

2. Compute the SET of pending goals G, and the SET of applicable relevant

operators A.

• A goal is pending if it is a precondition, not satisfied in the

current state, of a relevant operator already in the plan.

• A relevant operator is applicable when all its preconditions are

satisfied in the state.

3. Choose a pending goal G in G or choose a relevant applicable operator A

in A.

4. If the pending goal G has been chosen, then

• Expand goal G, i.e., get the set O of relevant instantiated

operators that could achieve G,

• Choose an operator O from O, as a relevant operator for goal G.

• Go to step 1.

5. If a relevant operator A has been selected as directly applicable, then

• Apply A,

• Go to step 1.

45

Prodigy4.0 Search Representation

Head plan gap Tail plan

Applying and Operator
(moving it to the head)

Adding and operator
to the tail plan

46

After all, it is all about graph exploration

No need to explore the
whole graph, but you

should be able to do it!

Multiple solutions
are possible.

47

Planning issues

State representation

• The frame problem

• The “choice” of predicates

(e.g., On-table (x), On (x, table), On-table-A, On-table-B,…)

Action representation

• Many alternative definitions

• Reduce to “needed” definition

• Conditional effects

• Uncertainty

• Quantification

• Functions

Generation – planning algorithm(S)

48

Wrap-up slide on “Planning and Plan Generation”

What should remain from this lecture?

• Planning: selecting one sequence of actions (operators) that transform

(apply to) an initial state to a final state where the goal statement is true.

• Means-ends analysis: identify and reduce, as soon as possible, differences

between state and goals.

• Linear planning: backward chaining with means-ends analysis using

a stack of goals, potentially efficient, possibly unoptimal, incomplete; GPS

• Nonlinear planning with means-ends analysis: backward chaining using

a set of goals; reason about when “to reduce the differences;” Prodigy4.0.

References

• S. Russell, P. Norvig. «Artificial Intelligence: A Modern Approach». Chapter 11:

Planning, pages 375-416.Pearson, 2010.

Cognitive Robotics

Matteo Matteucci
matteo.matteucci@polimi.it

Artificial Intelligence and Robotics Lab - Politecnico di Milano

Planning: Plan Domain Description Language

50

Planning Problems in Artificial Intelligence

Planning Problem := <P,A,S,G>

• P:= a SET of Predicates

• A:= a SET of Operators (Actions)

• S:= initial State

• G:= Goal(s)

A Plan Domain or Domain Theory is defined as := P + A

A Problem Solution or Plan is := a sequence of Actions that

• if executed from the initial state S

• will result in a state satisfying the Goal

A

B

C

Goal

A B

C

State

51

STRIPS as a Language

STRIPS has been used as formal language for Planning Problems

• list of Predicates: atomic formulae

• list of Actions:

• NAME: string

• PRECONDITIONS: PartiallySpecifiedState

• EFFECTS: ADDlist, DELETElist

• + “STRIPS assumption”

• Initial State: State

• Goal: PartiallySpecifiedState

“A State S satisfies a
PartiallySpecifiedState G if S
contains all the atoms of G”

• Atomic formula (atom):= predicate + arguments

• State:= set of positive atoms + CWA!

• PartiallySpecifiedState:= set of positive atoms

52

The Block World in STRIPS

• empty: the gripper is not holding a block

• holding(B): the gripper is holding block B

• on(B1,B2): block B1 is on top of block B2

• ontable(B): block B is on the table

• clear(B): block B has no blocks on top of it

and is not being held by the gripper

Action Preconditions Add List Delete List

unstack(B1, B2) empty & clear(B1) &
on(B1, B2)

holding(B1),
clear(B2)

empty, on(B1, B2),
clear(B1)

pickup(B) empty & clear(B) &
ontable(B)

holding(B) empty, ontable(B),
clear(B)

stack(B1, B2) holding(B1) &
clear(B2)

empty, on(B1, B2),
clear(B1)

clear(B2),
holding(B1)

putdown(B) holding(B) empty, ontable(B),
clear(B)

holding(B)

A

B

C

Goal

A B

C

State

53

PDDL: Planning Domain Definition Language

PDDL (Planning Domain Definition Language) is a standard encoding language for “classical”
planning tasks

• Objects: Things in the world that interest us

• Predicates: Properties of objects that we are interested in (true/false).

• Initial state: The state of the world that we start in.

• Goal specification: Things that we want to be true.

• Actions/Operators: Ways of changing the state of the world.

Planning tasks specified in PDDL are separated into two files

• A domain file for predicates and actions

• A problem file for objects, initial state and goal specification

PDDL was invented in 1998 for the first IPC and nowadays most common planners read PDDL
files …

54

PDDL: Domain files

(define (domain <DOMAIN_NAME>)

(:requirements :strips)

(:predicates (<PREDICATE_1_NAME> ?<arg1> ?<arg2> ...)

(<PREDICATE_2_NAME> ...)

...)

(:action <ACTION_1_NAME>

:parameters (?<par1> ?<par2> ...)

:precondition <COND_FORMULA: PartiallySpecifiedState>

:effect <EFFECT_FORMULA: ADDlist + DELETElist>

)

(:action <ACTION_2_NAME>

...)

...)

55

PDDL: Problem Files

(define (problem <PROBLEM_NAME>)

(:domain <DOMAIN_NAME>)

(:objects <obj1> <obj2> ...)

(:init <ATOM1> <ATOM2> ...)

(:goal <COND_FORMULA: PartiallySpecifiedState>)

)

Where we have:

• Init and Goal are ground! (not parameterised, i.e., not ?x kind of things)

• COND_FORMULA: conjunction of atoms

(AND atom1 ... atomn)

• EFFECT_FORMULA: conjunction of ADDED & DELETED (NOT) atoms

(AND atom1 ... (NOT atomn))

56

Basic PDDL Example: Gripper Domain

Gripper task with four balls:

There is a robot that can move between two rooms and pick up or drop balls with either

of his two arms. Initially, all balls and the robot are in the first room. We want the balls to

be in the second room.

• Objects: The two rooms, four balls and two robot arms.

• Predicates: Is x a room? Is x a ball? Is ball x in room y? Is robot arm x empty? [...]

• Initial state: All balls and the robot are in the first room. All robot arms are empty. [...]

• Goal specification All balls must be in the second room.

• Actions/Operators: The robot moves between rooms, pick up a ball or drop a ball.

57

Gripper Domain: Objects

Objects in the gripper domain

• Rooms: rooma, roomb

• Balls: ball1, ball2, ball3, ball4

• Robot arms: left, right

In PDDL without typing

• (:objects rooma roomb ball1 ball2 ball3 ball4 left right)

In PDDL with typing

• (:types room ball robot-arm)

• (:objects rooma – room roomb – room
ball1 – ball ball2 – ball ball3 – ball ball4 – ball
left – robot-arm right – robot-arm)

58

Gripper Domain: Predicates (without typing)

Predicates in the gripper domain without typing

• ROOM(x) – true iff x is a room

• BALL(x) – true iff x is a ball

• GRIPPER(x) – true iff x is a gripper (robot arm)

• at-robby(x) – true iff x is a room and the robot is in x

• at-ball(x, y) – true iff x is a ball, y is a room, and x is in y

• free(x) – true iff x is a gripper and x does not hold a ball

• carry(x, y) – true iff x is a gripper, y is a ball, and x holds y

In PDDL this translates into:

• (:predicates
(ROOM ?x) (BALL ?x) (GRIPPER ?x)

(at-robby ?x) (at-ball ?x ?y)

(free ?x) (carry ?x ?y)

)

58

59

Gripper Domain: Predicates (with typing)

Predicates in the gripper domain with typing

• at-robby(x) – true iff x is a room and the robot is in x

• at-ball(x, y) – true iff x is a ball, y is a room, and x is in y

• free(x) – true iff x is a gripper and x does not hold a ball

• carry(x, y) – true iff x is a gripper, y is a ball, and x holds y

In PDDL this translates into:

• (:predicates
(at-robby ?x – room)
(at-ball ?x – balll ?y – room)
(free ?x – robot-arm)
(carry ?x – robot-arm ?y – ball)

)

60

Gripper Domain: Initial State

The Initial state (according to the example text):

• ROOM(rooma) and ROOM(roomb) are true.

• BALL(ball1), ..., BALL(ball4) are true.

• GRIPPER(left), GRIPPER(right), free(left) and free(right) are true.

• at-robby(rooma), at-ball(ball1, rooma), ..., at-ball(ball4, rooma) are true.

• Everything else is false.

In PDDL this translate into:

• (:init
(ROOM rooma) (ROOM roomb)
(BALL ball1) (BALL ball2) (BALL ball3) (BALL ball4)
(GRIPPER left) (GRIPPER right) (free left) (free right)
(at-robby rooma) (at-ball ball1 rooma) (at-ball ball2 rooma)
(at-ball ball3 rooma) (at-ball ball4 rooma)

)

61

Gripper Domain: Goal State

The Goal state (according to the example text):

• at-ball(ball1, roomb), ..., at-ball(ball4, roomb) must be true.

• Everything else we don’t care about.

In PDDL this translates into:

• (:goal

(and (at-ball ball1 roomb)

(at-ball ball2 roomb)

(at-ball ball3 roomb)

(at-ball ball4 roomb)

)

)

62

Gripper Domain: Movement Operator

The robot can move from x to y:

• Precondition: ROOM(x), ROOM(y) and at-robby(x) are true.

• Effect: at-robby(y) becomes true and at-robby(x) becomes false.

• Everything else doesn’t change.

In PDDL this translates into:

• (:action move

:parameters (?x ?y)

:precondition (and (ROOM ?x) (ROOM ?y) (at-robby ?x))

:effect (and (at-robby ?y) (not (at-robby ?x)))

)

63

Gripper Domain: Pick-up Operator

The robot can pick up x in y with z.

• Precondition: BALL(x), ROOM(y), GRIPPER(z), at-ball(x, y), at-robby(y)

and free(z) are true.

• Effect: carry(z, x) becomes true while at-ball(x, y) and free(z) become false.

• Everything else doesn’t change.

In PDDL this translates into:

• (:action pick-up

:parameters (?x ?y ?z)

:precondition (and (BALL ?x) (ROOM ?y) (GRIPPER ?z)

(at-ball ?x ?y) (at-robby ?y) (free ?z))

:effect (and (carry ?z ?x) (not (at-ball ?x ?y)) (not (free ?z)))

)

64

Gripper Domain: Drop Operator

The robot can drop x in y from z

• Precondition: BALL(x), ROOM(y), GRIPPER(z), carry(z,x), at-robby(y) are true.

• Effect: at-ball(x, y) and free(z) become true while carry(z, x) becomes false.

• Everything else doesn’t change.

In PDDL this translates into:

• (:action drop :parameters (?x ?y ?z)

:precondition (and (BALL ?x) (ROOM ?y) (GRIPPER ?z)

(carry ?z ?x) (at-robby ?y))

:effect (and (at-ball ?x ?y) (free ?z) (not (carry ?z ?x)))

)

65

Let’s solve it!

Using satplan to solve the gripper problem

• Download satplan (2006 version, winner of IPC)

– http://www.cs.rochester.edu/users/faculty/kautz/satplan/index.htm

– tar -zxvf SatPlan2006.tgz

• Compile satplan by issuing

– cd SatPlan2006

– make

• Run vanilla satplan (i.e., default options)

– cd include/bin/

– ./satplan -path ../../gripper/ -domain gripper_domain.pddl -problem
gripper_problem.pddl

• Observe the plan

– less gripper_problem.pddl.soln

66

PDDL 1.2 (IPC 2000)

In successive revisions of the language requirements where added:

• :strips

• :typing in :predicates, :parameters and :objects

• :equality =

• :negativepreconditions not

• :disjunctivepreconditions or

• :existentialpreconditions exists

• :universalpreconditions forall

• :quantifiedpreconditions = :existentialpreconditions + :universalpreconditions

• :conditionaleffects when

• :adl = all the above (Action Description Language)

67

PDDL: Typing in Domain and Problem Files

(define (domain <DOMAIN_NAME>)

(:requirements :strips :typing)

(:types <type1> <type2> ...)

(:predicates (<PREDICATE_1_NAME> ?<arg1> - <type1> ...)

(<PREDICATE_2_NAME> ...))

(:action <ACTION_1_NAME>

:parameters (?<par1> - <type1> ?<par2> - <type2> ...)

:precondition < COND_FORMULA: PartiallySpecifiedState>

:effect < EFFECT_FORMULA: ADDlist + DELETElist>)

…)

(define (problem <PROBLEM_NAME>)

(:domain <DOMAIN_NAME>)

(:objects <obj1> - <type1> <obj2> - <type2> ...)

(:init <ATOM1> <ATOM2> ...)

(:goal < COND_FORMULA: PartiallySpecifiedState >)

)

68

STRIPS vs ADL Conditional Formulas

The :requirement clause defines the power of the language that should be understood by the planner

• :strips

• Conjunction of atoms (AND atom1 ... atomn)

• If :equality added atoms my be in the form (= arg1 arg2)

• Only positive

• :adl

• equality (=) (= arg1 arg2)

• negation (NOT) (NOT atom1)

• conjunction (AND) (AND atom1 ... atomn)

• disjunction (OR) (OR atom1 ... atomn)

• quantifier (FORALL, EXISTS)

(FORALL (?v - t) (PREDICATE ?v))

(EXISTS (?v - t) (PREDICATE ?v))

69

STRIPS vs ADL Effect Formulas

The :requirement clause defines the power of the language that should be understood by the planner

• :strips

• Conjunction of added and deleted atoms (AND atom1 ... (NOT atomn))

• :adl

• Conditional effect:

(WHEN PRECOND_FORMULA EFFECT_FORMULA)

• Universal quantified formula:

(FORALL (?<v1> - <t1> ?<v2> - <t2>) EFFECT_FORMULA)

71

PDDL 2.1: Time (the idea)

A feasible plan is sometimes not enough, thus a new version of planner was introduced

to take into account:

 Durative actions: time

 Fluents: numbers

 Metrics: optimal plan

Time in planning (scheduling)

• actions take time to execute

• how long an action takes to execute may depend on the preconditions

• preconditions may need to hold when the action begins, or throughout its execution

• effects may not be true immediately and they may persist for only a limited time

• an action can have multiple effects on a fluent at different times

72

PDDL 2.1: Time (the code)

A feasible plan is sometimes not enough, thus a new version of planner was introduced to take
into account:

 Durative actions: time

 Fluents: numbers

 Metrics: optimal plan

In the Domain file

• (:durative-action <name>

:parametes (…)

:duration (= ?duration <time>)

:condition (…)

:effect (…))

 CONDITIONAL_FORMULA: at_start, overall, at_end

 EFFECT_FORMULA: at_start, at_end

73

PDDL 2.1: Resources (the idea)

A feasible plan is sometimes not enough, thus a new version of planner was introduced to take

into account:

 Durative actions: time

 Fluents: numbers

 Metrics: optimal plan

Resources in planning

• A resource is any quantity or (set of) object(s) whose value or availability determines

whether an action can be executed

• Resources may be consumable (examples: money, fuel) or reusable

(example: a car which becomes available again after a trip)

• In some cases, actions may produce resources (examples: refueling, hiring more staff, etc)

• When planning with resources, a solution is defined as a plan that achieves the goals while

allocating resources to actions so that all resource constraints are satisfied

74

PDDL 2.1: Resources (the code)

A feasible plan is sometimes not enough, thus a new version of planner was introduced to take
into account:

 Durative actions: time

 Fluents: numbers

 Metrics: optimal plan

In the Domain definition

• (:functions (<name1> ?<obj1> - <type1>)

(<name2> ?<obj2> - <type2>)

(…))

 CONDITIONAL FORMULA: = > < <= => + - * /

 EFFECT FORMULA:

– assign, increase, decrease, scale-up, scale-down

In the Problem definition

 (:init (= (<ATOM>) <#>))

75

PDDL 2.1: Metrics (the idea)

A feasible plan is sometimes not enough, thus a new version of planner was introduced
to take into account:

 Durative actions: time

 Fluents: numbers

 Metrics: optimal plan

Optimal planning (and scheduling)

• As with search problems, we can distinguish between
optimal and satisficing solutions

• A satisficing plan is one that achieves the goal(s) without
violating any temporal or resource constraints

• An optimal plan is one that achieves the goal(s) while minimising (or maximising)
some metric (metric is often defined in terms of resource usage)

76

PDDL 2.1: Metrics (the code)

A feasible plan is sometimes not enough, thus a new version of planner was introduced

to take into account:

 Durative actions: time

 Fluents: numbers

 Metrics: optimal plan

In the problem definition

• (:metric minimize[maximize] <objective_function>)

Built-in function:

• total-time

77

PDDL 2.1 – IPC-2002

“We have a Four Gallon Jug of Water and a Three

Gallon Jug of Water and a Water Pump.

The challenge of the problem is to be able to put

exactly two gallons of water in the Four Gallon Jug,

even though there are no markings on the Jugs.”

Drew McDermott.

“The 1998 AI Planning Systems Competition”.

AI Magazine (21):2, 2000.

78

