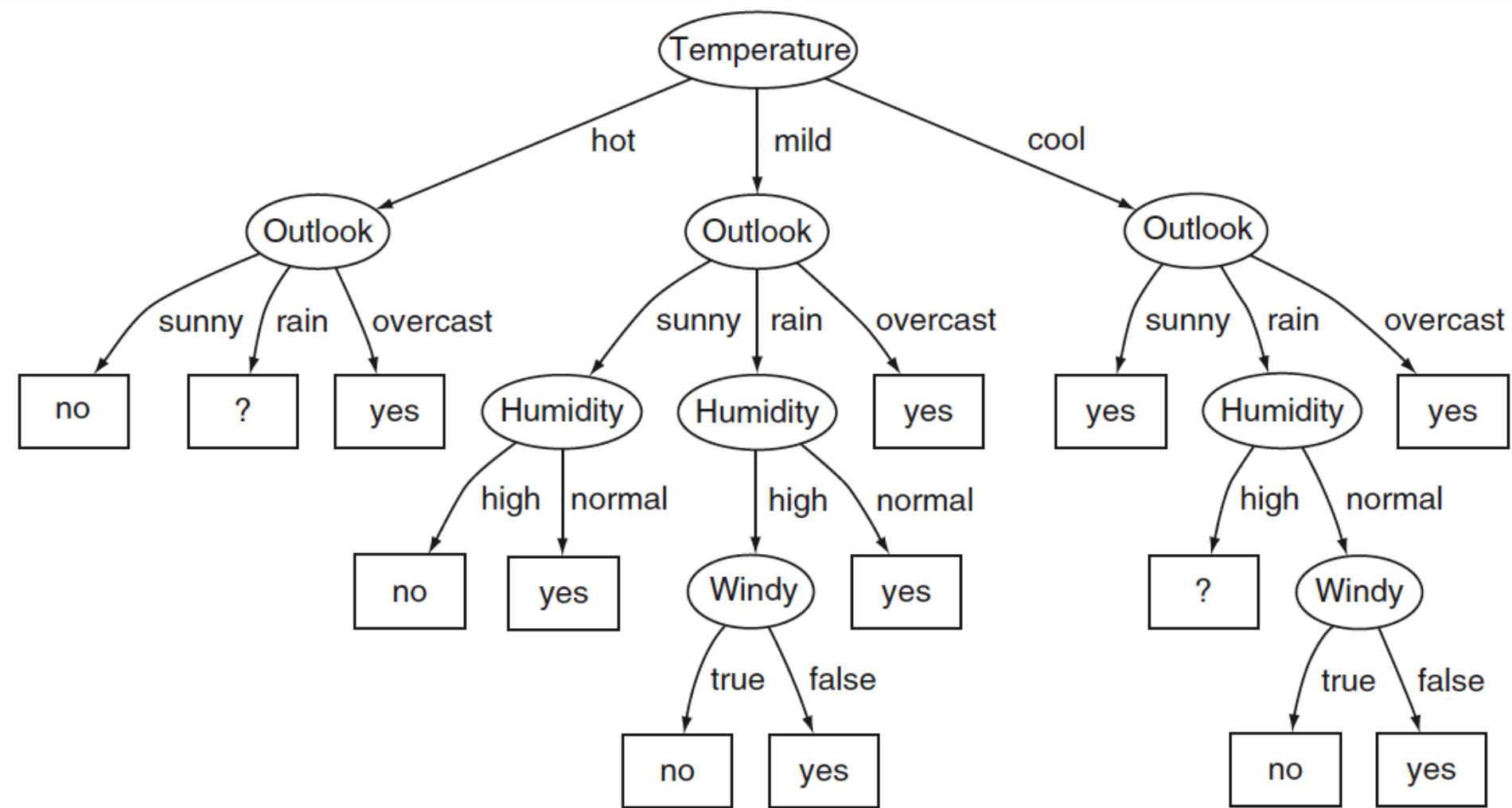


Decision Trees Pruning

Information Retrieval and Data Mining

Generalization and Overfitting in Decision Trees

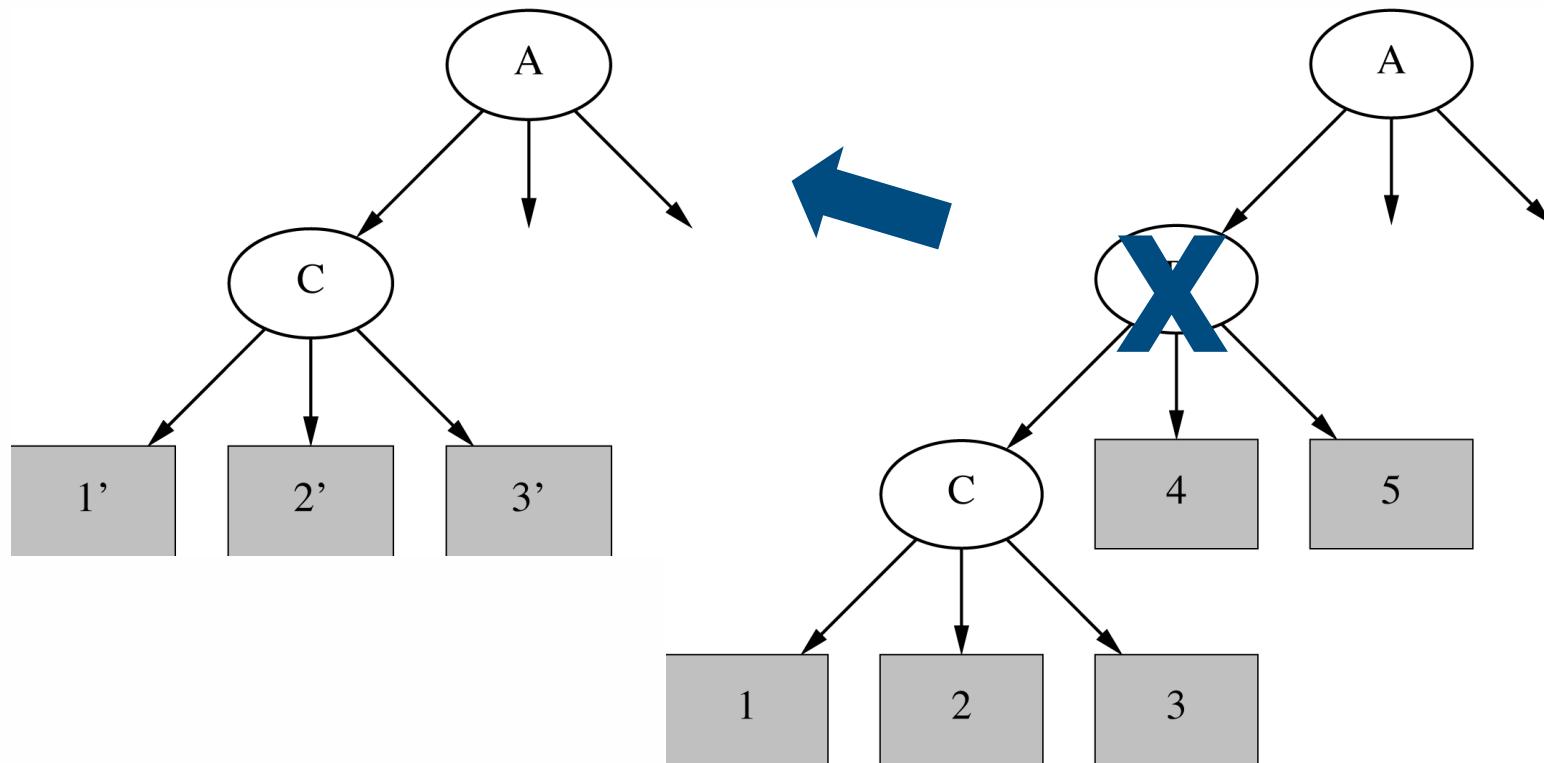


- The generated tree may overfit the training data
 - Too many branches may reflect anomalies noise or outliers
 - Result is in poor accuracy for unseen samples
- Pre-pruning
 - Halt tree construction early
 - Do not split a node if this would result in the goodness measure falling below a threshold (difficult to choose)
- Post-pruning
 - Remove branches from a “fully grown” tree
 - Use a set of data different from the training data to decide which is the “best pruned tree”

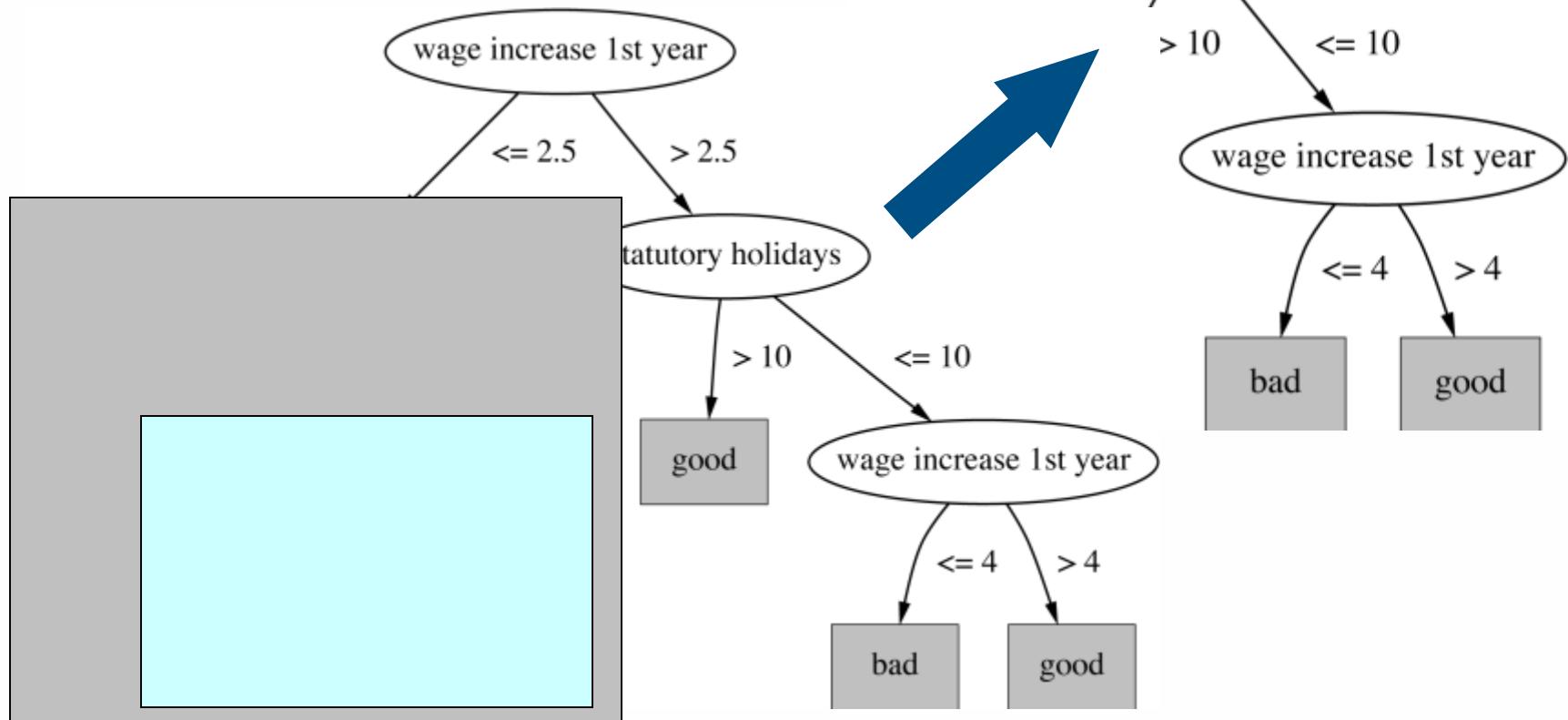
- Usually based on statistical significance test
- Stop growing the tree when there is no statistically significant association between any attribute and the class at a particular node
- High risk of premature halt
 - If initially no individual attribute exhibits any interesting information about the class
 - The structure will become visible only in fully expanded tree
 - Pre-pruning won't expand the root node

- First, build full tree, then prune it
 - Fully-grown tree shows all attribute interactions
 - But some subtrees might be due to chance effects
- Two pruning operations
 - Subtree raising
 - Subtree replacement
- Possible strategies to select the subtree
 - Error estimation
 - Significance testing
 - MDL principle

- Delete node and redistribute instances
 - Redistribution is slower than replacement



- Works bottom-up
- Consider replacing a tree only after considering all subtrees



- Prune only if it reduces the estimated error
 - Error on the training data is NOT a useful estimator (Why it would result in very little pruning?)
 - A hold-out set might be kept for pruning (“reduced-error pruning”)
- Example (C4.5’s method)
 - Derive confidence interval from training data
 - Standard Bernoulli-process-based method
 - Shaky statistical assumptions (based on training data)
 - Use a heuristic limit, derived from this, for pruning

- Mean and variance for a Bernoulli trial are p and $p(1-p)$
- Expected error rate $f = S/N$ for large enough N follows a Normal distribution:

$$f \sim N(p, p(1-p)/N)$$

- The $C\%$ confidence interval $[-z < X < z]$ for random variable with 0 mean is given by:

$$P[-z < X < z] = C$$

- With a symmetric distribution,

$$C = 1 - 2xP[X > z]$$

- Confidence limits for the normal distribution with 0 mean and unit variance is ...
- Thus:
$$P[-1.65 < X < 1.65] = 90\%$$
- To use this we have to reduce our random variable f to have 0 mean and unit variance

$Pr[X \geq z]$	z
0.1%	3.09
0.5%	2.58
1%	2.33
5%	1.65
10%	1.28
20%	0.84
25%	0.69
40%	0.25

- Given the error f on the training data, the upper bound for the error estimate for a node is computed as

$$e = \left(f + \frac{z^2}{2N} + z \sqrt{\frac{f}{N} - \frac{f^2}{N} + \frac{z^2}{4N^2}} \right) \Bigg/ \left(1 + \frac{z^2}{N} \right)$$

- If $c = 50\%$ then $z = 0.69$ (from normal distribution)
 - f is the error on the training data
 - N is the number of instances covered by the leaf

