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Generalization and Overfitting in Decision Trees
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Avoiding Overfitting in Decision Trees 4

® The generated tree may overfit the training data
* Too many branches may reflect anomalies noise or outliers

= Result is in poor accuracy for unseen samples

® Pre-pruning
= Halt tree construction early

* Do not split a node if this would result in the goodness
measure falling below a threshold (difficult to choose)

® Post-pruning
= Remove branches from a “fully grown” tree

* Use a set of data different from the training data to decide
which is the “best pruned tree”
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Pre-Pruning 5

® Usually based on statistical significance test

® Stop growing the tree when there is no statistically significant
association between any attribute and the class at a particular
node

® High risk of premature halt

* |f initially no individual attribute exhibits any interesting
information about the class

* The structure will become visible only in fully expanded tree

* Pre-pruning won’t expand the root node
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Post-Pruning 6

® First, build full tree, then prune it
= Fully-grown tree shows all attribute interactions

= But some subtrees might be due to chance effects

® Two pruning operations
= Subtree raising

= Subtree replacement

® Possible strategies to select the subtree
* Error estimation
= Significance testing

= MDL principle
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Subtree Raising 7

® Delete node and redistribute instances

= Redistribution is slower than replacement
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Subtree Replacement 8

® Works bottom-up

® Consider replacing a tree only
after considering all subtrees

wage increase |st year
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Estimating Error Rates (for Pruning) 9

® Prune only if it reduces the estimated error

* Error on the training data is NOT a useful estimator
(Why it would result in very little pruning?)

* A hold-out set might be kept for pruning
(“reduced-error pruning”)

® Example (C4.5’s method)

= Derive confidence interval from training data
* Standard Bernoulli-process-based method

* Shaky statistical assumptions (based on training data)

= Use a heuristic limit, derived from this, for pruning
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Mean and Variance of Expected Errors 10

® Mean and variance for a Bernoulli trial are p and p(/-p)

® Expected error rate f = S/N for large enough N follows a
Normal distribution:

f~N(p, p(I-p)/N)

® The C% confidence interval [-z< X < z] for random variable
with 0 mean is given by:

P[-z<X<z] =C
® With a symmetric distribution,

C = [-2xP[X>z]
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Confidence Limits Normal Distribution |

® Confidence limits for the normal distribution

Pr[X = z] z

with 0 mean and unit variance is ... 01% | 3.0
0.5% | 2.58

® Thus: 1%| 2.33
5% | 1.65

P[-1.65<X<I.65] = 90% 0% | 128

20% | 0.84

® To use this we have to reduce our random 25% |  0.69
variable f to have 0 mean and unit variance 40%| 0.25
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C4.5’s Pruning Method 12

® Given the error f on the training data, the upper bound for the
error estimate for a node is computed as

f++z\/f f 5 (1+sz
2N N N 4N N

® If ¢ = 50% then z = 0.69 (from normal distribution)

= f is the error on the training data

* N is the number of instances covered by the leaf
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13

\f=5/14

e = 0.46

e < 0.51
4 bad I bad 4 bad so prune!
2 good 1 good 2 good

Combined using ratios 6:2:6 gives 0.51
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