
Advances in Deep Learning with Applications in 

Text and Image Processing
- Learning on Graphs -

Prof. Matteo Matteucci – matteo.matteucci@polimi.it

Department of Electronics, Information and Bioengineering
Artificial Intelligence and Robotics Lab - Politecnico di Milano



2

Disclaimer!

This is the 1st time I give this lecture, expect
obscure passages, glitches, and typos. Hope you
will get the big picture and get curious about the
topics as I did! Keep up with me until the end of
the day and give me feedbacks on improving
these slides so next edition will be marvelous
and unforgettable!
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Many data have the form of a graph/network

Citation networksSocial networks

Information networks & Web

Biomedical networks

Internet Networks of neurons
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Learning on networks

Classical ML tasks can be applied to network structures too:

• Graph/Node classification, i.e., predict the type of a given graph/node

Machine learning

? ?

?
?

?
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Example: Node Classification

Image from: Ganapathiraju et al. 2016. Schizophrenia interactome with 504 novel protein–protein interactions. Nature.

Classifying the 
function of proteins in 

the interactome!

https://www.nature.com/articles/npjschz201612?WT.feed_name=subjects_neuroscience
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[1] Kondor, Risi, and Karsten M. Borgwardt. "The skew spectrum of graphs." Proc. of 25th International Conference on Machine learning. ACM, 2008.
[2] Kondor, Risi, Nino Shervashidze, and Karsten M. Borgwardt. "The graphlet spectrum." Proc. of 26th International Conference on Machine Learning. ACM, 2009.
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Learning on networks

Classical ML tasks can be applied to network structures too:

• Graph/Node classification, i.e., predict the type of a given graph/node

• Link prediction, i.e., predict whether two nodes are linked

?

?

?

x
Machine learning
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Example: Link Prediction

?

Content 
recommendation is 

link prediction!
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Learning on networks

Classical ML tasks can be applied to network structures too:

• Graph/Node classification, i.e., predict the type of a given graph/node

• Link prediction, i.e., predict whether two nodes are linked

• Community (cluster) detection, i.e., identify densely linked clusters of nodes

• Network similarity, i.e., how similar are two (sub)networks

The main difficulty stays in the non Euclidean geometry of the space

• Sound and text are 1D
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Learning on networks

Classical ML tasks can be applied to network structures too:

• Node classification, i.e., predict the type of a given node

• Link prediction, i.e., predict whether two nodes are linked

• Community (cluster) detection, i.e., identify densely linked clusters of nodes

• Network similarity, i.e., how similar are two (sub)networks

The main difficulty stays in the non Euclidean geometry of the space

• Sound and text are 1D

• Images are 2D
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Learning on networks

Classical ML tasks can be applied to network structures too:

• Node classification, i.e., predict the type of a given node

• Link prediction, i.e., predict whether two nodes are linked

• Community (cluster) detection, i.e., identify densely linked clusters of nodes

• Network similarity, i.e., how similar are two (sub)networks

The main difficulty stays in the non Euclidean geometry of the space

• Sound and text are 1D

• Images are 2D

• Graphs are …
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Feature Learning in Graphs

Goal: Efficient task-independent feature learning for machine learning in networks!

vecnode 2

𝑓: 𝑢 → ℝ𝑑

ℝ𝑑

u

input graph output vectorsencoding
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Example: Zachary’s Karate Club Network

Image from: Perozzi et al. 2014. DeepWalk: Online Learning of Social Representations. KDD.

input graph output vectorsencoding

https://arxiv.org/pdf/1403.6652.pdf
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Node Embedding

Embedding such that “similar” nodes in the graph have encodings which are close 

together in a d-dimensional space. 

• Encoder maps each node to a low-dimensional vector.

• Similarity function specifies how relationships in vector space map to 

relationships in the original network

No node features or 
extra information used!
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Learning Nodes Embeddings

1) Define an Encoder

2) Define a node 
similarity function

3) Optimize the 
parameters of the 

Encoder
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«Shallow» Encoding

The encoder is just an embedding-lookup matrix, each column is the embedding, i.e., 

what we learn, nodes are encoded via “one hot” encoding.

d

One column per node 

Embedding 

matrix

Embedding vector for a 

specific node

Each node is assigned a unique 
embedding vector, e.g., 

node2vec, DeepWalk, LINE, etc.
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Node Similarity

The key distinction between “shallow” methods is how they define node similarity, i.e., 

two nodes have similar embeddings if they:

• are connected (?)

• share neighbors (?)

• have similar “structural roles” (?)

Possible choices are:

• Adjacency-based similarity

• Multi-hop similarity

• Random walk approaches

Material from: Hamilton et al. 2017. Representation Learning on Graphs: Methods and Applications. IEEE Data Engineering 

Bulletin on Graph Systems.

https://arxiv.org/abs/1709.05584
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Adjacency-based Similarity

Similarity function is just the edge weight between u and v in the original network, i.e., 

dot products between node embeddings approximate edge existence.

Ahmed et al. 2013. Distributed Natural Large Scale Graph Factorization. WWW.

Loss (what we want to 

minimize)

Sum over all node 

pairs 

(weighted) Adjacency 

matrix for the graph

Embedding similarity

https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/40839.pdf
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Adjacency-based Similarity

Similarity function is just the edge weight between u and v in the original network, i.e., 

dot products between node embeddings approximate edge existence.

Find embedding matrix 𝐙∈ℝ(𝒅 𝐱 |𝑽|) which minimizes the loss ℒ

1. Use stochastic gradient descent (SGD) as a general optimization method 

(Highly scalable, general approach)

or

2. Solve matrix decomposition solvers, e.g., SVD or QR decomposition routines, 

but works in limited cases.
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Adjacency-based Similarity

Similarity function is just the edge weight between u and v in the original network, i.e., 

dot products between node embeddings approximate edge existence.

Has some drawbacks:

• O(|V|2) runtime, since it must consider all node pairs (can make O([E]) by only 

summing over non-zero edges and using regularization (Ahmed et al., 2013)

• O(|V|) parameters (one vector per node)

• Only considers direct, local connections
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Adjacency-based Similarity

Similarity function is just the edge weight between u and v in the original network, i.e., 

dot products between node embeddings approximate edge existence.

Has some drawbacks:

• O(|V|2) runtime, since it must consider all node pairs (can make O([E]) by only 

summing over non-zero edges and using regularization (Ahmed et al., 2013)

• O(|V|) parameters (one vector per node)

• Only considers direct, local connections

The blue node is more similar to green
compared to red node, despite none having
direct connections.
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Multi-hop Similarity

Extend the Adiacency matrix to consider k-hop node neighbors and train embeddings to 

predict k-hop neighbors.

In practice log-transformed, probabilistic adjacency matrix 

Cao et al. 2015. GraRep: Learning Graph Representations with Global Structural Information. CIKM.

Ou et al. 2016. Asymmetric Transitivity Preserving Graph Embedding. KDD.

Red: Target node

Green: 1-hop neighbors (A)

Blue: 2-hop neighbors (A2)

Purple: 3-hop neighbors (A3)

constant shiftnode degree

https://dl.acm.org/citation.cfm?id=2806512
https://dl.acm.org/citation.cfm?id=2806512
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Multi-hop Similarity

Extend the Adiacency matrix to consider k-hop node neighbors and train embeddings to 

predict k-hop neighbors.

In practice log-transformed, probabilistic adjacency matrix 

Concatenate the output of different hop lengths.

Red: Target node

Green: 1-hop neighbors (A)

Blue: 2-hop neighbors (A2)

Purple: 3-hop neighbors (A3)

constant shiftnode degree
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Multi-hop Similarity

An alternative option is to measure the overlap between node neighborhoods, e.g., via 

Jaccard similarity or Adamic-Adar score 

Where 𝐒𝑢,𝑣 is the neighborhood overlap between u and v (HOPE (Yan et al., 2016).)

Usual drawbacks are still there:

• Expensive: Generally O(|V|2), since we need to iterate over all pairs of nodes.

• Brittle: Must hand-design deterministic node similarity measures.

• Massive parameter space: O(|V|) parameters

http://www.kdd.org/kdd2016/papers/files/rfp0184-ouA.pdf
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Random Walk Approaches

Interpret the dot product in feature space as the probability u and v co-occur on a 

random walk over the network

1. Estimate probability of visiting node

v on a random walk starting from 

node u using random walk strategy R.

2. Optimize embeddings to encode

these random walk statistics

Perozzi et al. 2014. DeepWalk: Online Learning of Social Representations. KDD.

Grover et al. 2016. node2vec: Scalable Feature Learning for Networks. KDD.

https://arxiv.org/pdf/1403.6652.pdf
https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf
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Random Walk Approaches

Interpret the dot product in feature space as the probability u and v co-occur on a 

random walk over the network

1. Estimate probability of visiting node

v on a random walk starting from 

node u using random walk strategy R.

2. Optimize embeddings to encode

these random walk statistics

Introduces sone advantages in terms of:

• Expressivity: Flexible stochastic definition of node similarity that incorporates both local 

and higher-order neighborhood information.

• Efficiency: Does not need to consider all node pairs when training; only need to consider 

pairs that co-occur on random walks.
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Random Walk Optimization

Optimize embeddings to maximize likelihood of random walk co-occurrences estimating 

the probability of a node v to be visited starting from node u

1. Run short random walks from each node on the graph using some strategy R

2. For each node u collect NR(u), the multiset* of nodes visited on random walks 

starting from u

3. Optimize embeddings to according to:
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Random Walk Optimization

Optimize embeddings to maximize likelihood of random walk co-occurrences

sum over all 

nodes u
sum over nodes v 
seen on random 

walks starting from 

u

predicted probability of 

u and v co-occuring on 

random walk
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Random Walk Optimization

Optimize embeddings to maximize likelihood of random walk co-occurrences

Nested sum over nodes gives 
O(|V|2) complexity!!
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Random Walk Optimization

Optimize embeddings to maximize likelihood of random walk co-occurrences

We use Negative Sampling, i.e., just normalize against k random “negative” examples

Sigmoid function

Random distribution over all nodes

Sample negative 
nodes proportional 
to degree of nodes

Higher k gives more robust 
estimates as it corresponds to 

higher prior on negative events
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node2vect

You can just run fixed-length, unbiased random walks starting from each node (i.e., 

DeepWalk from Perozzi et al., 2013), but biased random walks can trade off local and 

global views of the network (i.e., node2vect Grover and Leskovec, 2016). 

• Return parameter 𝑝: return back to the previous node

• In-out parameter 𝑞: moving outwards (DFS) vs. inwards (BFS)

node2vec: Scalable Feature Learning for Networks

Aditya Grover
Stanford University

adityag@cs.stanford.edu

Jure Leskovec
Stanford University

jure@cs.stanford.edu

ABSTRACT

Prediction tasks over nodes and edges in networks require careful
effort in engineering features for learning algorithms. Recent re-

search in thebroader field of representation learning has led to sig-
nificant progress in automating prediction by learning the features

themselves. However, present approaches are largely insensitive to
local patterns unique to networks.

Herewepropose node2vec, an algorithmic framework for learn-
ing feature representations for nodes in networks. In node2vec, we

learn a mapping of nodes to a low-dimensional space of features
that maximizes the likelihood of preserving distances between net-

work neighborhoods of nodes. Wedefineaflexiblenotion of node’s
network neighborhood and design a biased random walk proce-

dure, which efficiently exploresdiverseneighborhoods and leadsto
rich feature representations. Our algorithm generalizes prior work
which is based on rigid notions of network neighborhoods and we

demonstrate that the added flexibility in exploring neighborhoods
is the key to learning richer representations.

We demonstrate the efficacy of node2vec over existing state-
of-the-art techniques on multi-label classification and link predic-

tion in several real-world networks from diverse domains. Taken
together, our work represents a new way for efficiently learning

state-of-the-art task-independent node representations in complex
networks.

Categor ies and Subject Descr iptors: H.2.8 [Database Manage-

ment]: Database applications—Data mining; I.2.6 [Ar tificial In-
telligence]: Learning

General Terms: Algorithms; Experimentation.

Keywords: Information networks, Feature learning, Node embed-

dings.

1. INTRODUCTION
Many important tasks in network analysis involve some kind of

prediction over nodes and edges. In a typical node classification
task, we are interested in predicting the most probable labels of

nodes in a network [9, 38]. For example, in a social network, we
might be interested in predicting interests of users, or in a protein-

protein interaction network we might be interested in predicting
functional labels of proteins [29, 43]. Similarly, in link prediction,
we wish to predict whether a pair of nodes in a network should

have an edge connecting them [20]. Link prediction is useful in
a wide variety of domains, for instance, in genomics, it helps us

discover novel interactions between genes and in social networks,
it can identify real-world friends [2, 39].

Any supervised machine learning algorithm requires a set of in-
put features. In prediction problems on networks this means that

one has to construct a feature vector representation for the nodes

u 

s3 

s2 
s1 

s4 

s8 

s9 

s6 

s7 

s5 

BFS 

DFS 

Figure1: BFS and DFS search strategies from node u (k = 3).

and edges. A typical solution involves hand-engineering domain-
specific features based on expert knowledge. Even if onediscounts

the tedious work of feature engineering, such features are usually
designed for specific tasks and do not generalize across different

prediction tasks.
An alternative approach is to use data to learn feature represen-

tations themselves [4]. The challenge in feature learning is defin-
ing an objective function, which involves a trade-off in balancing
computational efficiency and predictive accuracy. On one side of

thespectrum, onecould directly aim to findafeaturerepresentation
that optimizesperformanceof adownstream prediction task. While

this supervised procedure results in good accuracy, it comes at the
cost of high training timecomplexity dueto ablowup in thenumber

of parameters that need to be estimated. At the other extreme, the
objective function can be defined to be independent of the down-

stream prediction task and the representation can be learned in a
purely unsupervised way. This makes the optimization computa-

tionally efficient and with a carefully designed objective, it results
in task-independent features that match task-specific approaches in

predictiveaccuracy [25, 27].
However, current techniques fail to satisfactorily defineand opti-

mizeareasonable objectiverequired for scalableunsupervised fea-
ture learning in networks. Classic approaches based on linear and

non-linear dimensionality reduction techniques such as Principal
Component Analysis, Multi-Dimensional Scaling and their exten-

sions [3, 31, 35, 41] invariably involve eigendecomposition of a
representative data matrix which is expensive for large real-world

networks. Moreover, the resulting latent representations give poor
performance on various prediction tasks over networks.

Neural networksprovidean alternativeapproach to unsupervised
feature learning [15]. Recent attempts in this direction [28, 32]
propose efficient algorithms but are largely insensitive to patterns

unique to networks. Specifically, nodes in networks could be or-
ganized based on communities they belong to (i.e., homophily); in

other cases, the organization could be based on the structural roles
of nodes in the network (i.e., structural equivalence) [7, 11, 40,

42]. For instance, in Figure 1, we observe nodes u and s1 belong-
ing to thesamecommunity exhibit homophily, while thehub nodes

u and s6 in the two communities are structurally equivalent. Real-

𝑁𝐵𝐹𝑆 𝑢 = { 𝑠1, 𝑠2, 𝑠3}
Local microscopic view

𝑁𝐷𝐹𝑆 𝑢 = { 𝑠4, 𝑠5, 𝑠6}

Global macroscopic view
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Biased Random Walk

Biased 2nd order random walks explore network neighborhoods:

• Assume the random walk started at 𝑢 and is now at 𝑤

• Neighbors of 𝑤 can only be (remember where you came from)

Walker is at W. Where to go next?

• 𝑝 … return parameter

• 𝑞 … “walk away” parameter

𝑠𝑎𝑚𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑢

𝑓𝑎𝑟𝑡ℎ𝑒𝑟 𝑡ℎ𝑎𝑛 u

𝑐𝑙𝑜𝑠𝑒𝑟 𝑡𝑜 𝑢s1

s2

w

s3

u



41

Biased Random Walk

Biased 2nd order random walks explore network neighborhoods:

• Assume the random walk started at 𝑢 and is now at 𝑤

• Neighbors of 𝑤 can only be (remember where you came from)

Walker is at W. Where to go next?

• BFS-like walk: Low value of 𝑝

• DFS-like walk: Low value of 𝑞

1

1/𝑞

1/𝑝s1

s2

w

s3

u

u
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Example: Interaction of characters in a novel

Figure 3: Complementary visualizations of LesMisérables co-
appearance network generated by node2vec with label colors
reflecting homophily (top) and structural equivalence(bottom).

also exclude a recent approach, GraRep [6], that generalizes LINE
to incorporate information from network neighborhoods beyond 2-

hops, but does not scale and hence, provides an unfair comparison
with other neural embedding based feature learning methods. Apart

from spectral clustering which has a slightly higher time complex-
ity since it involvesmatrix factorization, our experiments stand out
from prior work in the sense that all other comparison benchmarks

are evaluated in settings that equalize for runtime. In doing so, we
discount for performance gain observed purely because of the im-

plementation language (C/C++/Python) since it is secondary to the
algorithm. In order to create fair and reproducible comparisons, we

note that the runtime complexity is contributed from two distinct
phases: sampling and optimization.

In the sampling phase, all benchmarks as well as node2vec pa-
rameters are set such that they generate equal samples at runtime.

Asanexample, if K istheoverall sampleconstraint, then thenode2vec
parameters satisfy K = r · l · |V |. In the optimization phase,

all benchmarks optimize using a stochastic gradient descent algo-
rithm with two key differences that wecorrect for. First, DeepWalk

useshierarchical sampling toapproximate thesoftmax probabilities
with an objective similar to the one use by node2vec in (2). How-

ever, hierarchical softmax is inefficient when compared with neg-
ative sampling [26]. Hence, keeping everything else the same, we

switch to negativesampling in DeepWalk which isalso thedefacto
approximation in node2vec and LINE. Second, both node2vec and

DeepWalk have a parameter (k) for the number of context neigh-
borhood nodesto optimize for and thegreater thenumber, themore

rounds of optimization are required. This parameter is set to unity
for LINE. Since LINE completes asingle epoch quicker than other
approaches, we let it run for k epochs.

The parameter settings used for node2vec are in line with typ-
ical values used for DeepWalk and LINE. Specifically, d = 128,

r = 10, l = 80, k = 10 and the optimization is run for a single
epoch. (Following prior work [34], we use d = 500 for spec-

tral clustering.) All results for all tasks are statistically significant
with ap-valueof less than 0.01.The best in-out and return hyperpa-

rameters were learned using 10-fold cross-validation on just 10%

Algor ithm Dataset
BlogCatalog PPI Wikipedia

Spectral Clustering 0.0405 0.0681 0.0395

DeepWalk 0.2110 0.1768 0.1274
LINE 0.0784 0.1447 0.1164

node2vec 0.2581 0.1791 0.1552

node2vec settings (p,q) 0.25, 0.25 4, 1 4, 0.5
Gain of node2vec [%] 22.3 1.3 21.8

Table 2: Macro-F1 scores for multilabel classification on Blog-
Catalog, PPI (Homo sapiens) and Wikipedia word cooccur-

rence networks with a balanced 50% train-test split.

labeled data with a grid search over p, q 2 { 0.25, 0.50, 1, 2, 4} .

Under the above experimental settings, we present our results for
two tasks under consideration.

4.3 Multi-label classification
In the multi-label classification setting, every node is assigned

oneor morelabelsfrom afiniteset L . During thetraining phase, we

observe a certain fraction of nodes and all their labels. The task is
to predict the labels for the remaining nodes. This is a challenging
task especially if L is large. We perform multi-label classification

on the following datasets:

• BlogCatalog [44]: This is a network of social relationships
of the bloggers listed on the BlogCatalog website. The la-

bels represent blogger interests inferred through the meta-
dataprovided by thebloggers. Thenetwork has10,312 nodes,

333,983 edges and 39 different labels.
• Protein-Protein Interactions (PPI) [5]: We use a subgraph

of the PPI network for Homo Sapiens. The subgraph cor-
responds to the graph induced by nodes for which we could

obtain labels from the hallmark gene sets [21] and represent
biological states. Thenetwork has3,890 nodes, 76,584 edges

and 50 different labels.
• Wikipedia Cooccurrences [23]: This is a cooccurrence net-

work of words appearing in the first million bytes of the
Wikipedia dump. The labels represent the Part-of-Speech

(POS) tags as listed in the Penn Tree Bank [24] and inferred
using the Stanford POS-Tagger [37]. The network has 4,777

nodes, 184,812 edges and 40 different labels.

All our networks exhibit a fair mix of homophilic and structural
equivalences. For example, we would expect the social network
of bloggers to exhibit strong homophily-based relationships, how-

ever, theremight also besome‘familiar strangers’ , that is, bloggers
that do not interact but share interests and hence are structurally

equivalent nodes. The biological states of proteins in a protein-
protein interaction network also exhibit both typesof equivalences.

For example, they exhibit structural equivalencewhen proteinsper-
form functions complementary to those of neighboring proteins,

and at other times, they organize based on homophily in assisting
neighboring proteins in performing similar functions. Theword co-

occurence network is fairly dense, sinceedgesexist between words
cooccuring in a 2-length window in the Wikipedia corpus. Hence,

wordshaving thesamePOStagsarenot hard to find, lending ahigh
degree of homophily. At the same time, we expect some structural

equivalence in thePOStagsdue to syntactic grammar rulessuch as
determiners following nouns, punctuations preceeding nouns etc.

Exper imental results. The learned node feature representations
are input to aone-vs-rest logistic regression using theLIBLINEAR

implementation with L2 regularization. The train and test data is
split equally over 10 random splits. We use the Macro-F1 scores

for comparing performance in Table2 and therelativeperformance

Figure 3: Complementary visualizations of LesMisérables co-
appearance network generated by node2vec with label colors
reflecting homophily (top) and structural equivalence(bottom).

also exclude a recent approach, GraRep [6], that generalizes LINE
to incorporate information from network neighborhoods beyond 2-

hops, but does not scale and hence, provides an unfair comparison
with other neural embedding based feature learning methods. Apart

from spectral clustering which has a slightly higher time complex-
ity since it involvesmatrix factorization, our experiments stand out
from prior work in the sense that all other comparison benchmarks

are evaluated in settings that equalize for runtime. In doing so, we
discount for performance gain observed purely because of the im-

plementation language (C/C++/Python) since it is secondary to the
algorithm. In order to create fair and reproducible comparisons, we

note that the runtime complexity is contributed from two distinct
phases: sampling and optimization.

In the sampling phase, all benchmarks as well as node2vec pa-
rameters are set such that they generate equal samples at runtime.

Asanexample, if K istheoverall sampleconstraint, then thenode2vec
parameters satisfy K = r · l · |V |. In the optimization phase,

all benchmarks optimize using a stochastic gradient descent algo-
rithm with two key differences that wecorrect for. First, DeepWalk

useshierarchical sampling to approximatethesoftmax probabilities
with an objective similar to the one use by node2vec in (2). How-

ever, hierarchical softmax is inefficient when compared with neg-
ative sampling [26]. Hence, keeping everything else the same, we

switch to negativesampling in DeepWalk which isalso thedefacto
approximation in node2vec and LINE. Second, both node2vec and

DeepWalk have a parameter (k) for the number of context neigh-
borhood nodesto optimize for and thegreater thenumber, themore

rounds of optimization are required. This parameter is set to unity
for LINE. Since LINE completes asingle epoch quicker than other
approaches, we let it run for k epochs.

The parameter settings used for node2vec are in line with typ-
ical values used for DeepWalk and LINE. Specifically, d = 128,

r = 10, l = 80, k = 10 and the optimization is run for a single
epoch. (Following prior work [34], we use d = 500 for spec-

tral clustering.) All results for all tasks are statistically significant
with ap-valueof less than 0.01.The best in-out and return hyperpa-

rameters were learned using 10-fold cross-validation on just 10%

Algor ithm Dataset
BlogCatalog PPI Wikipedia

Spectral Clustering 0.0405 0.0681 0.0395

DeepWalk 0.2110 0.1768 0.1274
LINE 0.0784 0.1447 0.1164

node2vec 0.2581 0.1791 0.1552

node2vec settings (p,q) 0.25, 0.25 4, 1 4, 0.5
Gain of node2vec [%] 22.3 1.3 21.8

Table 2: Macro-F1 scores for multilabel classification on Blog-
Catalog, PPI (Homo sapiens) and Wikipedia word cooccur-
rence networks with a balanced 50% train-test split.

labeled data with a grid search over p, q 2 { 0.25, 0.50, 1, 2, 4} .

Under the above experimental settings, we present our results for
two tasks under consideration.

4.3 Multi-label classification
In the multi-label classification setting, every node is assigned

oneor morelabelsfrom afiniteset L . During thetraining phase, we

observe a certain fraction of nodes and all their labels. The task is
to predict the labels for the remaining nodes. This is a challenging
task especially if L is large. We perform multi-label classification

on the following datasets:

• BlogCatalog [44]: This is a network of social relationships
of the bloggers listed on the BlogCatalog website. The la-

bels represent blogger interests inferred through the meta-
dataprovided by thebloggers. Thenetwork has10,312 nodes,

333,983 edges and 39 different labels.
• Protein-Protein Interactions (PPI) [5]: We use a subgraph

of the PPI network for Homo Sapiens. The subgraph cor-
responds to the graph induced by nodes for which we could

obtain labels from the hallmark gene sets [21] and represent
biological states. Thenetwork has3,890 nodes, 76,584 edges

and 50 different labels.
• Wikipedia Cooccurrences [23]: This is a cooccurrence net-

work of words appearing in the first million bytes of the
Wikipedia dump. The labels represent the Part-of-Speech

(POS) tags as listed in the Penn Tree Bank [24] and inferred
using the Stanford POS-Tagger [37]. The network has 4,777

nodes, 184,812 edges and 40 different labels.

All our networks exhibit a fair mix of homophilic and structural
equivalences. For example, we would expect the social network
of bloggers to exhibit strong homophily-based relationships, how-

ever, theremight also besome‘familiar strangers’ , that is, bloggers
that do not interact but share interests and hence are structurally

equivalent nodes. The biological states of proteins in a protein-
protein interaction network also exhibit both typesof equivalences.

For example, they exhibit structural equivalencewhen proteinsper-
form functions complementary to those of neighboring proteins,

and at other times, they organize based on homophily in assisting
neighboring proteins in performing similar functions. Theword co-

occurence network is fairly dense, sinceedgesexist between words
cooccuring in a 2-length window in the Wikipedia corpus. Hence,

wordshaving thesamePOStagsarenot hard to find, lending ahigh
degree of homophily. At the same time, we expect some structural

equivalence in thePOStagsdue to syntactic grammar rulessuch as
determiners following nouns, punctuations preceeding nouns etc.

Exper imental results. The learned node feature representations
are input to aone-vs-rest logistic regression using theLIBLINEAR

implementation with L2 regularization. The train and test data is
split equally over 10 random splits. We use the Macro-F1 scores

for comparing performance in Table2 and therelativeperformance

p=1, q=2

Microscopic view of the 

network neighbourhood

p=1, q=0.5

Macroscopic view of the 

network neighbourhood
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From «Shallow» to «Deep» Encodings 

Shallow encoding, i.e.,                        has some drawbacks:

• O(|V|) parameters are needed, i.e., there is no parameter sharing and every 

node has its own unique embedding vector of size d

• Inherently “transductive”, i.e., it is impossible to generate embeddings for nodes 

that were not seen during training

• Does not incorporate node features, i.e., graphs may have features that we can 

and should leverage upon
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Graph(s)

Graph 

Classification

Embedding 

Technique
Graph 

Spectrum

Convolution 

Networks

Graph 

Kernels

Taxonomy of Graph Learning

Deep Walk1 LINE2

Node2Vector3

RandW1 MLG2

WL3

Skew1 Graphlet2

FGSD Spectrum

PATCHY1 MCNNs2

DCNNs3

[1] M. Niepert, M. Ahmed, and K. Kutzkov. "Learning convolutional neural networks for graphs." International Conference on Machine Learning. 2016.
[2] Duvenaud, David K., et al. "Convolutional networks on graphs for learning molecular fingerprints." Advances in neural information processing systems. 2015.
[3] Atwood, James, and Don Towsley. "Diffusion-convolutional neural networks." Advances in Neural Information Processing Systems. 2016.

Node 

Classification
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Graph Basics

Assume we have a graph G:

• V is the vertex set

• A is the adjacency matrix (assumed binary)

• 𝑋 ∈ 𝑅𝑚×|𝑉| is a matrix of node features 𝑋𝑣 having |𝑋𝑣| = 𝑚

Node features could be of different type

• Categorical attributes, text, image data, etc.

• Vertexex encoded by indicator vectors (i.e., one-hot encoding of each node)

A

BC

D

E
F

G

H
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Generate node embeddings based on local neighborhoods.

Nodes aggregate information from their neighbors using neural networks

Every node defines a (unique) computation graph

Neighborhood Aggregation

Hamilton et al. 2017. Representation Learning on Graphs: Methods and Applications. IEEE Data Engineering Bulletin on Graph Systems.

Scarselli et al. 2005. The Graph Neural Network Model. IEEE Transactions on Neural Networks. 
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Target Node
A
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https://arxiv.org/abs/1709.05584
http://ieeexplore.ieee.org/document/4700287/
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Generate node embeddings based on local neighborhoods.

Nodes aggregate information from their neighbors using neural networks

Every node defines a (unique) computation graph

Neighborhood Aggregation

Hamilton et al. 2017. Representation Learning on Graphs: Methods and Applications. IEEE Data Engineering Bulletin on Graph Systems.

Scarselli et al. 2005. The Graph Neural Network Model. IEEE Transactions on Neural Networks. 
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Generate node embeddings based on local neighborhoods.

Nodes aggregate information from their neighbors using neural networks

Every node defines a (unique) computation graph

Neighborhood Aggregation

Hamilton et al. 2017. Representation Learning on Graphs: Methods and Applications. IEEE Data Engineering Bulletin on Graph Systems.

Scarselli et al. 2005. The Graph Neural Network Model. IEEE Transactions on Neural Networks. 
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https://arxiv.org/abs/1709.05584
http://ieeexplore.ieee.org/document/4700287/
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Generate node embeddings based on local neighborhoods.

Nodes aggregate information from their neighbors using neural networks

Every node defines a (unique) computation graph

Neighborhood Aggregation

Hamilton et al. 2017. Representation Learning on Graphs: Methods and Applications. IEEE Data Engineering Bulletin on Graph Systems.

Scarselli et al. 2005. The Graph Neural Network Model. IEEE Transactions on Neural Networks. 
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https://arxiv.org/abs/1709.05584
http://ieeexplore.ieee.org/document/4700287/
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Generate node embeddings based on local neighborhoods.

Nodes aggregate information from their neighbors using neural networks

Every node defines a (unique) computation graph

Neighborhood Aggregation

Hamilton et al. 2017. Representation Learning on Graphs: Methods and Applications. IEEE Data Engineering Bulletin on Graph Systems.

Scarselli et al. 2005. The Graph Neural Network Model. IEEE Transactions on Neural Networks. 
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Every node defines a 
unique computation 

graph!

https://arxiv.org/abs/1709.05584
http://ieeexplore.ieee.org/document/4700287/
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Nodes have embeddings at each layer, and the model can be arbitrary depth.

Embedding of node 𝑣 at “layer-0” is its input feature 𝑋𝑣

Neighborhood Aggregation

Hamilton et al. 2017. Representation Learning on Graphs: Methods and Applications. IEEE Data Engineering Bulletin on Graph Systems.

Scarselli et al. 2005. The Graph Neural Network Model. IEEE Transactions on Neural Networks. 
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https://arxiv.org/abs/1709.05584
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Nodes have embeddings at each layer, and the model can be arbitrary depth.

Embedding of node 𝑣 at “layer-0” is its input feature 𝑋𝑣

Neighborhood Aggregation

Hamilton et al. 2017. Representation Learning on Graphs: Methods and Applications. IEEE Data Engineering Bulletin on Graph Systems.

Scarselli et al. 2005. The Graph Neural Network Model. IEEE Transactions on Neural Networks. 
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Neighborhood «Convolutions»

Neighborhood aggregation can be viewed as a center-surround filter; mathematically 

related to spectral graph convolutions (see Bronstein et al., 2017).

... ...

1 1 1 1... ...

https://arxiv.org/abs/1611.08097
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Neighborhood Aggregation

Key distinctions among algorithms are in the way they aggregate information, e.g.,

• Average information from neighbors messages

• Apply a non linear transformataion

What’s inside 
this?
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Neighborhood Aggregation

Key distinctions among algorithms are in the way they aggregate information, e.g.,

• Average information from neighbors messages

• Apply a non linear transformataion

Average of neighbor’s previous 

layer embeddings

Initial “layer 0” embeddings

equal to node features

k-th layer 

embedding of v Non-linearity

(e.g., ReLU or tanh)

Previous layer 

embedding of v
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Neighborhood Aggregation

Key distinctions among algorithms are in the way they aggregate information, e.g.,

• Average information from neighbors messages

• Apply a non linear transformataion

• Train the embedding to minimize a loss function

Trainable matrices

(i.e., what we learn) 

Embedding obtained 

after K layers 
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Neighborhood Aggregation

Key distinctions among algorithms are in the way they aggregate information, e.g.,

• Average information from neighbors messages

• Apply a non linear transformataion

• Train the embedding to minimize a loss function
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loss function on the 
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Training the Model

Train in an unsupervised manner using only the graph structure and an unsupervised 

loss function, e.g., based on:

• Random walks (node2vec, DeepWalk)

• Graph factorization (i.e., “similar” nodes have similar embeddings)

Directly train the model for a supervised task (e.g., node classification):
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specific task
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Classification 

weights

Training the Model

Directly train the model for a supervised task (e.g., node classification):
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Output node
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Training and Generalization

• Define a neighborhood aggregation function
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Training and Generalization

• Define a neighborhood aggregation function

• Define a loss function on the embedding
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Training and Generalization

• Define a neighborhood aggregation function

• Define a loss function on the embedding

• Train on a set of computing graphs in a batch

• Generate embedding for nodes as needed
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Inductive Capacity of Neighbours Aggregation

The same aggregation parameters are shared for all nodes; the number of model 

parameters is sublinear in |V| and we can generalize to unseen nodes! 
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Inductive Capacity of Neighbours Aggregation

The same aggregation parameters are shared for all nodes; the number of model 

parameters is sublinear in |V| and we can generalize to unseen nodes! 
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Inductive Capacity

The inductive capacity allows to:

• Train on one graph and generalize to a new one

Train on protein interaction graph 
from organism A and generate 
embeddings on data about B
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Inductive Capacity

The inductive capacity allows to:

• Train on one graph and generalize to a new one

• Generate embeddings «on the fly»

New data appears all the days, e.g., 
Reddit, YouTube, GoogleScholar, ….
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GraphSAGE

We can go beyond simple weighted average

What’s inside 
this?A
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Target Node
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Material from: Hamilton et al., 2017. Inductive Representation Learning on Large Graphs. NIPS.

Any differentiable function that maps 

set of vectors to a single vector.

Concatenate self embedding 

and neighbor embedding 

https://arxiv.org/abs/1706.02216
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GraphSAGE

We can go beyond simple weighted average:

• Mean:

• Pool: transform neighbor vectors and apply symmetric vector function

• LSTM: apply LSTM to random permutation of neighbors.

Any differentiable function that maps 

set of vectors to a single vector.

Concatenate self embedding 

and neighbor embedding 

Element-wise mean/max

What about 
convolutions?
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From 2D Convolutions to Graphs Convolutions
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Graph Convolutional Networks

Graph Convolutional Networks (GCNs) are a variation on neighborhood aggregation:

Kipf et al., 2017. Semisupervised Classification with Graph Convolutional Networks. ICLR.

Basic Neighborhood Aggregation

GCN Neighborhood Aggregation
Same matrix for self

and neighbor 

embeddings
Per-neighbor 

normalization

More parameter sharing.
Down-weights hight
degree neighbors.

https://arxiv.org/abs/1609.02907
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Vectorized Implementation (Faster!)

A is generally sparse, 
obtained via fast sparse 

multiplications!



73

Graph Convolutional Networks Applications

Input: Features matrix 𝐗 ∈ 𝐑𝐦× 𝐕

Preprocessed adiacency  𝑨

Graph Classification: softmax  𝒏 𝒛𝒏
(e.g., Duvenaud et al. NIPS 2015)

Link Prediction: 𝑝 𝐴𝑖𝑗 = 𝜎(𝒛𝒊
𝑻𝒛𝒋)

(e.g., Kipf & Welling NIPS BDL 2016)

Node Classification: softmax 𝐳𝐧
(e.g., Kipf & Welling ICLR 2017)
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Exaple: Semi-supervised Learning

Let assume only few nodes are labeled and initialize the network weights randomly

Evaluate loss on labeled nodes only
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Exaple: Semi-supervised Learning (Citation network)

Citation networks are a typical example of social networks: 

• nodes are papers, edges are citation links

• bag-of-words features on nodes (optional)

Graph convolutional network to predict categories (2 layers)

Kipf & Welling, Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017



76

Example: Recommendation System

Recommender systems are bipartite graphs: 

• Content features: user and item features, in the form of images, categories etc.

• Network structure: user-item interactions, in the form of graph/network structure.

Ying et al. Graph Convolutional Neural Networks for Web-Scale Recommender Systems. 

Q

Users

Items
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Example: Recommendation System (Pinterest)

Pins are visual bookmarks users save from the internet to their boards.

77

Boards

Pins

Recommend related 
pins to users …



78

Example: Recommendation System

Recommender systems are bipartite graphs: 

• Content features: user and item features, in the form of images, categories etc.

• Network structure: user-item interactions, in the form of graph/network structure.

• Graph is dynamic, i.e., need to apply to new nodes without model retraining

Proposed approach: Random Walk +Graph Convolution Networks (RW-GCN)

Ying et al. Graph Convolutional Neural Networks for Web-Scale Recommender Systems. 

Q

Users

Items
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Example: Recommendation System

After collecting billions of training pairs from user logs.

• Train so that pins that are consecutively clicked have similar embeddings

• Generate embeddings for all pins.

• Make recommendations using nearest neighbor search 

in the embedding space (real-time).

Set of training pairs 

from user logs
Positive/true 

training pair
Negative 

sample

Margin
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Element-wise mean 

or max + MLP
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Example: Recommendation System

RW-GCN Tips and Tricks:

• Sub-sample neighborhoods for efficient GPU batching 
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Sampled neighborhood for 
a node lists nodes with the 

top-K PageRank scores
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Example: Recommendation System

RW-GCN Tips and Tricks:

• Sub-sample neighborhoods for efficient GPU batching 

• Curriculum learning for negative samples

Source pin Positive Hard negativeEasy negative

You know this from the distance 
in the embedding space …
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Example: Recommendation System

Rank true “next-clicked” pin against 109 other candidates
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Example: Polypharmacy Side Effects

Predict side effects of taking multiple drugs

• Rare, occur only in a subset of patients 

• Not observed in clinical testing

Zitnik et al. 2018. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics & ISMB.

Patient’s side effectsMedications
No side effect

No side effect

https://arxiv.org/abs/1802.00543
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Example: Polypharmacy Side Effects

Computationally screen/predict polypharmacy side effects

• Use molecular, pharmacological and patient population data

• Guide strategies for combination treatments in patients

Predict labeled edges 
between drugs (𝑐,𝑟2,𝑠) 

meaning combination (𝑐,𝑠) 
leads to side effect 𝑟2
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Example: Polypharmacy Side Effects

Encoder deconder network:

• Embedding for nodes
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Example: Polypharmacy Side Effects

Encoder deconder network:

• Embedding for nodes

• Predict edges (side effects)
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A note on (sub-)graph embedding

So far we have focused on node level embedding ... 

Duvenaud et al. 2016. Convolutional Networks on Graphs for Learning Molecular Fingerprints. ICML.

Li et al. 2016. Gated Graph Sequence Neural Networks. ICLR.

https://arxiv.org/abs/1509.09292
https://arxiv.org/abs/1511.05493
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So far we have focused on node level embedding ... what about sub-graphs?

• Sum (or average) node embeddings in the (sub)graph (Duvenaud et al., 2016)

A note on (sub-)graph embedding

Duvenaud et al. 2016. Convolutional Networks on Graphs for Learning Molecular Fingerprints. ICML.

Li et al. 2016. Gated Graph Sequence Neural Networks. ICLR.

https://arxiv.org/abs/1509.09292
https://arxiv.org/abs/1511.05493


89

So far we have focused on node level embedding ... what about sub-graphs?

• Sum (or average) node embeddings in the (sub)graph (Duvenaud et al., 2016)

• Introduce a “virtual node” to represent the subgraph (Li et al. 2016)

• …

A note on (sub-)graph embedding

Duvenaud et al. 2016. Convolutional Networks on Graphs for Learning Molecular Fingerprints. ICML.

Li et al. 2016. Gated Graph Sequence Neural Networks. ICLR.

First steps toward graph in 
graph neural networks …

https://arxiv.org/abs/1509.09292
https://arxiv.org/abs/1511.05493
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Gated Graph Neural Networks

Neighborhood aggregation combines messages from neighbors using neural networks

Li et al., 2016. Gated Graph Sequence Neural Networks. ICLR.
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https://arxiv.org/abs/1511.05493
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Gated Graph Neural Networks

Neighborhood aggregation combines messages from neighbors using neural networks

Challenges:

• Overfitting from too many parameters

• Vanishing/exploding gradients 

during backpropagation.

Aggregation via recurrent networks:

Li et al., 2016. Gated Graph Sequence Neural Networks. ICLR.
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BC F

Layer 0

Can we have >10 layers?

Layer 0

GRU

GRU

Aggregation function

does not depend on k

https://arxiv.org/abs/1511.05493
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Dynamic Graphs

Many graphs evolve over time:

• Recommender systems

• Financial transaction 

• Graphs from videos

• Social networks

Applications:

• Predict/classify graph evolution (e.g., activity recognition)

• Anomaly detection (e.g., fraud)
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