BAGS & TF

ROBOTICS

gy,
S “ny,

POLITECNICO
MILANO 1863

ROSBAG (again)

https://goo.al/GonArW

Download the file robotics.bag
Also download the fibonacci folder

https://goo.gl/GonArW

IN PHYSICS: AN EXAMPLE

Reference System is everything

Fnet = Fcentripetal

| : _ IEQ _
\\ ?Q 4 Fne' =0 ?}Qw Fiict = Fcentrifugal
:

Ay A~
g = <A
- ¢ : \ 2 L4 LS
l", |){J V ,o"’

IN ROBOTICS

IN ROBOTICS

For manipulators: For autonomous vehicles:
A moving reference frame for each joint A fixed reference frame for each sensor
A base reference frame A base reference frame
A world reference frame A world reference frame

A map reference frame

The frames are described in a tree and each frame comes with a transformation
between itself and the father/child
The world frame is the most important, but the others are used for

FROM ONE FRAME TO ANOTHER

How is it possible to convert form a frame to another? Math, lot of it.

In a tree of reference frames:
Define a roto-translation between parent and child

Combine multiple roto-translation to go from the root to the

TF: TRANSFORMATION FRAMES

When the full transformation tree is available

Does all the hard work for us!
Interpolation, transformation, tracking
Keep track of all the dynamic transformation for a limited period of time
Decentralized

Provides position of a point in each possible reference frame

TF TREE TOOLS

ROS offers different tools to analyze the transformation tree:
-rosrun rqt_tf tree rqt_tf tree
shows the tf tree at the current time

-rosrun tf view frames

listen for 5 seconds to the /tf topic and create a pdf file with the tf tree

Wiy,
\\\\\\\\\\\ lIlII/,,///
%
& %,

HOW TF_TREE SHOULD LOOK LIKE

Broadcaster: /rtabmap/rtabmap
Average rate: 21.053
Buffer length: 0.95

ost recent transform: 1525593243.32
Didest transform: 1525593242.37

Broadcaster: /zed_wrapper_node
Average rate: 30.87
Buffer length: 1.004

ost recent transform: 1525593243.23
DIdest transform: 1525593242.23

zed_center

Broadcaster: /zed_state_publisher \ Broadcaster: /zed_state_publisher

Average rate: 10000.0 Average rate: 10000.0
Buffer length: 0.0 Buffer length: 0.0

Most recent transform: 0.0 Most recent transform: 0.0
Oldest transform: 0.0 Oldest transform: 0.0

zed_right_camera

Broadcaster: /zed_state_publisher
Average rate: 10000.0
Buffer length: 0.0
ost recent transform: 0.0
Dldest transform: 0.0

zed_depth_camera

TRY IT OUT (using bags)

Can’t provide you 50 cameras

But ROS has bags, cd to the folder where you downloaded the bag from slide 1
Bags can be played simply using (remember to start roscore):

$ rosbag play bagname.bag

But ROS offers also a decent gui to take a look at the bag file while playing it:

$ rqt_bag

TRY IT OUT (using bags)

Open your bag file and select the messages you want to publish
(right click->Publish), in our case we select all of them

Now you can play the bag using the play button

Next open rqgt_tf tree:

$ rosrun rgt_tf tree rqt_tf tree

you should see a tf tree similar to the one from slide 9

If not restart the bag from the beginning (static transform are published in the first
frames)

VISUALIZE TF (using rviz)

Tf tree allow us to take a look to the tf tree, how different transformation are
connected together.

To properly visualize the data we will use rviz.
Keeping the bag running open rviz
$ rviz

First we have to set the Fixed Frame in the top of the left tab; using the drop
down tab select "map”

VISUALIZE TF (using rviz)

Now to visualize the position of the
camera use the Add button

from the first tab of the window select
TF

Now in the left tab you can edit
preferences for the TF visualization

under frames uncheck everything but
map and zed center to show the
camera movement

Create visualization

By display type | By topic
¥ pointCloud
¥ PointCloud?2
® PointStamped
wl Polygon
/~ Pose
“ PoseArray
€ PosewithCovariance
¥ Range
¥ RelativeHumidity
#h, RobotModel
> TF
Bl Temperature
« WrenchStamped
v [rviz_imu_plugin
Imu
v [& rviz_plugin_tutorials
Il Imu

Description:

Display Name

Cancel

VISUALIZE TF (using rviz)

From the Add menu you can also
select using the “By Topic™ tab the
odometry topic, which will also show
the position of the camera and the left
camera stream to get an idea of the
camera movement

Create visualization

By display type | By topic
v /clicked_point
® PointStamped
v /initialpose
€ PosewithCovariance
v /left
v /image_raw_color
» /compressed
v /move_base_simple
v /goal
/~ Pose
v /odom
7\ Odometry

| show unvisualizable topics

Description:

Display Name

Cancel

WRITE THE TF PUBLISHER

Now that we got an idea regarding how tf works and why it's useful we can take a
look on how to write a tf broadcaster

Usually to do this you need a robot,
we could still us a bag publishing odometry,

but turtlesim is still a good option.

THE IDEA

Subscribe to /turtlesim/pose
convert the pose to a transformation
publish the transformation referred to a world frame

add 4 static transformation for the 4 turtle’s legs

WRITE THE TF PUBLISHER

Create a package called tf_turtlebot inside you catkin environment adding the
roscpp, std_msgs and tf dependencies:

$ catkin_create pkg tf turtlebot std_msgs roscpp tf
now cd to the package src folder and create the file tf_publisher

$ gedit tf_publisher.cpp

SUBSCRIBE AND PUBLISH IN THE SAME NODE

In all the previous example the node was simply subscribing or publishing.
In this case we need to both subscribe to the turtlesim pose and publish the tf

The classic way to solve this problem is to create a class which handles all the
work

WRITE THE TF PUBLISHER

First we write some standard include:

#include "ros/ros.h"
#include "turtlesim/Pose.h"

#include <tf/transform_broadcaster.h>

SUBSCRIBE AND PUBLISH IN THE SAME NODE

Then we write the main function:

int main(int argc, char **argv)

{

ros::init(argc, argv, "subscribe_and_publish");
tf _sub_pub my_tf sub_bub;

ros::spin();

return O;

by
Notice that we still have to initialize ros, but we are not creating the node handle

here, instead we instantiate an object of class tf sub_pub

SUBSCRIBE AND PUBLISH IN THE SAME NODE

Now we have to create our class:

class tf_sub_pub

{
public:

tf_sub_pub(){
)

private:

+

WRITE THE TF PUBLISHER

First we declare as private the node handle:

ros::NodeHandle n;

Then we create the subscriber and the tf broadcaster:

tf: : TransformBroadcaster br;
ros::Subscriber sub;

WRITE THE TF PUBLISHER

Now we can call the subscribe function inside the class constructor:

sub = n.subscribe("/turtlel/pose"”, 1000, &tf_sub_pub::callback, this);

Then we write the callback function:

void callback(const turtlesim::Pose::ConstPtr& msg){

¥

WRITE THE TF PUBLISHER

Inside the callback we create a transform object:

tf:: Transform transform;

and populate it using the data from the message (we are in a 2D environment):

transform.setOrigin(tf::Vector3(msg->x, msg->y, 0));
tf::Quaternion q;

g.setRPY(0, 0, msg->theta);

transform.setRotation(q);

WRITE THE TF PUBLISHER

Last we publish the transformation using the broadcaster; the stampedtransform
function allow us to create a stamped transformation adding the timestamp, our

custom transformation, the root frame and the child frame:

br.sendTransform(tf::StampedTransform(transform, ros::Time::now(), "world", "turtle"));

THE CODE

2 S
m, S
Uty

#include "ros/ros.h"

#include "turtlesim/Pose.h"

#include <tf/transform_broadcaster.h>
class tf_sub_pub

{
public:

tf_sub_pub(){

sub = n.subscribe("/turtlel/pose”, 1000, &tf_sub_pub::callback, this);
}

void callback(const turtlesim::Pose::ConstPtr& msg){
tf=Transform transform;

transform.setOrigin(tf:Vector3(msg->x, msg->y, 0));
tf::Quaternion q;

g-setRPY(O, O, msg->theta);
transform.setRotation(q);
br.sendTransform(tf::StampedTransform(transform, ros:Time:now(), "world", "turtle"));
}

private:

ros:NodeHandle n;

tf:TransformBroadcaster br;

ros::Subscriber sub;

I3

int main(int argc, char **argv)

{

ros:init(argc, argv, "subscribe_and_publish");
tf_sub_pub my_tf_sub_bub;

ros::spin();

return O;

}

WRITE THE TF PUBLISHER

Now as usual we have to add this new file to the CMakeL.ists file. We specified
the dependencies during the package creation, so we only need to add the lines:

add_executable(tf_turtlebot
src/tf_publisher.cpp
)
add_dependencies(tf_turtlebot ${${PROJECT_NAME}_ EXPORTED_TARGETS}
${catkin_EXPORTED_TARGETS})
target_link_libraries(tf_turtlebot
${catkin_LIBRARIES}

)

TESTING

Now we can cd to the root of the environment and compile everything

Before adding the legs transformation we can test our code:

run turtlesim, turtlesim_teleop and our node, then open rviz to visualize the tf
$ roscore

$ rosrun turtlesim turtlesim_node

$ rosrun turtlesim turtle teleop key

$ rosrun tf turtlebot tf turtlebot

$ rviz

ADD STATIC TF

After properly testing our code we can add the other tf.

But the legs tf are fixed from the turtlebot body, so we don’t need to write a tf

broadcaster like we did, we can simply run them using the static transform node

We don't’ want to manually start four tf in four different terminals, so we will create
a launch file:

create a folder launch and a file called launch.launch

ADD STATIC TF

The launch file will have as usual the <launch> tags and the node we previously
wrote:

<launch>

<node pkg="tf_turtlebot" type = "tf turtlebot" name = "tf_turtlebot"/>
</launch>

We can also add the two turtlesim node:

<node pkg="turtlesim" type = "turtlesim_node" name = "turtlesim_node"/>
<node pkg="turtlesim" type = "turtle_teleop_key" name = "turtle_teleop_key"/>

ADD STATIC TF

Now we will add the four static tf specifying in the args field the position (x,y,z)
and the rotation as a quaternion (gx,qy,qz,qw) then the root frame, the cild frame
and the update rate:

<node pkg="tf" type="static_transform_publisher" name="back_right" args="0.3 -0.3 0 0 0 O 1 turtle FRleg 100" />
<node pkg="tf" type="static_transform_publisher" name="front_right" args="0.3 0.3 0 0 0 0 1 turtle FLIeg 100" />
<node pkg="tf" type="static_transform_publisher" name="front_left" args="-0.3 0.3 0 0 0 0 1 turtle BLIeg 100" />
<node pkg="tf" type="static_transform_publisher" name="back_left" args="-0.3 -0.3 00 0 0 1 turtle BRleg 100" />

Now we will only need to call the launch file to start all the nodes:
$ roslaunch tf turtlebot launch.launch

ADD STATIC TF

Now run rgt_tf tree to show the tf tree and rviz for the visual rappresentation of

the turtle position

If you want to see the published tf you can use rostopic echo, but also:

$ rosrun tf tf_echo father child

$ rosrun tf tf_echo \world \FRIeg

ACTIONLIB

ROBOTICS

gy,
S “ny,

POLITECNICO
MILANO 1863

WHAT IS ACTIONLIB

Node A sends a request to node B to perform some task

Service Action
Small execution time Long execution time
Requesting node can wait Requesting node cannot wait
No status Status monitoring

No cancellation Cancellation

WHAT IS ACTIONLIB

actionlib package is:
sort of ROS implementation of threads
based on a client/server paradigm
And provides tools to:
create servers that execute long-running tasks (that can be preempted).

create clients that interact with servers

WHAT IS ACTIONLIB

Client Application Server Application
user code user code
client.sendGoal(...) sHnctod calls) ACtion (ﬁ) ACtion e = void executeGoal(q)
Client Server <function calls $
callbacks y

The ActionClient and ActionServer communicate via a "ROS Action Protocol”, which
is built on top of ROS messages

CLIENT-SERVER INTERACTION

Action Interface

r

Action
Client

~

ROS Topics

goal

cancel

status

result

AAA

feedback

(—l

Action
Server

From Client

From Server

CLIENT-SERVER INTERACTION

goal: to send new goals to server

cancel: to send cancel requests to server

status: to notify clients on the current state of every goal in the system.
feedback: to send clients periodic auxiliary information for a goal

result: to send clients one-time auxiliary information upon completion of a goal

ACTION AND GOAL ID

Action templates are defined by a name and some additional properties
through an .action structure defined in ROS

Each instance of an action has a unique Goal ID

Goal ID provides the action server and the action client with a robust way to
monitor the execution of a particular instance of an action.

W,
e hy,
S ",

SERVER STATE MACHINE

2 S
“m, \\\“\‘\
it

Receive Goal

Y

setAccepted setSucceeded
PENDING ACTIVE)——)CSUCCEEDED)
] Xy

l

CancelRequest CancelRequest

v v
RECALLING : PREEMPTING)—)C ABORTED)
setAccepted setAborted
l

|

setCanceled setCancelled

v

C RECALLED)

I

setRejected

setAborted

setSucceede

C REJECTED

setRejected

A

Client Triggered
ag >

Server Triggered

)

A
\\\\\\\\\\\ lll//,, ,
%
Y %,

CLIENT STATE MACHINE

Send Goal

Client Triggered

B o

Server Triggeres:‘
Terminal State

WAITING FOR
GOAL ACK

[PENDING] [ACTIVE]

Cancel Goal

PENDING [ACTIVE] ACTIVE
Cancel Goal Cancel Goal
WAITING FOR
CANCEL ACK

[RECALLING] [PREEMPTING]

RECALLING PREEMPTING

[RECALLED] [PREEMPTED]
e [ABORTED]
[REJECTER] [SUCCEEDED]

[PREEMPTING]
[RECALLING]

[ABORTED]
[SUCCEEDED]

[PREEMPTING]

[REJECTED]

WAITING FOR
RESULT

Receive
Result Msg

ACTION EXAMPLE

Define the goal

uint32 dishwasher _id # Specify the dishwasher id
Define the result

uint32 total dishes cleaned

Define a feedback message

float32 percent_complete

SIMPLEACTIONSERVER

int main(int argc, char* argv) {
ros::init(argc, argv, "do_dishes_server");
ros::NodeHandle n;
Server server(n, "do_dishes", boost::bind(&exe, 1, &server), false);
server.start();
ros::spin();

return O;

SIMPLEACTIONSERVER

void exe(const chores::DoDishesGoalConstPtr& , Server® as) {
while(O){
(->dishwasher id)
if(as->isPreemptRequested() || !ros::0k()) {
->setPreempted();
break;
}
->publishFeedback((->dishwasher _id))
}
If((->dishwasher _id) == 100)
->setSucceeded();

SIMPLEACTIONCLIENT

#include <chores/DoDishesAction.h>

#include <actionlib/client/simple_action_client.h>

typedef actionlib::SimpleActionClient<chores::DoDishesAction> Client;

SIMPLEACTIONCLIENT

int main(int argc, char* argv) {
ros::init(argc, argv, "do_dishes_client");
Client client("do_dishes", true); // true -> don't need ros::spin()
client.waitForServer();
chores::DoDishesGoal goal;
//set goal parameters

goal.dishwasher_id = ;

SIMPLEACTIONCLIENT

client.sendGoal(goal);

client.waitForResult(ros::Duration(5.0));

if (client.getState() == actionlib::SimpleClientGoalState::SUCCEEDED)
ROS_INFO("Yay! The dishes are now clean");

std::string state = client.getState().toString();

ROS_INFO("Current State: %s\n", state.c_str());

return O;

TESTING

Copy the actionlib_tutorial folder inside the src folder of your catkin workspace and compile
it

To start the server:

S rosrun actionlib_tutorials fibonacci_server

The client has some parameters that can be set in the launch file, order and duration; after
setting those parameters call:

S roslaunch actionlib_ tutorials launcher.launch

TESTING

You can monitor the server status simply using topics:

S rostopic list

To get the feedback from the server:

S rostopic echo /fibonacci/feedback

