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Disclaimer!
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‘ This is the 1%t time | give this lecture, expect
obscure passages, glitches, and typos. Hope you
\ will get the big picture and get curious about the

\
\
\ topics as | did! Keep up with me until the end of \

the day and give me feedbacks on improving \
\ these slides so next edition will be marvelous \
\ and unforgettable! }
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Many data have the form of a graph/network
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Learning on networks

Classical ML tasks can be applied to network structures too:
* Graph/Node classification, i.e., predict the type of a given graph/node

&ﬁ

Machine learning
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Example: Node Classification

Classifying the
function of proteins in
the interactome!

L

Image from: Ganapathiraju et al. 2016. Schizophrenia interactome with 504 novel protein—protein interactions. Nature.
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https://www.nature.com/articles/npjschz201612?WT.feed_name=subjects_neuroscience

Taxonomy of Graph Learning
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Taxonomy of Graph Learning
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Taxonomy of Graph Learning
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Taxonomy of Graph Learning

[1] Perozzi, Bryan, Rami Al-Rfou, and Steven Skiena. "Deepwalk: Online learning of social representations." Proc. of the 20th ACM SIGKDD. ACM, 2014.
[2] Tang, Jian, et al. "Line: Large-scale information network embedding." Proc. of the 24th International Conference on World Wide Web., 2015.
[3] Grover, Aditya, and Jure Leskovec. "node2vec: Scalable feature learning for networks." Proc. of the 22nd ACM SIGKDD. ACM, 2016.

POLITECNICO MILANO 1863




Taxonomy of Graph Learning

[1] T. Gartner, P. Flach, and S. Wrobel. "On graph kernels: Hardness results and efficient alternatives." Learning Theory and Kernel Machines (2003): 129-143.
[2] Kondor, Risi, and Horace Pan. "The multiscale Laplacian graph kernel." Advances in Neural Information Processing Systems. 2016.
[3] Shervashidze, Nino, et al. "Weisfeiler-lehman graph kernels." Journal of Machine Learning Research 12.Sep (2011): 2539-2561.
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Taxonomy of Graph Learning

[1] M. Niepert, M. Ahmed, and K. Kutzkov. "Learning convolutional neural networks for graphs." International Conference on Machine Learning. 2016.
[2] Duvenaud, David K., et al. "Convolutional networks on graphs for learning molecular fingerprints." Advances in neural information processing systems. 2015.
[3] Atwood, James, and Don Towsley. "Diffusion-convolutional neural networks." Advances in Neural Information Processing Systems. 2016.
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Taxonomy of Graph Learning

[1] Kondor, Risi, and Karsten M. Borgwardt. "The skew spectrum of graphs." Proc. of 25th International Conference on Machine learning. ACM, 2008.
[2] Kondor, Risi, Nino Shervashidze, and Karsten M. Borgwardt. "The graphlet spectrum." Proc. of 26th International Conference on Machine Learning. ACM, 2009.
[3] Saurabh Verma and Zhi-li Zhang. “"Hunting For a Unique, Stable, Sparse and Fast Feature Algorithm on Graphs”. In 31st NIPS, 2017.
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Learning on networks

Classical ML tasks can be applied to network structures too:
* Graph/Node classification, i.e., predict the type of a given graph/node
° Link prediction, i.e., predict whether two nodes are linked

&ﬁ

Machine learning
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Example: Link Prediction

Content
recommendation is
link prediction!

Want to get Follow
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Learning on networks

Classical ML tasks can be applied to network structures too:
* Graph/Node classification, i.e., predict the type of a given graph/node
° Link prediction, i.e., predict whether two nodes are linked

*  Community (cluster) detection, i.e., identify densely linked clusters of nodes
° Network similarity, i.e., how similar are two (sub)networks

The main difficulty stays in the non Euclidean geometry of the space

* Sound and text are 1D | T ? *
W oeooeo + i ~ |
| © ® ©
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Learning on networks

Classical ML tasks can be applied to network structures too:
° Node classification, i.e., predict the type of a given node
° Link prediction, i.e., predict whether two nodes are linked
*  Community (cluster) detection, i.e., identify densely linked clusters of nodes
° Network similarity, i.e., how similar are two (sub)networks

The main difficulty stays in the non Euclidean geometry of the space

°* Sound and text are 1D
* Images are 2D
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Learning on networks

Classical ML tasks can be applied to network structures too:
° Node classification, i.e., predict the type of a given node
° Link prediction, i.e., predict whether two nodes are linked
*  Community (cluster) detection, i.e., identify densely linked clusters of nodes
° Network similarity, i.e., how similar are two (sub)networks

The main difficulty stays in the non Euclidean geometry of the space
° Sound and text are 1D

* Images are 2D
* Graphs are ...
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Taxonomy of Graph Learning

[1] Perozzi, Bryan, Rami Al-Rfou, and Steven Skiena. "Deepwalk: Online learning of social representations." Proc. of the 20th ACM SIGKDD. ACM, 2014.
[2] Tang, Jian, et al. "Line: Large-scale information network embedding." Proc. of the 24th International Conference on World Wide Web., 2015.
[3] Grover, Aditya, and Jure Leskovec. "node2vec: Scalable feature learning for networks." Proc. of the 22nd ACM SIGKDD. ACM, 2016.
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Feature Learning in Graphs

Goal: Efficient task-independent feature learning for machine learning in networks!

input graph encoding output vectors

node o

vec
-

: d
fru—->R o
]Rd
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Example: Zachary’s Karate Club Network

input graph > encoding < output vectors
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Image from: Perozzi et al. 2014. DeepWalk: Online Learning of Social Representations. KDD.
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https://arxiv.org/pdf/1403.6652.pdf

Node Embedding

Embedding such that “similar” nodes in the graph have encodings which are close
together in a d-dimensional space.

° Encoder maps each node to a low-dimensional vector.
* Similarity function specifies how relationships in vector space map to
relationships in the original network

similarity(u, v) ~ z, z,

ast®
-
.s®
.t
e
.
.
.
Ad
.
-
.
*
.
-
.
*
*
.
*
o
*

encode nodes

......
.....................................

No node features or

extra information used!
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Learning Nodes Embeddings

3) Optimize the

2) Define a node
Similarity function

parameters of the
Encoder

T 0®

(u;0)
NG

° o.' °
similarity

encode nodes

1) Define an Encoder
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«Shallow» Encoding

The encoder is just an embedding-lookup matrix, each column is the embedding, i.e.,
what we learn, nodes are encoded via “one hot” encoding.

Embedding vector for a
ENC(U) — 7V Embedding specﬁic node

mautrix o O
Z € RV \ o
V| _ o
v el /, — o —d
: @
°° o
Each node is assigned a unigue :0: _
embedding vector, e.g., \ Y }
node2vec, DeepWalk, LINE, etc. One column per node
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Node Similarity

The key distinction between “shallow” methods is how they define node similarity, i.e.,
two nodes have similar embeddings if they:

° are connected (?)
° share neighbors (?)
* have similar “structural roles” (?)

1.0+

0.5F

)
Possible choices are:
° Adjacency-based similarity |
° Multi-hop similarity
* Random walk approaches 10| | | | |

Material from: Hamilton et al. 2017. Representation Learning on Graphs: Methods and Applications. IEEE Data Engineering
Bulletin on Graph Systems.
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https://arxiv.org/abs/1709.05584

Adjacency-based Similarity

Similarity function is just the edge weight between u and v in the original network, i.e.,
dot products between node embeddings approximate edge existence.

L= Z HZIZ’U - Au,vH2
u,v)eV xV
/o (uw)EVX \ AN

Loss (what we want to Embedding similarit
minimize) (weighted) Adjacency

matrix for the graph

Sum over all node
pairs

Ahmed et al. 2013. Distributed Natural Large Scale Graph Factorization. \W\W\V.
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https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/40839.pdf

Adjacency-based Similarity

Similarity function is just the edge weight between u and v in the original network, i.e.,
dot products between node embeddings approximate edge existence.

L= > lzyzog— Al
(u,v)EV XV

Find embedding matrix ZeR@x V) which minimizes the loss L

1. Use stochastic gradient descent (SGD) as a general optimization method
(Highly scalable, general approach)
or

7. Solve matrix decomposition solvers, e.g., SVD or QR decomposition routines,
but works in limited cases.
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Adjacency-based Similarity

Similarity function is just the edge weight between u and v in the original network, i.e.,
dot products between node embeddings approximate edge existence.

L= ) |zuzd— Al
(u,v)eV XV

Has some drawbacks:

* O(]V|?) runtime, since it must consider all node pairs (can make O([E]) by only
summing over non-zero edges and using regularization (Ahmed et al., 2013)

* O(|V|) parameters (one vector per node)
° Only considers direct, local connections




Adjacency-based Similarity

Similarity function is just the edge weight between u and v in the original network, i.e.,
dot products between node embeddings approximate edge existence.

L= > lzyzog— Al
(u,v)EV XV

The blue node is more similar to green

Has some drawbacks: compared to red node, despite none having

- . . . d. t t '
* O(]V]) runtime, since it must consider all nod
summing over non-zero edges and using reg

* O(|V|) parameters (one vector per node)
° Only considers direct, local connections
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Multi-hop Similarity

Extend the Adiacency matrix to consider k-hop node neighbors and train embeddings to
predict k-hop neighbors.

Red: Target node
[: — E ||Z;J|_ZU _ Aﬁ,v H2 Blue: 2-hop neighbors (A?)
(u,v)eV XV

In practice log-transformed, probabilistic adjacency matrix

- A, ;/d; :
Af’j:max log( (Aij/ ))k> —a, 0

ZZEV(?/ZJ d; \

node degree constant shift

Cao et al. 2015. GraRep: Learning Graph Representations with Global Structural Information. CIKIM.
Ou et al. 2016. Asymmetric Transitivity Preserving Graph Embedding. KDD.
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https://dl.acm.org/citation.cfm?id=2806512
https://dl.acm.org/citation.cfm?id=2806512

Multi-hop Similarity

Extend the Adiacency matrix to consider k-hop node neighbors and train embeddings to
predict k-hop neighbors.

Red: Target node
[: — E ||Z;J|_ZU _ Aﬁ,v H2 Blue: 2-hop neighbors (A?)
(u,v)eV XV

In practice log-transformed, probabilistic adjacency matrix

- A, ;/d; :
Af’j:max log( (Aij/ ))k> —a, 0

ZZEV(?/ZJ d; \

node degree constant shift

Concatenate the output of different hop lengths.

“\ POLITECNICO MILANO 1863




Multi-hop Similarity

An alternative option is to measure the overlap between node neighborhoods, e.g., via
Jaccard similarity or Adamic-Adar score

L= )  lzezo—Sual’

(u,v)eV XV

Where §,, ,, is the neighborhood overlap between u and v (HOPE (Yan et al., 2016).)

Usual drawbacks are still there:
* Expensive: Generally O(|V]?), since we need to iterate over all pairs of nodes.
° Brittle: Must hand-design deterministic node similarity measures.
° Massive parameter space: O(|V|) parameters
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http://www.kdd.org/kdd2016/papers/files/rfp0184-ouA.pdf

Random Walk Approaches

Interpret the dot product in feature space as the probability u and v co-occur on a
random walk over the network

1. Estimate probability of visiting node
v on a random walk starting from
node u using random walk strategy R.

7. Optimize embeddings to encode
these random walk statistics

Perozzi et al. 2014. DeepWalk: Online Learning of Social Representations. KDD.
Grover et al. 2016. node2vec: Scalable Feature Learning for Networks. KDD.
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https://arxiv.org/pdf/1403.6652.pdf
https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf

Random Walk Approaches

Interpret the dot product in feature space as the probability u and v co-occur on a
random walk over the network

1. Estimate probability of visiting node
v on a random walk starting from
node u using random walk strategy R.

2. Optimize embeddings to encode Ny
these random walk statistics PR(”U"U,)

Introduces sone advantages in terms of:
° Expressivity: Flexible stochastic definition of node similarity that incorporates both local
and higher-order neighborhood information.

* Efficiency: Does not need to consider all node pairs when training; only need to consider
pairs that co-occur on random walks.
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Random Walk Optimization

Optimize embeddings to maximize likelihood of random walk co-occurrences estimating
the probability of a node v to be visited starting from node u

exp(zzzv)
ZnEV eXp(Z’IZ’n)

1. Run short random walks from each node on the graph using some strategy R

2. For each node u collect Ng(u), the multiset* of nodes visited on random walks
starting from u

3. Optimize embeddings to according to:

L= > —log(P(v|z,))

ueV UENR(U)

P(v|zy) =

77 POLITECNICO MILANO 1863




Random Walk Optimization

Optimize embeddings to maximize likelihood of random walk co-occurrences
CXPl\Z,, Z,
I S e
ueV veNRg(u) \—~neV w

\ \

sum over all sum over nodes v  predicted probability of

/ I ) \

nodes u seen on random u and v co-occuring on
walks starting from random walk
U
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Random Walk Optimization

Optimize embeddings to maximize likelihood of random walk co-occurrences

:Z Z — log

ueV veENR(u)

L Y,

Nested sum over nodes gives
O(|V]?) complexity!!
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Random Walk Optimization

Optimize embeddings to maximize likelihood of random walk co-occurrences

=2 2

uceV veENR(u)

We use Negative Sampling, i.e., just normalize against k random “negative” examples

Random distribution over all nodes
-
exp(z, Zy) N\

1 ~ T .y
Og(znevexmzn)) log(0(2, 7)) Zlog( (2] 20.)), ni ~ Py
.Q

Sample negative Higher k gives more robust
nodes proportional Sigmoid function estimates as it corresponds to

to degree of nodes higher prior on negative events
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node2vect

You can just run fixed-length, unbiased random walks starting from each node (i.e.,
DeepWalk from Perozzi et al., 2013), but biased random walks can trade off local and
global views of the network (i.e., node2vect Grover and Leskovec, 2016).

° Return parameter p: return back to the previous node
° In-out parameter g: moving outwards (DFS) vs. inwards (BFS)

Ngrs(u) = { 51,52, 83}
Local microscopic view

Nprs(u) = {54, s, S6}
Global macroscopic view

“E’E‘%’J} POLITECNICO MILANO 1863



Biased Random Walk

Biased 2"d order random walks explore network neighborhoods:
* Assume the random walk started at u and is now at w
* Neighbors of w can only be (remember where you came from)

same distance to u

/

farther than u

Walker is at W. Where to go next?
° p ... return parameter
° q ... ‘walk away” parameter
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Biased Random Walk

Biased 2"d order random walks explore network neighborhoods:
* Assume the random walk started at u and is now at w
* Neighbors of w can only be (remember where you came from)

Walker is at W. Where to go next?
* BFS-like walk: Low value of p
* DFS-like walk: Low value of g

: POLITECNICO MILANO 1863




Example: Interaction of characters in a novel

p=1, =2 p=1, g=0.5
Microscopic view of the Macroscopic view of the
network neighbourhood network neighbourhood
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From «Shallow» to «Deep» Encodings

Shallow encoding, i.e., ENC(v) = Zv has some drawbacks:

°* O(|V|) parameters are needed, i.e., there is no parameter sharing and every
node has its own unigue embedding vector of size d

° Inherently “transductive”, i.e., it is impossible to generate embeddings for nodes
that were not seen during training

° Does not incorporate node features, i.e., graphs may have features that we can
and should leverage upon

" POLITECNICO MILANO 1863
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Taxonomy of Graph Learning

[1] M. Niepert, M. Ahmed, and K. Kutzkov. "Learning convolutional neural networks for graphs." International Conference on Machine Learning. 2016.
[2] Duvenaud, David K., et al. "Convolutional networks on graphs for learning molecular fingerprints." Advances in neural information processing systems. 2015.
[3] Atwood, James, and Don Towsley. "Diffusion-convolutional neural networks." Advances in Neural Information Processing Systems. 2016.
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Graph Basics

Assume we have a graph G:

° Vs the vertex set
° Ais the adjacency matrix (assumed binary)
* X € R™*IVl is a matrix of node features X, having |X,| = m

Node features could be of different type
° Categorical attributes, text, image data, etc.
° Vertexex encoded by indicator vectors (i.e., one-hot encoding of each node)
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Neighborhood Aggregation

Generate node embeddings based on local neighborhoods.
Nodes aggregate information from their neighbors using neural networks
Every node defines a (unique) computation graph

Target Node
~

Hamilton et al. 2017. Representation Learning on Graphs: Methods and Applications. IEEE Data Engineering Bulletin on Graph Systems.
Scarselli et al. 2005. The Graph Neural Network Model. IEEE Transactions on Neural Networks.
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https://arxiv.org/abs/1709.05584
http://ieeexplore.ieee.org/document/4700287/

Neighborhood Aggregation

Generate node embeddings based on local neighborhoods.
Nodes aggregate information from their neighbors using neural networks
Every node defines a (unique) computation graph

Target Node

Hamilton et al. 2017. Representation Learning on Graphs: Methods and Applications. IEEE Data Engineering Bulletin on Graph Systems.
Scarselli et al. 2005. The Graph Neural Network Model. IEEE Transactions on Neural Networks.
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https://arxiv.org/abs/1709.05584
http://ieeexplore.ieee.org/document/4700287/

Neighborhood Aggregation

Generate node embeddings based on local neighborhoods.
Nodes aggregate information from their neighbors using neural networks
Every node defines a (unique) computation graph

Target Node
~

Hamilton et al. 2017. Representation Learning on Graphs: Methods and Applications. IEEE Data Engineering Bulletin on Graph Systems.
Scarselli et al. 2005. The Graph Neural Network Model. IEEE Transactions on Neural Networks.
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Neighborhood Aggregation

Generate node embeddings based on local neighborhoods.
Nodes aggregate information from their neighbors using neural networks
Every node defines a (unique) computation graph

Hamilton et al. 2017. Representation Learning on Graphs: Methods and Applications. IEEE Data Engineering Bulletin on Graph Systems.
Scarselli et al. 2005. The Graph Neural Network Model. IEEE Transactions on Neural Networks.
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https://arxiv.org/abs/1709.05584
http://ieeexplore.ieee.org/document/4700287/

Neighborhood Aggregation

Generate node embeddings based on local neighborhoods.
Nodes aggregate information from their neighbors using neural networks

Every node defines a (unique) computation graph Every node defines a
unique computation

Hamilton et al. 2017. Representation Learning on Graphs: Methods and Applications. IEEE Data Engineering Bulletin on Graph Systems.
Scarselli et al. 2005. The Graph Neural Network Model. IEEE Transactions on Neural Networks.
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https://arxiv.org/abs/1709.05584
http://ieeexplore.ieee.org/document/4700287/

Neighborhood Aggregation

Nodes have embeddings at each layer, and the model can be arbitrary depth.
Embedding of node v at “layer-0" is its input feature X,

Target Node

~

Hamilton et al. 2017. Representation Learning on Graphs: Methods and Applications. IEEE Data Engineering Bulletin on Graph Systems.
Scarselli et al. 2005. The Graph Neural Network Model. IEEE Transactions on Neural Networks.
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https://arxiv.org/abs/1709.05584
http://ieeexplore.ieee.org/document/4700287/

Neighborhood Aggregation

Nodes have embeddings at each layer, and the model can be arbitrary depth.
Embedding of node v at “layer-0" is its input feature X,

Target Node

~

Hamilton et al. 2017. Representation Learning on Graphs: Methods and Applications. IEEE Data Engineering Bulletin on Graph Systems.
Scarselli et al. 2005. The Graph Neural Network Model. IEEE Transactions on Neural Networks.
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https://arxiv.org/abs/1709.05584
http://ieeexplore.ieee.org/document/4700287/

Neighborhood «Convolutions»

Neighborhood aggregation can be viewed as a center-surround filter; mathematically
related to spectral graph convolutions (see Bronstein et al., 2017).

o Ty
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https://arxiv.org/abs/1611.08097

Neighborhood Aggregation

Key distinctions among algorithms are in the way they aggregate information, e.g.,
° Average information from neighbors messages
° Apply a non linear transformataion

Target Node What’s inside
™ this?
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Neighborhood Aggregation

Key distinctions among algorithms are in the way they aggregate information, e.g.,
° Average information from neighbors messages
° Apply a non linear transformataion

Initial “layer 0" embeddings
~— equal to node features Previous layer

/embedding of v

+Byhi ™' |, VE>0

h = | W,

(Y

T

k-th layer
embedding of v Non-linearity
(e.g., ReLU or tanh)

Average of neighbor’s previous
layer embeddings
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Neighborhood Aggregation

Key distinctions among algorithms are in the way they aggregate information, e.g.,
° Average information from neighbors messages
° Apply a non linear transformataion
° Train the embedding to minimize a loss function

Trainable matrices
v Xov (| e., what we learn)

hkl\
; . Z .h"“ L) Ve {l,.., K)

uEN(v)

=y
o
|

=n
>
| |

Embedding obtained
after K layers

' POLITECNICO MILANO 1863




Neighborhood Aggregation

Key distinctions among algorithms are in the way they aggregate information, e.g.,
° Average information from neighbors messages
° Apply a non linear transformataion
° Train the embedding to minimize a loss function

Need to define a
loss function on the

embedding

Target Node
~

OLITECNICO MILANO 1863



Training the Model

Features are not

optimized for a

ific task
Train in an unsupervised manner using only the graph structurg spECic T

loss function, e.g., based on:
* Random walks (node2vec, DeepWalk)
° Graph factorization (i.e., “similar” nodes have similar embeddings)

Directly train the model for a supervised task (e.g., node classification):

e +_ls this a human or a bot? ‘a
(in a social network) ‘

N %

; POLITECNICO MILANO 1863



Training the Model

Directly train the model for a supervised task (e.g., node classification):

Classification
£= Y Wlosto @H) +

weights
v
’< Output node
Node class embedding

log (1— 0(..)
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Training and Generalization

* Define a neighborhood aggregation function

hk—l
hﬁ =0 | Wy Z - + Bkhﬁ_l , Vk € {1, ,K}
worw) V)]
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Training and Generalization

° Define a neighborhood aggregation function
* Define a loss function on the embedding

L= yylog(o(z,0))+ (1 —y,)log(l —o(z, 0))

veV

POLITECNICO MILANO 1863



Training and Generalization

Define a neighborhood aggregation function
Define a loss function on the embedding
Train on a set of computing graphs in a batch
Generate embedding for nodes as needed

Leartign; POLITECNICO MILANO 1863



Inductive Capacity of Neighbours Aggregation

The same aggregation parameters are shared for all nodes; the number of model
parameters is sublinear in |V| and we can generalize to unseen nodes!

k hy k—1
hf = (W, > -Bh

v

71} POLITECNICO MILANO 1863



Inductive Capacity of Neighbours Aggregation

The same aggregation parameters are shared for all nodes; the number of model
parameters is sublinear in |V| and we can generalize to unseen nodes!
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Inductive Capacity

The inductive capacity allows to:
° Train on one graph and generalize to a new one

Train on protein interaction graph
from organism A and generate
embeddings on data about B
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Inductive Capacity

The inductive capacity allows to:
° Train on one graph and generalize to a new one
* Generate embeddings «on the fly»

New data appears all the days, e.g.,
Reddit, YouTube, GoogleScholar, ....
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GraphSAGE

We can go beyond simple weighted average Any differentiable function that maps
/ set of vectors to a Slngle vector.

hy = o ([A, - REG(RETE VU E N()}), Biby ™))
'\ N

Tareet Node Concatenate self embedding
RN What’s inside and neighbor embedding

this?

Material from: Hamilton et al., 2017. Inductive Representation Learning on Large Graphs. NIPS.
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https://arxiv.org/abs/1706.02216

GraphSAGE What about

convolutions?

We can go beyond simple weighted average: ANy differentiable function that maps
/ set of vectors to a Slngle vector.

hi = o ([A - AGG({hG, Vu € N(u)}), Bih; ')
'\ N

k1 Concatenate self embedding
h and neighbor embedding

* Mean: AGG = Z
uEN(v)‘ (U)’

* Pool: transform neighbor vectors and apply symmetric vector function
AGG =[]({Qhy; ™", Vu € N(v)})

"~ Element-wise mean/max
° LSTM: apply LSTM to random permutation of neighbors.

AGG = LSTM ([hf~! vu € m(N(v)))])

OLITECNICO MILANO 1863




From 2D Convolutions to Graphs Convolutions

hgy h; ..
O*%:{g hi™ =0 (Wé”hg” WO oy Wg)hg))
@, CB\O h;

O\‘g“ h(l+1) — 5 h(Z)W[()l) 4 Z ih(Z)ng) N; : neighbor indices

O v ' = Cij J Cij: norm. constant
JEN (per edge)
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Graph Convolutional Networks

Graph Convolutional Networks (GCNSs) are a variation on neighborhood aggregation:

(Basic Neighborhood Aggregation

k—1
ko h;
\_ u€N (v) ‘ (U) ‘ IMlore parameter sharing.
Down-weights hight
Same matrix for self :
and neilgxhbor /GCN Neighborhood Aggregation degree neighbors.
; N
sbeddings hk_1 Per-neighbor
Z U " normalization
eV IN@IN @)
_/

Kipf et al., 2017. Semisupervised Classification with Graph Convolutional Networks. ICLR.
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https://arxiv.org/abs/1609.02907

Vectorized Implementation (Faster!)

4 N

HO =m0 )T O\‘ p
A=D:AD 8

gD — 4 (H(Z)W((Jl) +AH(;)W§Z)) / \b
N /
oo (h ) °g°

Azﬁ_%(A—FIN)ﬁ_% O

~ L]
D;; = Z(A“ —+ 5z'j) ® A is generally sparse, O/ %
J

obtained via fast sparse
multiplications!

o
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Graph Convolutional Networks Applications

Hidden layer

('

POLITECNICO MILANO 1863

\ 4

~

Hidden layer

Input:

Features matrix X € Rm IV

Preprocessed adiacency A

Z =HWY

Node Classification: softmax(z,)
/ (e.g., Kipf & Welling ICLR 2017)

™ Graph Classification: softmax(},, z,,)
\ (e.g., Duvenaud et al. NIPS 2015)

Link Prediction: p(Aij) = a(zisz)
(e.g., Kipf & Welling NIPS BDL 2016)




Exaple: Semi-supervised Learning

Let assume only few nodes are labeled and initialize the network weights randomly

| X \

| A

Evaluate loss on labeled nodes only

F
L=-> > YyInZy

leyr f=1
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Exaple: Semi-supervised Learning (Citation network)

Citation networks are a typical example of social networks:
° nodes are papers, edges are citation links
* bag-of-words features on nodes (optional)

Graph convolutional network to predict categories (2 layers)

7 = f(X, A) = softmax (A ReLU (AXW(O)) W<1>)

Classification results (accuracy) ORI =~
Method Citeseer Cora Pubmed NELL
ManiReg [3] 60.1 59.5 70.7 21.8
SemiEmb [24] 59.6 59.0 71.1 26.7
. LP [27] 45.3 68.0 63.0 26.5

no input features DeepWalk [18] 43.2 67.2 65.3 58.1
Planetoid* [25] 64.7 (26s)  75.7(13s) 77.2(25s) 61.9 (185s) _ .
GCN (this paper)  70.3 (7s) 81.5(4s) 79.0(38s) 66.0 (48s) (Figure from: Bronstein, Bruna, LeCun,

Szlam, Vandergheynst, 2016)
GCN (rand. splits) 67.9+0.5 80.1£05 789+£07 584+£1.7

Kipf & Welling, Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017
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Example: Recommendation System

Recommender systems are bipartite graphs:
* Content features: user and item features, in the form of images, categories etc.
° Network structure: user-item interactions, in the form of graph/network structure.

Jloaddadis hhhatihad
ERER K

Users

Ying et al. Graph Convolutional Neural Networks for Web-Scale Recommender Systems.

L
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Example: Recommendation System (Pinterest)

Pins are visual bookmarks users save from the internet to their boards.

Recommend related
pins to users ...

Pins

This is just a beautiful
image for thoughts.

n ~ J L & .»\ s ),
— - Yay or nay, your choice. T ;_h ’
Very ape blue Hans Wegner chair

structured coat 4 b Annie Teng

SUCCESSFUL
RECOMMENDATION

BAD RECOMMENDATION

Plantation

/\

Promoted by

Picked for you Room & Board
Street style

- D

mid century modern .. Man Style men + style |
MILI- Gavin Jones FIG+SALT
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Example: Recommendation System

Recommender systems are bipartite graphs:
° Content features: user and item features, in the form of images, categories etc.
° Network structure: user-item interactions, in the form of graph/network structure.

msccccgcccﬁqﬁ? 000000
T YEIT Y

* Graph is dynamic, i.e., need to apply to new nodes without model retraining

Proposed approach: Random Walk +Graph Convolution Networks (RW-GCN)

Ying et al. Graph Convolutional Neural Networks for Web-Scale Recommender Systems.
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Example: Recommendation System

After collecting billions of training pairs from user logs.
° Train so that pins that are consecutively clicked have similar embeddings

Z max (0, —|—z
(W/EI / / /

Set of training pairs  Positive/true  Negative  Margin
from user logs training pair ~ sample ‘

° Generate embeddings for all pins.

° Make recommendations using nearest neighbor search
In the embedding space (real-time).

Zy, @ Element-wise mean
or max + MLP

£1
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Example: Recommendation System

RW-GCN Tips and Tricks:
* Sub-sample neighborhoods for efficient GPU batching

Sampled neighborhood for
a node lists nodes with the
top-K PageRank scores
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Example: Recommendation System

RW-GCN Tips and Tricks:
* Sub-sample neighborhoods for efficient GPU batching
° Curriculum learning for negative samples

| i Leach = Too Cool Stamping
z'y TooCoolStamping.com "y

Source pin Positive Easy negative Hard negative
‘e

You know this from the distance

in the embedding space ...
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Example: Recommendation System

Rank true “next-clicked” pin against 10° other candidates

Performance comparison in MRR

<
18] OJ4
o
Annot. E O-'?’
. o
2 0,2
O
RW-GCN o
c 0,1
% 0 I —
RW-GCN Visual Annotation

How to Grow
Swiss Chard
el B - a ]
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Example: Polypharmacy Side Effects

Predict side effects of taking multiple drugs
° Rare, occur only in a subset of patients
° Not observed in clinical testing

No side effect

>
— No side effect
— (0 @)

Patient’s side effects

Medications ,
¥ 4
'K 4

Zitnik et al. 2018. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics & ISMB.
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https://arxiv.org/abs/1802.00543

Example: Polypharmacy Side Effects

Computationally screen/predict polypharmacy side effects
* Use molecular, pharmacological and patient population data
° Guide strategies for combination treatments in patients

Doxycycllne/Q\ Slmvastatln ODrug @ Gene H Feature vector
\ ry Gastrointestinal bleed effect O—O Drug target interaction

E I \ 2 Bradycardia effect ©@—O@ Physical protein binding

Mupirocin

Predict labeled edges Simvastatin
between drugs (c,7,,5) ’

meaning combination (c,s) rs
leads to side effect r, Ciprofloxacin/*
@e.
27
1

2
Doxycycline ‘ b Mupirocin
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Example: Polypharmacy Side Effects

Encoder deconder network: ©Drug © Gene B Feature vector
° Embedd|ng fOr nOdeS rpy Gastrointestinal bleed effect O—O Drug target interaction
I'2 Bradycardia effect ©@—O Physical protein binding

(k)

k
W @b
ol |
Doxycycllne/*\ Slmvastatm b}
Iy Gastrointestinal bleed effect

(k)
7 Wr. .\C‘I h(k+1)

(
h NE
Iy Bradycardia effect
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Example: Polypharmacy Side Effects

Encoder deconder network:
°* Embedding for nodes

° Predict edges (side effects)

wmne/*\

OLITECNICO MILANO 1863

Nastatm

ODrug © Gene E Feature vector
r1 Gastrointestinal bleed effect O—O Drug target interaction
2 Bradycardia effect O©—0O Physical protein binding
polypharmacy
side effects

p(.! I"1, .)

query

drt;g pair p(., ra, .)
R P(©.r. ®)

. P(©. 15 @)
s P N @, @)



A note on (sub-)graph embedding

So far we have focused on node level embedding ...

Duvenaud et al. 2016. Convolutional Networks on Graphs for Learning Molecular Fingerprints. ICML.
Lietal. 2016. Gated Graph Sequence Neural Networks. ICLR.
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https://arxiv.org/abs/1509.09292
https://arxiv.org/abs/1511.05493

A note on (sub-)graph embedding

So far we have focused on node level embedding ... what about sub-graphs?

° Sum (or average) node embeddings in the (sub)graph (Duvenaud et al., 2016)

Duvenaud et al. 2016. Convolutional Networks on Graphs for Learning Molecular Fingerprints. ICML.
Li et al. 2016. Gated Graph Sequence Neural Networks. ICLR.
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https://arxiv.org/abs/1509.09292
https://arxiv.org/abs/1511.05493

A note on (sub-)graph embedding

So far we have focused on node level embedding ... what about sub-graphs?

First steps toward graph in
graph neural networks ...

®
° Sum (or average) node embeddings in the (sub)graph (Duvenaud et al., 2016)
° Introduce a “virtual node” to represent the subgraph (Li et al. 2016)

Duvenaud et al. 2016. Convolutional Networks on Graphs for Learning Molecular Fingerprints. ICML.
Li et al. 2016. Gated Graph Sequence Neural Networks. ICLR.
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https://arxiv.org/abs/1509.09292
https://arxiv.org/abs/1511.05493

Gated Graph Neural Networks

Neighborhood aggregation combines messages from neighbors using neural networks

Target Node
~

Lietal., 2016. Gated Graph Sequence Neural Networks. ICLR.
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https://arxiv.org/abs/1511.05493

Gated Graph Neural Networks

Neighborhood aggregation combines messages from neighbors using neural networks

Challenges:
* Qverfitting from too many parameters

* Vanishing/exploding gradients @
during backpropagation. @

Aggregation via recurrent networks:

Aggregation function

m does not depend on k

Lietal., 2016. Gated Graph Sequence Neural Networks. ICLR.
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Dynamic Graphs

Many graphs evolve over time:
°* Recommender systems
° Financial transaction
* Graphs from videos
* Social networks
Applications:
° Predict/classify graph evolution (e.g., activity recognition)
°  Anomaly detection (e.g., fraud)
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