
DETAIL OF THE MODEL
ROBOTICS

IN THE PREVIOUS EPISODE…

THE CASTER WHEEL

VS

IN THE SIMULATION

https://goo.gl/GonArW

FIELD TEST

Let’s see it in action
It’s terrible! Why?

EFFORT VS PERFORMANCE

You need a detailed model when
• testing field performance
• testing specific environment
• analyzing a specific behavior
• working on low level tasks (i.e. localization)

You DON’T need a detailed model when
• performance doesn’t matter
• analyzing the general behavior
• working in a structured environment
• working on high level tasks (i.e. planning)

Building a perfect model may require a lot of time and effort
You always have to measure the complexity of the model against the task

SENSORS AND PLUGINS
ROBOTICS

TYPES OF SENSORS

Proprioceptive sensors:
• provide information about the robot
• only the model of the robot is required
• examples: GPS, accelerometer, gyroscope,

odometer, torque sensor, …

Exteroceptive sensors:
• provide information about the

environment
• require some form of interaction
• examples: laser scanner, contact and

proximity sensor, camera, sonar, …

Many ways to differentiate sensors: proprioceptive vs exteroceptive

TYPES OF SENSORS

Passive sensors:
• use energy from the environment
• examples: temperature probe,

accelerometer

Active sensors:
• Emits energy, then measure the reaction
• examples: sonar

Many ways to differentiate sensors: passive vs active

ERRORS

Perfect sensors doesn’t exist
Every measurement is subject to some error

ERRORS

Different types of errors:
Systemic errors (predictable, can be removed)

Bias, removed through calibration
Drift, caused by use (i.e. rising temperatures)

Random errors (unpredictable, can be estimated)
Noise, intrinsic error of the measurement tool
Random event disrupting the measurement

IN REAL SENSORS

Gyroscope and accelerometer: bias
Magnetometer: distortion and varying Earth magnetic field
GPS: Absence of measurements and multipath
Laser scanner: reflection
Odometer: drift (short term and long term)
Contact sensor: detection fail and response time
Camera: distortion, lack of focus, compression errors
All of them: noise with different characteristics depending on the sensor

SENSORS IN GAZEBO
In SDF sensors have they own tag: sensor
child of link or joint
type of sensor specified by the attribute type

altimeter, camera, contact, depth, force_torque, gps, gpu_ray, imu,
logical_camera, magnetometer, multicamera, ray, rfid, rfidtag, sonar,
wireless_receiver and wireless_transmitter

Each type has its own tags to define the parameters of the sensor:
http://sdformat.org/spec?elem=sensor

Everything not on the list have to be modeled “by hand”

http://sdformat.org/spec?elem=sensor

SENSORS IN GAZEBO

<sensor type="camera" name="camera1">
 <camera>
 <horizontal_fov>1.047</horizontal_fov>
 
 <clip>
 <near>0.1</near>
 <far>100</far>
 </clip>
 </camera>
 <always_on>1</always_on>
 <update_rate>30</update_rate>
 <visualize>true</visualize>
</sensor>

UNDERSTANDING THE GAUSSIAN NOISE

NOISY SENSORS IN GAZEBO
In gazebo most of the sensors have the option to add noise, usually defining the
gaussian mean and standard deviation.

But we can only add noise, no other complex behaviour like sensor faults,
latency, etc.

Still useful for fast sensor modelling

We will test a noisy laser:

create a directory for your new project: mkdir -p ~/.gazebo/models/noisy_laser

and a file model.config inside

NOISY LASER
<?xml version="1.0"?>
<model>

<name>Noisy laser</name>
 <version>1.0</version>
 <sdf version='1.6'>model.sdf</sdf>

 <author>
 <name>Bob TheBuilder</name>
 <email>bob@thebuilder.net</email>
 </author>

 <description>Noisy laser.</description>
</model>

Next create a file model.sdf

NOISY LASER
<?xml version="1.0" ?>
<sdf version="1.6">
 <model name="noisy">
 <link name="link">
 <pose>0 0 .1 0 0 0</pose>
 <gravity>false</gravity>
 <visual name="visual">
 <geometry>
 <sphere>
 <radius>.02</radius>
 </sphere>
 </geometry>
 </visual>

NOISY LASER
<sensor name="laser" type="ray">
 <pose>0.01 0 0.03 0 -0 0</pose>
 <ray>
 <scan>
 <horizontal>
 <samples>640</samples>
 <resolution>1</resolution>
 <min_angle>-2.26889</min_angle>
 <max_angle>2.268899</max_angle>
 </horizontal>
 </scan>
 <range>
 <min>0.08</min>
 <max>10</max>
 <resolution>0.01</resolution>
 </range>

NOISY LASER

 <noise>
 <type>gaussian</type>
 <mean>0.0</mean>
 <stddev>0.01</stddev>
 </noise>
 </ray>
 <plugin name="laser" filename="libRayPlugin.so" />
 <always_on>1</always_on>
 <update_rate>30</update_rate>
 <visualize>true</visualize>
 </sensor>
 </link>
 </model>
</sdf>

NOISY LASER
Now place your noisy sensor in Gazebo and
add some obstacles for the laser

Now to visualize the sensor output go to:

Window->Topic Visualization

NOISY LASER
Next select your sensor topic, which will have
type:
gazebo.msgs.LaserScanStamped

and click okay to visualize it

FAULTY BEHAVIOR
Some sensors have more than bias and
noise, a common example is GPS
multipath and loss of signal
Loss of signal: a GPS receiver needs
clear view of the sky to contact satellites.
Trees or building may cause interruption
in the communication
Multipath: messages from the satellites
are reflect by buildings, the ground or
the atmosphere. The GPS receiver
collect multiple signal from the same
satellite and miscalculate the position

FAULTY BEHAVIOR

MODEL SPECIFIC BEHAVIORS IN GAZEBO

It is possible to customize the behavior of the simulation using plugins
A plugin is a chunk of code that is compiled as a shared library and
inserted into the simulation. The plugin has direct access to all the
functionality of Gazebo through the standard C++ classes.
Six different types of plugins depending on the associated object: world,
model, sensor, system, visual, GUI

HELLO WORLD PLUGIN
Create a folder where you will save the plugin

mkdir hello
cd hello

Next create a file called “hello_world.cc” and paste the plugin code

gedit hello_world.cc

HELLO WORLD

#include <gazebo/gazebo.hh>

namespace gazebo {

 class HelloWorldPlugin : public WorldPlugin {

 public: HelloWorldPlugin() : WorldPlugin() {

 printf("Hello World!\n");

 }

 public: void Load(physics::WorldPtr _world, sdf::ElementPtr _sdf){}

 };

 GZ_REGISTER_WORLD_PLUGIN(HelloWorldPlugin)

}

LET’S ANALYZE THE CODE
#include <gazebo/gazebo.hh>

Various includes depending on the feature used (i.e. math or sensors), gazebo.hh include the core function, if you
need specific features like physics, rendering, etc. you have to also include them

namespace gazebo {

Every plugin must be in the gazebo namespace

class HelloWorldPlugin : public WorldlPlugin {

 public: HelloWorldPlugin() : WorldlPlugin() {

 printf("Hello World!\n");

 }

Each plugin must inherit from a plugin type, which in this case is the WorldPlugin class.
We print our “Hello world!” in the constructor method

LET’S ANALYZE THE CODE

public: void Load(physics::WorldPtr _world, sdf::ElementPtr _sdf){}

This is the only mandatory function, receives an SDF element that contains the elements and attributes specified
in loaded SDF file.
In our case it’s only a placeholder since we have no extra logic.

The next line has different parameters for different inherited plugin space

GZ_REGISTER_WORLD_PLUGIN(HelloWorldPlugin)

This macro register the plugin in the simulator, the only requested parameter is the plugin name
Each plugin has it’s own register macro: GZ_REGISTER_MODEL_PLUGIN,
GZ_REGISTER_SENSOR_PLUGIN, GZ_REGISTER_SYSTEM_PLUGIN,
GZ_REGISTER_WORLD_PLUGIN and GZ_REGISTER_VISUAL_PLUGIN.

HOW TO USE THE PLUGIN

This plugin have to be added to a sensor in the simulation, three steps:
1. Compile the code using make
2. Add the compiled library to an sdf file
3. Tell Gazebo where is the library

CMAKE AND MAKE
Create a folder where you will save the plugin

mkdir hello
cd hello

Next create a file called “hello_world.cc” and paste the plugin code

gedit hello_world.cc

Now we have a folder with c++ code, we have to compile it

Create a file called CMakeLists.txt and open it

gedit CMakeLists.txt

CMAKE AND MAKE
cmake_minimum_required(VERSION 2.8 FATAL_ERROR)

find_package(gazebo REQUIRED)

include_directories(${GAZEBO_INCLUDE_DIRS})

link_directories(${GAZEBO_LIBRARY_DIRS})

list(APPEND CMAKE_CXX_FLAGS "${GAZEBO_CXX_FLAGS}")

add_library(hello_world SHARED hello_world.cc)

target_link_libraries(hello_world ${GAZEBO_LIBRARIES})

CMAKE AND MAKE

Now we can compile our plugin
mkdir build

cd build

cmake ..

make

The result is a library file called: libHelloWorldPlugin.so

ADDING THE PLUGIN

Next we create a minimal world file to test our plugin

gedit hello.world

<?xml version="1.0"?>

<sdf version="1.4">

 <world name="default">

 <plugin name="hello_world" filename="libhello_world.so"/>

 </world>

</sdf>

RUNNING GAZEBO
To run the plugin we need to tell Gazebo where to find the library

export GAZEBO_PLUGIN_PATH=${GAZEBO_PLUGIN_PATH}:~/path_to_plugin/build

Example: export GAZEBO_PLUGIN_PATH=${GAZEBO_PLUGIN_PATH}:~/hello/build

This command have to be run in every time you want to run gazebo with a plugin in a new terminal

Now we can run the world file, calling only the gazebo server

$ gzserver ~/path_to_plugin/hello.world --verbose

Example: $ gzserver ~/hello/hello.world --verbose

A (little) MORE INTERESTING EXAMPLE
Create a new folder called push and a file called “model_push.cc”

This plugin is more interesting, so we have more include:

#include <functional>

#include <gazebo/gazebo.hh>

#include <gazebo/physics/physics.hh>

#include <gazebo/common/common.hh>

#include <ignition/math/Vector3.hh>

A (little) MORE INTERESTING EXAMPLE
namespace gazebo
{
 class ModelPush : public ModelPlugin
 {
 public: void Load(physics::ModelPtr _parent, sdf::ElementPtr /*_sdf*/)
 {
 this->model = _parent;
 this->updateConnection = event::Events::ConnectWorldUpdateBegin(
 std::bind(&ModelPush::OnUpdate, this));
 }
public: void OnUpdate()
 {
 this->model->SetLinearVel(ignition::math::Vector3d(.3, 0, 0));
 }
 private: physics::ModelPtr model;

 private: event::ConnectionPtr updateConnection;
 };

 GZ_REGISTER_MODEL_PLUGIN(ModelPush)
}

A (little) MORE INTERESTING EXAMPLE
namespace gazebo

{

 class ModelPush : public ModelPlugin

 {

 public: void Load(physics::ModelPtr _parent, sdf::ElementPtr /*_sdf*/)

 {

 this->model = _parent;

 this->updateConnection = event::Events::ConnectWorldUpdateBegin(

 std::bind(&ModelPush::OnUpdate, this));

 }

Save pointer to the
model

Listen to the update
event and connect a
collback to the world
update start signal

A (little) MORE INTERESTING EXAMPLE
public: void OnUpdate()

 {

 this->model->SetLinearVel(ignition::math::Vector3d(.3, 0, 0));

 }

 private: physics::ModelPtr model;

 private: event::ConnectionPtr updateConnection;

 };

 GZ_REGISTER_MODEL_PLUGIN(ModelPush)

}

Callback

apply linear velocity to
the model

pointer to the object

A (little) MORE INTERESTING EXAMPLE
Now you can compile this new file as previously shown

create a build folder

create a CMakeLists.txt file (you can cp the previous one changing the file name)

cmake ..

make

As previously add the path of your new lib folder:

export GAZEBO_PLUGIN_PATH=${GAZEBO_PLUGIN_PATH}:~/path_to_plugin/build

export GAZEBO_PLUGIN_PATH=${GAZEBO_PLUGIN_PATH}:~/push/build

Next we will create a world file with an object to test the plugin

$ gedit model_push.world

A (little) MORE INTERESTING EXAMPLE
Defining our world

<?xml version="1.0"?>

<sdf version="1.4">

 <world name="default">

 <!-- Ground Plane -->

 <include>

 <uri>model://ground_plane</uri>

 </include>

 <include>

 <uri>model://sun</uri>

 </include>

A (little) MORE INTERESTING EXAMPLE

<model name="box">
 <pose>0 0 0.5 0 0 0</pose>
 <link name="link">
 <collision name="collision">
 <geometry>
 <box>
 <size>1 1 1</size>
 </box>
 </geometry>
 </collision>

<visual name="visual">
 <geometry>
 <box>
 <size>1 1 1</size>
 </box>
 </geometry>
 </visual>
</link>

Defining our object

A (little) MORE INTERESTING EXAMPLE

Adding the plugin

 <plugin name="model_push" filename="libmodel_push.so"/>

 </model>

 <physics type='ode'>

 <real_time_factor>1.000000</real_time_factor>

 <real_time_update_rate>1000.000000</real_time_update_rate>

 <gravity>0.000000 0.000000 -9.800000</gravity>

</physics>

 </world>

</sdf>

A (little) MORE INTERESTING EXAMPLE
To start the simulation first call:

$ gzserver -u model_push.world

And then to start the gui:

$ gzclient

Then start the simulation pushing the

play button in the bottom panel

BACK TO SENSORS

Let’s see now how it’s possible to add a faulty behavior to the GPS
We try to implement a simple way to randomly shut down the sensor

FAULTY GPS (FaultyGPSPlugin.hh)
#ifndef _GAZEBO_FAULTY_GPS_PLUGIN_HH_
#define _GAZEBO_FAULTY_GPS_PLUGIN_HH_

#include "gazebo/common/Plugin.hh"
#include "gazebo/sensors/sensors.hh"
#include "gazebo/common/Events.hh"
#include "gazebo/math/gzmath.hh"

namespace gazebo {
 class GAZEBO_VISIBLE FaultyGPSPlugin : public SensorPlugin {
 public: FaultyGPSPlugin();
 public: virtual ~FaultyGPSPlugin();
 public: void Load(sensors::SensorPtr _parent, sdf::ElementPtr _sdf);
 protected: virtual void OnUpdate(sensors::GpsSensorPtr _sensor);
 protected: virtual void OnWorldUpdate(const common::UpdateInfo &_info);
 protected: sensors::GpsSensorPtr parentSensor;
 private: event::ConnectionPtr connection;
 private: event::ConnectionPtr updateConnection;
 };
}
#endif

FAULTY GPS (FaultyGPSPlugin.cc)
#include "FaultyGPSPlugin.hh"

using namespace gazebo;

GZ_REGISTER_SENSOR_PLUGIN(FaultyGPSPlugin)

FaultyGPSPlugin::FaultyGPSPlugin() {}

FaultyGPSPlugin::~FaultyGPSPlugin() {

 this->parentSensor->DisconnectUpdated(this->connection);

 this->parentSensor.reset();

}

FAULTY GPS (FaultyGPSPlugin.cc)
void FaultyGPSPlugin::Load(sensors::SensorPtr _parent, sdf::ElementPtr _sdf) {

 this->parentSensor = std::dynamic_pointer_cast<sensors::GpsSensor>(_parent);

 if (!this->parentSensor)

 gzthrow("FaultyGPSPlugin requires a gps sensor as its parent.");

 this->connection = this->parentSensor->ConnectUpdated(

 std::bind(&FaultyGPSPlugin::OnUpdate, this, this->parentSensor));

 this->updateConnection = event::Events::ConnectWorldUpdateBegin(

 boost::bind(&FaultyGPSPlugin::OnWorldUpdate, this, _1));

}

FAULTY GPS (FaultyGPSPlugin.cc)

void FaultyGPSPlugin::OnUpdate(sensors::GpsSensorPtr _sensor) {

 if(math::Rand::GetDblUniform() > 0.1)

 _sensor->SetActive(false);

}

void FaultyGPSPlugin::OnWorldUpdate(const common::UpdateInfo & /*_info*/) {

 if(!this->parentSensor->IsActive()) {

 if(math::Rand::GetDblUniform() > 0.995)

 this->parentSensor->SetActive(true);

 }

}

LET’S ANALYZE THE CODE

GZ_REGISTER_SENSOR_PLUGIN(FaultyGPSPlugin)

Register the plugin as a sensor plugin
This can be done everywhere in the code

FaultyGPSPlugin::~FaultyGPSPlugin() {

 this->parentSensor->DisconnectUpdated(this->connection);

 this->parentSensor.reset();

}

Destructor implement a tear down routine for our pluging
Remove the connection and reset the sensor

LET’S ANALYZE THE CODE

this->parentSensor = std::dynamic_pointer_cast<sensors::GpsSensor>(_parent);

Save locally the sensor provided by the Load method
Cast it from a general sensor to a GPS

if (!this->parentSensor)

 gzthrow("FaultyGPSPlugin requires a gps sensor as its parent.");

Raise an exception if there is any problem with the parent sensor

LET’S ANALYZE THE CODE

this->connection = this->parentSensor->ConnectUpdated(

 std::bind(&FaultyGPSPlugin::OnUpdate, this, this->parentSensor));

Connect the OnUpdate method to the update cycle of the sensor
The method get called each time the sensor get a new measurement

this->updateConnection = event::Events::ConnectWorldUpdateBegin(

 boost::bind(&FaultyGPSPlugin::OnWorldUpdate, this, _1));

Connect the OnWorldUpdate method to the update cycle of the simulation
Each time a new simulation loop begins this method get called

LET’S ANALYZE THE CODE

if(math::Rand::GetDblUniform() > 0.1)

 _sensor->SetActive(false);

At each sensor update randomly shut down the sensor

if(!this->parentSensor->IsActive()) {

 if(math::Rand::GetDblUniform() > 0.995)

 this->parentSensor->SetActive(true);

At each world update randomly activate the sensor
Works only when the sensor is not active

FAULTY GPS
Now we can create the CMakeLists.txt file and compile our plugin

cmake ..

make

Remember to add your folder plugin to the global variables:

export GAZEBO_PLUGIN_PATH=${GAZEBO_PLUGIN_PATH}:~/path_to_plugin/build

Now we will create our world:

$ gedit model.config

$ gedit model.world

FAULTY GPS (model.config)
<?xml version="1.0"?>
<model>
 <name>gps</name>
 <version>1.0</version>
 <sdf version='1.4'>model.world</sdf>

 <author>
 <name>Bob builder</name>
 <email>bob@build.it</email>
 </author>

 <description>A GPS, not a good one</description>
</model>

FAULTY GPS (model.world)
<?xml version='1.0'?>
<sdf version='1.5'>
<world name="default">
 <model name="gps">
 <static>true</static>
 <link name="link">
 <visual name='box'>
 <geometry>
 <box>
 <size>.05 .05 .05</size>
 </box>
 </geometry>
 </visual>

FAULTY GPS (model.world)
 <sensor type="gps" name="mGps">
 <gps>
 <position_sensing>
 <horizontal>
 <noise type="gaussian">
 <mean>0.0</mean>
 <stddev>0.5</stddev>
 </noise>
 </horizontal>
 <vertical>
 <noise type="gaussian">
 <mean>0.0</mean>
 <stddev>5.0</stddev>
 </noise>
 </vertical>
 </position_sensing>
 </gps>

FAULTY GPS (model.world)

<always_on>1</always_on>
 <update_rate>10</update_rate>
 <plugin name="faulty_behavior" filename="libFaultyGPSPlugin.so"/>
 </sensor>
 </link>
 </model>
 </world>
</sdf>

Start the simulation as usual:

gzserver model.world --verbose

Then in another terminal type:

gz topic -l

to show all the messages from gazebo, then:

gz topic -e /gazebo/default/gps/link/mGps

to see the gps messages

Latitude, longitude and altitude are not constant values

gz topic -z /gazebo/default/gps/link/mGps

to see frequency

BUT, IS IT REALLY WORKING?

