DETAIL OF THE MODEL

ROBOTICS

<=

POLITECNICO
MILANO 1863

IN THE PREVIOUS EPISODE...

N
Uy S
7 S
Pttty

Gazebo

File Edit Camera View

World Insert Layers O Cj ‘ - - . l - . ' I p o) m Joints

GUI Model: Reset

Scene

Spherical Coordinates Force | Position Velocity

Physics

w Models

P ground_plane

w my_robot
chassis
left_wheel
right_wheel
left_wheel_hinge

Property Value

Il Real Time Factor: Sim Time: Real Time: lterations:

THE CASTER WHEEL

IN THE SIMULATION

https://goo.gl/GonArW

FIELD TEST

Let's see It In action
It's terrible! Why?

EFFORT VS PERFORMANCE

Building a perfect model may require a lot of time and effort
You always have to measure the complexity of the model against the task

You need a detailed model when You DON'T need a detailed model when
- testing field performance - performance doesn't matter
« testing specific environment - analyzing the general behavior
- analyzing a specific behavior - working in a structured environment

- working on low level tasks (i.e. localization) - working on high level tasks (i.e. planning)

SENSORS AND PLUGINS

ROBOTICS

<=

POLITECNICO
MILANO 1863

TYPES OF SENSORS

Many ways to differentiate sensors: proprioceptive vs exteroceptive

Proprioceptive sensors: Exteroceptive sensors:

« provide information about the robot - provide information about the

- only the model of the robot is required environment

- examples: GPS, accelerometer, gyroscope, » require some form of interaction

odometer, torque sensor, ... - examples: laser scanner, contact and
proximity sensor, camera, sonar, ...

TYPES OF SENSORS

Many ways to differentiate sensors: passive vs active

Passive sensors: Active sensors:
* use energy from the environment Emits energy, then measure the reaction
- examples: temperature probe, * examples: sonar

accelerometer

ERRORS

Perfect sensors doesn’t exist

Every measurement is subject to some error

ERRORS

Different types of errors:

Systemic errors (predictable, can be removed)
Bias, removed through calibration

Drift, caused by use (i.e. rising temperatures)

Random errors (unpredictable, can be estimated)
Noise, intrinsic error of the measurement tool

Random event disrupting the measurement

IN REAL SENSORS

Gyroscope and accelerometer: bias

Magnetometer: distortion and varying Earth magnetic field
GPS: Absence of measurements and multipath

Laser scanner: reflection

Odometer: drift (short term and long term)

Contact sensor: detection fail and response time

Camera: distortion, lack of focus, compression errors

All of them: noise with different characteristics depending on the sensor

SENSORS IN GAZEBO

In SDF sensors have they own tag: sensor

child of link or joint
type of sensor specified by the attribute type

altimeter, camera, contact, depth, force torque, gps, gpu_ray, imu,
logical camera, magnetometer, multicamera, ray, rfid, rfidtag, sonar,
wireless receiver and wireless transmitter

Each type has its own tags to define the parameters of the sensor:

http://sdformat.org/spec?elem=sensor

Everything not on the list have to be modeled “by hand”

http://sdformat.org/spec?elem=sensor

g g, "
o %,

SENSORS IN GAZEBO

2 o
Yy S
Pitpagg

<sensor type="camera" name="cameral">
<camera>
<horizontal_fov>1.047</horizontal_fov>

<clip>
<near>0.1</near>
<far>100</far>
</clip>
</camera>
<always_on>1</always_on>
<update_rate>30</update_rate>
<visualize>true</visualize>
</sensor>

UNDERSTANDING THE GAUSSIAN NOISE

I I I I I I [I
1.0
B U=0, CF=0.2, m==| |
‘u=0, CTE=1.0,—
0.8 U=0, =50, ==l
- H=-2, (P=0.5, ==
. 0.6 \
Na .
B
S 04
0.2-
] —
0.0 [—==
L | L | |
-5 -4 -3 -2 -1 0

NOISY SENSORS IN GAZEBO

In gazebo most of the sensors have the option to add noise, usually defining the
gaussian mean and standard deviation.

But we can only add noise, no other complex behaviour like sensor faults,
latency, etc.

Still useful for fast sensor modelling
We will test a noisy laser:
create a directory for your new project: mkdir -p ~/.gazebo/models/noisy_laser

and a file model.config inside

NOISY LASER

<?xml version="1.0"7?>
<model>

<name>Noisy laser</name>
<version>1.0</version>

<sdf version="'1.6'>model.sdf</sdf>

<author>

<name>Bob TheBuilder</name>

<email>bob@thebuilder.net</email>
</author>

<description>Noisy laser.</description>
</model>

Next create a file model.sdf

W,
! Uy,
o %,

“hy O
7y N\
Pitpagg

\\
it

NOISY LASER

<?xml version="1.0" ?>
<sdf version="1.6">
<model name="noisy">
<link name="link">
<pose>00.1 00 0</pose>
<gravity>false</gravity>
<visual name="visual">
<geometry>
<sphere>
<radius>.02</radius>
</sphere>
</geometry>
</visual>

W,
! Uy,
o %,

NOISY LASER

\\
it

<sensor name="laser" type="ray">
<pose>0.01 0 0.03 0 -0 0</pose>
<ray>
<scan>
<horizontal>
<samples>640</samples>
<resolution>1</resolution>
<min_angle>-2.26889</min_angle>
<max_angle>2.268899</max_angle>
</horizontal>
</scan>
<range>
<min>0.08</min>
<max>10</max>
<resolution>0.01</resolution>
</range>

g, "
W Z

NOISY LASER

“hy O
7y N\
Pitpagg

<noise>
<type>gaussian</type>
<mean>0.0</mean>
<stddev>0.01</stddev>
</noise>
</ray>
<plugin name="laser" filename="libRayPlugin.so" />
<always_on>1</always_on>
<update_rate>30</update_rate>
<visualize>true</visualize>
</sensor>
</link>
</model>
</sdf>

NOISY LASER

Now place your noisy sensor in Gazebo and
add some obstacles for the laser

Now to visualize the sensor output go to:

Window->Topic Visualization

Ay,
! 7
S “n,

%,

%
%
Z

NOISY LASER

Next select your sensor topic, which will have

2 S
m, S
Uty

t . Topics:

ype' w gazebo.msgs.Contacts

gazebo.msgs.LaserScanStamped /gazebo/default/physics/contacts

gazebo.msgs.Diagnostics

/gazebo/default/diagnostics

gazebo.msgs.Factory
/aazebo/default/factory

gazebo.msgs.GUI
/aazebo/default/qui

gazebo.msgs.Joint
/gazebo/default/joint

and click okay to visualize it

gazebo.msgs.LaserScanStamped

/gazebo/derlat n‘,"u' ISV/UNK/laser/sScan
gazebo.msgs.Light
/aazebo/default/light/modify
/gazebo/default/factory/light
gazebo.msgs.LogControl
/gazebo/default/log/control
gazebo.msgs.LogPlaybackControl
/gazebo/default/playback control
gazebo.msgs.LogStatus
/gazebo/default/log/status

Cancel

FAULTY BEHAVIOR

Some sensors have more than bias and
noise, a common example is GPS
multipath and loss of signal

Loss of signal: a GPS receiver needs
clear view of the sky to contact satellites.
Trees or building may cause interruption
in the communication

Multipath: messages from the satellites
are reflect by buildings, the ground or
the atmosphere. The GPS receiver
collect multiple signal from the same
satellite and miscalculate the position

A

Ghosts
Q Actual target
|

Wy
! iy,
S %,

\\
it

FAULTY BEHAVIOR

N[m] N[m]
20)) {1 25

“hy O
7y N\
st

10 f

5 10 15 20 25 30 E[m] 5 10 15 20 25 30 35 E[m]

N[m] N[m]

st 1 st -
20 \ {1 20t -
15T {1 15} 1
10 f {1 10t} -
5 F {1 5t -

5 10 15 20 25 30 E[m] 5 10 15 20 25 30 E[m]

MODEL SPECIFIC BEHAVIORS IN GAZEBO

It is possible to customize the behavior of the simulation using plugins

A plugin is a chunk of code that is compiled as a shared library and
inserted into the simulation. The plugin has direct access to all the
functionality of Gazebo through the standard C++ classes.

Six different types of plugins depending on the associated object: world,
model, sensor, system, visual, GUI

HELLO WORLD PLUGIN

Create a folder where you will save the plugin
mkdir hello
cd hello

Next create a file called “hello_world.cc” and paste the plugin code

gedit hello_world.cc

HELLO WORLD

#include <gazebo/gazebo.hh>
namespace gazebo {
class HelloWorldPlugin : public WorldPlugin {
public: HelloWorldPlugin() : WorldPlugin() {
printf("Hello World\n");
}
public: void Load(physics::WorldPtr _world, sdf::ElementPtr _sdf){}
};
GZ REGISTER_WORLD_PLUGIN(HelloWorldPlugin)

}

LET'S ANALYZE THE CODE

#include <gazebo/gazebo.hh>

Various includes depending on the feature used (i.e. math or sensors), gazebo.hh include the core function, if you
need specific features like physics, rendering, etc. you have to also include them

namespace gazebo {

Every plugin must be in the gazebo namespace

class HelloWorldPlugin : public WorldIPlugin {
public: HelloWorldPlugin() : WorldIPlugin() {
printf("Hello World\n");
}
Each plugin must inherit from a plugin type, which in this case is the WorldPlugin class.

We print our “Hello world!” in the constructor method

LET'S ANALYZE THE CODE

public: void Load(physics::WorldPtr _world, sdf::ElementPtr _sdf){}

This is the only mandatory function, receives an SDF element that contains the elements and attributes specified
in loaded SDF file.

In our case it's only a placeholder since we have no extra logic.

The next line has different parameters for different inherited plugin space

GZ_REGISTER_WORLD_PLUGIN(HelloWorldPlugin)
This macro register the plugin in the simulator, the only requested parameter is the plugin name

Each plugin has it's own register macro: GZ_REGISTER_MODEL_PLUGIN,
GZ_REGISTER_SENSOR_PLUGIN, GZ_REGISTER_SYSTEM_PLUGIN,
GZ_REGISTER_WORLD_PLUGIN and GZ_REGISTER_VISUAL_PLUGIN.

HOW TO USE THE PLUGIN

This plugin have to be added to a sensor in the simulation, three steps:

1. Compile the code using make
2. Add the compiled library to an sdf file
3. Tell Gazebo where is the library

CMAKE AND MAKE

Create a folder where you will save the plugin
mkdir hello
cd hello

Next create a file called “hello_world.cc” and paste the plugin code

gedit hello_world.cc

Now we have a folder with c++ code, we have to compile it
Create a file called CMakelLists.txt and open it
gedit CMakeLists.txt

CMAKE AND MAKE

cmake_minimum_required(VERSION 2.8 FATAL_ERROR)

find_package(gazebo REQUIRED)
include_directories(${GAZEBO INCLUDE_DIRS})
link_directories(${GAZEBO_ LIBRARY_DIRS})

listtAPPEND CMAKE_CXX_ FLAGS "${GAZEBO CXX FLAGS}")

add_library(hello_world SHARED hello_world.cc)
target_link_libraries(hello_world ${GAZEBO LIBRARIES})

CMAKE AND MAKE

Now we can compile our plugin

mkdir build

cd build

cmake ..

make

The result is a library file called: libHelloWorldPlugin.so

ADDING THE PLUGIN

Next we create a minimal world file to test our plugin

gedit hello.world

<?xml version="1.0"7>
<sdf version="1.4">
<world name="default">
<plugin name="hello_world" flename="libhello world.so"/>
</world>
</sdf>

RUNNING GAZEBO

To run the plugin we need to tell Gazebo where to find the library

export GAZEBO PLUGIN PATH=${GAZEBO PLUGIN_ PATH}:~/path _to plugin/build
Example: export GAZEBO_ PLUGIN PATH=${GAZEBO PLUGIN_PATH}:~/hello/build

This command have to be run in every time you want to run gazebo with a plugin in a new terminal

Now we can run the world file, calling only the gazebo server

$ gzserver ~/path_to plugin/hello.world --verbose

Example: $ gzserver ~/hello/hello.world --verbose

A (little) MORE INTERESTING EXAMPLE

Create a new folder called push and a file called “model push.cc”

This plugin is more interesting, so we have more include:

#include <functional>

#include <gazebo/gazebo.hh>

#include <gazebo/physics/physics.hh>
#include <gazebo/common/common.hh>

#include <ignition/math/Vector3.hh>

A (little) MORE INTERESTING EXAMPLE

namespace gazebo

{
class ModelPush : public ModelPlugin

{
public: void Load(physics::ModelPtr _parent, sdf::ElementPtr /* _sdf*/)

{
this->model = _parent;
this->updateConnection = event::Events::ConnectWorldUpdateBegin(
std::bind(&ModelPush::OnUpdate, this));

}
public: void OnUpdate()
{
this->model->SetLinearVel(ignition::math::Vector3d(.3, 0, 0));
}

private: physics::ModelPtr model;

private: event::ConnectionPtr updateConnection;

|5

GZ_REGISTER_MODEL_PLUGIN(ModelPush)
}

A (little) MORE INTERESTING EXAMPLE

namespace gazebo

{
class ModelPush : public ModelPlugin

{
public: void Load(physics::ModelPtr _parent, sdf::

{

Save pointer to the
model

entPtr /*_sdf*/)
Listen to the update

| event and connect a
this->model = _parent; .~ collback to the world
this->updateConnection = event::Events::ConnectWorldUpdateBegin(update start signal

std::bind(&ModelPush::OnUpdate, this));

A (little) MORE INTERESTING EXAMPLE

public: void OnUpdate() -

{ Callback

this->model->SetLinearVel(ignition::math::Vector3d(.3, 0, 0)); . apply linear velocity to
) the model

ivate: physics::ModelPt del; i i
private. physics..Modelrtr mocdel, ——™M—7F == === pointer to the object

—

private: event::ConnectionPtr updateConnection;

X

GZ_REGISTER_MODEL_PLUGIN(ModelPush)
}

A (little) MORE INTERESTING EXAMPLE

Now you can compile this new file as previously shown

create a build folder

create a CMakelLists.txt file (you can cp the previous one changing the file name)
cmake ..

make

As previously add the path of your new lib folder:
export GAZEBO PLUGIN_PATH=%${GAZEBO_PLUGIN_ PATH}:~/path _to plugin/build

export GAZEBO PLUGIN_ PATH=%${GAZEBO PLUGIN_ PATH}:~/push/build
Next we will create a world file with an object to test the plugin

$ gedit model_push.world

A (little) MORE INTERESTING EXAMPLE

Defining our world

<?xml version="1.0"7>
<sdf version="1.4">

<world name="default">

<!-- Ground Plane -->
<include>
<uri>model://ground_plane</uri>

</include>

<include>
<uri>model://sun</uri>

</include>

A (little) MORE INTERESTING EXAMPLE

Defining our object

<model name="box">
<pose>00 0.5 0 0 0</pose>
<link name="link">
<collision name="collision">
<geometry>
<box>
<size>1 1 1</size>
</box>
</geometry>
</collision>
<visual name="visual">
<geometry>
<box>
<size>1 1 1</size>
</box>
</geometry>
</visual>
</link>

A (little) MORE INTERESTING EXAMPLE

Adding the plugin
<plugin name="model push" filename="libmodel push.so"/>
</model>
<physics type='ode'>
<real_time_factor>1.000000</real_time_ factor>
<real _time update rate>1000.000000</real_time update_ rate>
<gravity>0.000000 0.000000 -9.800000</gravity>

</physics>
</world>
</sdf>

A (little) MORE INTERESTING EXAMPLE

To start the simulation first call:

$ gzserver -u model_push.world

And then to start the gui:

$ gzclient

Then start the simulation pushing the

play button in the bottom panel

BACK TO SENSORS

Let's see now how it's possible to add a faulty behavior to the GPS

We try to implement a simple way to randomly shut down the sensor

FAULTY GPS (FaultyGPSPlugin.hh)

#ifndef GAZEBO_FAULTY_GPS_PLUGIN_HH_
#define GAZEBO_FAULTY_GPS_PLUGIN_HH_

#include "gazebo/common/Plugin.hh"
#include "gazebo/sensors/sensors.hh"
#include "gazebo/common/Events.hh"
#finclude "gazebo/math/gzmath.hh"

namespace gazebo {
class GAZEBO_VISIBLE FaultyGPSPlugin : public SensorPlugin {
public: FaultyGPSPlugin();
public: virtual ~FaultyGPSPlugin();
public: void Load(sensors::SensorPtr _parent, sdf::ElementPtr _sdf);
protected: virtual void OnUpdate(sensors::GpsSensorPtr _sensor);
protected: virtual void OnWorldUpdate(const common::Updatelnfo & _info);
protected: sensors::GpsSensorPtr parentSensor;
private: event::ConnectionPtr connection;
private: event::ConnectionPtr updateConnection;
Iy
}
#endif

FAULTY GPS (FaultyGPSPlugin.cc)

#include "FaultyGPSPIlugin.hh"

using namespace gazebo;

GZ REGISTER_SENSOR_PLUGIN(FaultyGPSPlugin)

FaultyGPSPIlugin::FaultyGPSPIugin() {}

FaultyGPSPIlugin::~FaultyGPSPlugin() {

this->parentSensor->DisconnectUpdated(this->connection);

this->parentSensor.reset();

FAULTY GPS (FaultyGPSPlugin.cc)

void FaultyGPSPIugin::Load(sensors::SensorPtr _parent, sdf.:ElementPtr _sdf) {

this->parentSensor = std::dynamic_pointer _cast<sensors::GpsSensor>(_parent);

if ('this->parentSensor)

gzthrow("FaultyGPSPIlugin requires a gps sensor as its parent.");

this->connection = this->parentSensor->ConnectUpdated(
std::bind(&FaultyGPSPIlugin::OnUpdate, this, this->parentSensor));

this->updateConnection = event::Events::ConnectWorldUpdateBegin(
boost::bind(&FaultyGPSPIugin::OnWorldUpdate, this, _1));

FAULTY GPS (FaultyGPSPlugin.cc)

void FaultyGPSPIugin::OnUpdate(sensors::GpsSensorPtr _sensor) {
if(math::Rand::GetDblUniform() > 0.1)

_sensor->SetActive(false);

void FaultyGPSPIlugin::OnWorldUpdate(const common::Updatelnfo & /*_info*/) {
if(this->parentSensor->IsActive()) {
if(math::Rand::GetDblUniform() > 0.995)

this->parentSensor->SetActive(true);

LET'S ANALYZE THE CODE

GZ_REGISTER_SENSOR_PLUGIN(FaultyGPSPIlugin)
Register the plugin as a sensor plugin

This can be done everywhere in the code

FaultyGPSPIugin::~FaultyGPSPIugin() {
this->parentSensor->DisconnectUpdated(this->connection);
this->parentSensor.reset();

}

Destructor implement a tear down routine for our pluging

Remove the connection and reset the sensor

LET'S ANALYZE THE CODE

this->parentSensor = std::dynamic_pointer_cast<sensors::GpsSensor>(_parent);
Save locally the sensor provided by the Load method

Cast it from a general sensor to a GPS

if ('this->parentSensor)
gzthrow("FaultyGPSPIlugin requires a gps sensor as its parent.");

Raise an exception if there is any problem with the parent sensor

LET'S ANALYZE THE CODE

this->connection = this->parentSensor->ConnectUpdated(
std::bind(&FaultyGPSPIlugin::OnUpdate, this, this->parentSensor));
Connect the OnUpdate method to the update cycle of the sensor

The method get called each time the sensor get a new measurement

this->updateConnection = event::Events::ConnectWorldUpdateBegin(
boost::bind(&FaultyGPSPIlugin::OnWorldUpdate, this, _1));
Connect the OnWorldUpdate method to the update cycle of the simulation

Each time a new simulation loop begins this method get called

LET'S ANALYZE THE CODE

if(math::Rand::GetDblUniform() > 0.1)
_sensor->SetActive(false);

At each sensor update randomly shut down the sensor

if(1this->parentSensor->IsActive()) {
if(math::Rand::GetDblUniform() > 0.995)
this->parentSensor->SetActive(true);
At each world update randomly activate the sensor

Works only when the sensor is not active

FAULTY GPS

Now we can create the CMakeLists.txt file and compile our plugin

cmake ..
make

Remember to add your folder plugin to the global variables:

export GAZEBO_PLUGIN_PATH=${GAZEBO_PLUGIN_PATH}:~/path_to_plugin/build

Now we will create our world:
$ gedit model.config

$ gedit model.world

FAULTY GPS (model.config)

<?xml version="1.0"?>

<model>
<name>gps</name>
<version>1.0</version>
<sdf version='1.4">model.world</sdf>

<author>
<name>Bob builder</name>
<email>bob@build.it</email>
</author>

<description>A GPS, not a good one</description>
</model>

FAULTY GPS (model.world)

<?xml version='1.0"?>
<sdf version='1.5">
<world name="default">
<model name="gps">
<static>true</static>
<link name="link">
<visual name='box">
<geometry>
<box>
<size>.05 .05 .05</size>
</box>
</geometry>
</visual>

FAULTY GPS (model.world)

<sensor type="gps" name="mGps">
<gpS>
<position_sensing>
<horizontal>
<noise type="gaussian">
<mean>0.0</mean>
<stddev>0.5</stddev>
</noise>
</horizontal>
<vertical>
<noise type="gaussian">
<mean>0.0</mean>
<stddev>5.0</stddev>
</noise>
</vertical>
</position_sensing>
</gps>

FAULTY GPS (model.world)

<always_on>1</always_on>
<update rate>10</update rate>
<plugin name="faulty behavior" flename="libFaultyGPSPIlugin.so"/>
</sensor>
</link>
</model>
</world>
</sdf>

BUT, IS IT REALLY WORKING?

Start the simulation as usual:

gzserver model.world --verbose

Then in another terminal type:

gz topic -l

to show all the messages from gazebo, then:

gz topic -e /gazebo/default/gps/link/mGps

to see the gps messages

Latitude, longitude and altitude are not constant values
gz topic -z /gazebo/default/gps/link/mGps

to see frequency

