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Who we are:  INESC TEC

INESC P&D Brasil

 R&D non-profit research center 

and technology interface 

institution

 Joins researchers from several 

schools

– Porto University

– Porto Polytechnic Institute

– Minho University

– UTAD

 700 researchers, 350 PhDs

 Robotics and Autonomous 

Systems

– Aerial, land and marine robotics

– Reconfigurable systems

– Distributed perception

– Cooperative robotics

– Long term autonomy
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ROBOTICS groupExpertise areas

 Platform development

– Aerial, land and water robotics 

– Industrial and services robotics

 Operations with autonomous robots

 Smart sensors and systems

Research lines

 Reconfigurable systems

 Distributed perception

 Cooperative robotics

 Long term autonomy

 Rapid teaching

Application areas

 Surveillance, security and defence

 Environmental monitoring and 

mapping

 Risk analysis

 Search and rescue

 Process automation
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ISEP

 School of Engineering – Polytechnic of Porto

 Founded in 1852

 6500 students

 11 BSc and 11 MSc courses

 International acreditation and best practices

Electrical and computer engineering

Electrical engineering- power systems

Civil engineering

Geotechnical and environmental engineering

Informatics 

Computing and medical instrumentation

Instrumentation engineering and metrology

Mechanical engineering

Automotive engineering 

Systems engineering

Sustainable energies
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Autonomous Systems Lab

 Host MSc. Autonomous Systems 

Course (40 students)

 Support student integration in research 

activities

 Support undergraduate and MSc. 

Student laboratory work

 More than 1000 m2 of lab space

 Water  test tank  (10m x 6m x 5m)

 Full size Robocup MSL field

 Vision based groundtruth vision systems

 Land , aerial and marine robot platforms

5
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Why Marine Robotics

 Increase of economical and scientific interest in the sea

 Research in marine robotic systems

 Portugal interest on the sea economy and exploration of its 

natural resources 

6
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Coastal monitoring and surveillance

7

Autonomous bathymetry

 ROAZ ASV

 Bathymetry in the near shore zone

 Risk Assessment

 Precise navigation

 Underwater seabed characterization

Infrastructure inspection

 TriMARES hybrid ROV/AUV

 Visual inspection

 Sonar profiling

 Brazil contracts (Lageado)

Environmental monitoring

 MARES AUV

 Hovering capabilities

 Sewage outfall

 Water quality monitoring

 Plume tracking

Acoustic monitoring

 FAST Autonomous Sailboat

 SLOCUM Glider

 Acoustic recording and processing

 Long term 
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ICARUS – Air, sea and land search and rescue
FP7

24 partners,

10 countries,

17.5M€

VAMOS – Underwater mining exploitation
H2020 

17 partners, 

9 countries,

12.4M€

TURTLE – Robotic autonomous deep sea lander
QREN

4 partners

1.3M€

SUNNY- Unmanned Aerial Border patrol, 
FP7, 

18 partners

10 countries, 

13M€

UNEXMIN - Underwater exploration and mapping
H2020,

13 partners,

7 countries,

4.8 M€

MARES – Hovering modular AUVs
National funds, International contracts

1 M€



Marine robotics overview

9
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Marine and subsea robotics

10

• Most of the planet surface is covered with water

• The sea is the last unexplored frontier on earth

• Exploration of underwater resources

• Management of the aquatic environment requires detailed and

accurate information

• Physical limitations to the man (little depth and permanence times in 

the underwater environment)

• Economic motivation, performance / cost
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The sea relevance for Portugal

 Exclusive economic zone "immense“;

 Resources in Portuguese waters;

 Exploration, control and surveillance needs;
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The sea relevance for Portugal

 Portugal has 11th place in the constitutional area 

in the sea (but 18x territorial area);

 Corresponding to 110th place in territorial area;

12

Territory
Inland

waters

Territoria

l sea
ZEE

SAR

Areas

Continent 88.600 6.510 16.476 287.715
572.438

Madeira 833 825 10.823 442.316

Azores 2.331 6.083 23.660 926.149 5.220.302

Total 91.763 13.419 50.960 1.656.181 5.792.740

[in "Portugal, a maritime nation" Portuguese Navy]
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The sea relevance for Portugal

 11% GDP;

 12% Employment;

13

Resources

 Fisheries;

 Minerals on the seabed (metallic nodules);

 Huge biodiversity (eg near hydrothermal vents);

 Tourism and nautical activities;

 Port activity and maritime traffic.
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Underwater environment

 Diverse means, from river basins to 

abyssal plains in the ocean

 High pressure (10m water correspond to 

1 atmosphere)

 No radio communications 

 Environment often little known;

 Adverse environmental conditions 

(currents, waves, meteorological);

 Vast areas to explore or observe in 

geographically dispersed and difficult to 

access points.

14
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Portuguese Sea

 Atlantic Ocean;

 Great extent with difficult or costly access areas

 Continental shelf along the continent  with depth up to 

150 m

 Climate range and general weather conditions (from 

Algarve coast to extremes in the center of the Atlantic);

 Abyssal depths and large bathymetric slope areas 

(eg Azores).

15



16

Environment
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Surface

 Watersheds

– low waves;

– Wind relevant for surface robots

– Variable current   (from no current in reservoirs to water 

courses with strong current).

 Coastal zone

– Tides;

– Surf

– Structures, fishing nets etc.

 High seas

– Less easy to access

– weather conditions sometimes very adverse (tides, wind);

– large distances and high operation cost.

17
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Underwater

18

 Pressure;

 Wave effect decreases exponentially with depth;

 Different conditions depending on water environment or 

ocean (salinity, current);

 Reduced visibility (normally);

 Acoustic propagation dependent on temperature and 

salinity variations;

 Existence of sometimes sharp boundaries between the 

water masses with different characteristics (isoclines, 

isohalines)

 At high water depths there is compression of the water !!!
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Special Environments

 Nuclear reactors

– Radiation

– Difficult human  access 

– High temperature

 Tanks and reservoirs

– Pollution severe restrictions (eg. water supply)

– May contain contaminated water

 Plumbing and pipes

– High currents;

– Pressure;

– Flammability constraints (eg sewage);

– Great flow variability.

19
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Ocean profile

20
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Sea State

21

 Sea condition classification;

 Also commonly used a scale for the wind (Beaufort 

Scale);

Sea state Wave height Sea Type

0 0 Calm (glassy)

1 0 – 0.1 Calm (rippled)

2 0.1 – 0.5 Smooth

3 0.5 – 1.25 Slight

4 1.25 – 2.5 Moderate

5 2.5 – 4 Rough

6 4 – 6 Very rough

7 6 – 9 High

8 9 – 14 Very high

9 Over 14 Phenomenal
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Ocean profile

22
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Abyssal plain

 Vast areas on the seabed, high depth (between 4000 and 

6000 m);

 No light;

 low temperature;

 Low bio-diversity;

 With mining and petroleum resources;

 Underexplored.

23
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Hydrothermal sources

24

 In areas of active volcanism (along the fault lines or boundaries of 

tectonic plates)

 Very different environment

– High temperature;

– Presence of toxic chemicals;

– Extremophile organisms.

Ex: Banco D. João de Castro Azores
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Continental shelf

 Underwater extension of the continental shelf;

 From shallow depth to  about 150 m;

 Relatively flat area with steep slopes on the 

outskirts to the abyssal plain;

 Higher economic interest area of the sea.

25
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Coastal zone

26

 Low depth (up to a few tens of meters);

 Wave swell effect;

 Intertidal area (between tides and up to 5, 6 meters) of difficult 

operation;

 Economic and social importance;

 Strong human intervention (structures, navigation, fisheries, 

maritime traffic).
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Rivers and estuaries

27

 Shallowness;

 Variable current (short streams with high currents, 

estuarine areas with reduced current and 

dominated by the tide);

 Reduced visibility (sediment at the bottom);

 Irregular topography;

 Limited areas;
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Reservoirs

 Little current (except for unloading areas);

 Depths up to 150 m;

 Limited extent;

 Structures of interest (dam, bridges, water 

harvesting etc.);

 Debris in the bottom;

28



Marine Robotics Applications

29



Alfredo MartinsUnmanned Autonomous Vehicles in Air, Land and Sea |  Polit. Milano 2016

Oil extraction

30

 With offshore wells from 50 m (North Sea) to a depth of 2400 m;

 Positioning drilling structures, manifolds, pipelines and the sea 

bottom;

 Risers and anchor cables inspection;

 Survey prospecting;

– geological characterization;

– Bottom Morphology;

– Evaluation of pre-salt deposits.

 ROVs (usually large) operated from specialized support vessels;

 Local acoustic positioning systems;

 Visual inspection by the operator - specialized drivers;

Current methods



Alfredo MartinsUnmanned Autonomous Vehicles in Air, Land and Sea |  Polit. Milano 2016

Mining in the deep ocean
 Still in early stage of commercial exploitation;

 metallic nodules collection on the seabed and the 

surface layer of sediment;

 Great depths (abyssal plain and along the volcanic 

areas);

 geological background characterization;

 ore identification and detection;

 Extraction and processing.

31

 Surveys previous geological by traditional means;

 oceanographic ship with;

 Dedicated sensors as magnetometers;

 Inspection with ROV;

 heavy machinery at the bottom;

 Aspiration of sediment and processing on the surface;

 Strong environmental impact;

 High energy consumption.

Current methods

220t Rock Trencher (SMD)
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Mining

 Need for environmental preservation;

 Water column;

 Biodiversity in place;

 Drilling for economic viability identification;

 Mineral extraction methods;

 New frontiers for mining.

32

Mineral deposits [in www.nautilusminerals.com]

Nautilus mining machines [smd.co.uk]
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Submarine cable instalation

 Large tracts (thousand km);

 Deposited on the bottom, buried or fixed;

 Depths variable (from the continental shelf to the 

abyssal plains and submarine canyons).

33

Support Ship [Global Marine Systems]

“Arado” submarine [in: smd.co.uk]

 Specialized ships;

 Digging deep vehicles (crawlers, trenchers);

 High depth Workclass ROVs.

Current methods
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Port Security

 Low depths (less than 20 m);

 Intrusion detection;

 Contraband detection;

 Detection of mines and explosive devices;

 Identification, verification and monitoring of maritime traffic;

 Acoustic monitoring 

34

Current methods

 Surface patrol with conventional means;

 Air Patrol in particular cases;

 Underwater inspection with divers / inspection ROV only when 

available.
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Port structure inspection

35
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Port structures inspection

 Structures;
– Pier (walls and / or slabs);

– Support pillars;

– Sheet pile curtains;

– Tetrapods and breakwater structures abroad;

 Corrosion in structures, structural failures;

 Growth and establishment of marine life;

 Visual inspection;

 Poor visibility;

 Positioning requirements;

 Divers;

 ROV inspection.

36

APDL photos
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Ship hull Inspection

 Periodic inspections;

 Hull, rudders and propellers;

 Evaluation of growth and marine growth;

 Corrosion;

 High costs in case of dry dock;

 Variability in the hulls and areas concerned;

 Format, size, time window available etc.;

 Cleaning and maintenance.

37

 Divers;

 ROV inspection;

 Drydock.

Current methods
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Bridges and dams

 Silting evaluation;

 Structural state of the pillars;

 Dam walls;

 Water catchments;

 High currents;

 Debris assessment at the bottom or near structures.

38

 ROV inspection;

 Divers;

 When possible evaluation during periods of reduced flow or low water level.

Current methods
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Bathymetry

 Large scale;

– Big ocean areas;

 Sediment Rating amounts

– Dredging verification;

– Morphological models of coastal zone;

– Silting of rivers, bars, estuaries and harbors.

 Temporal and spatial characterization;

 Recurring update needs;

 High positioning accuracy for specific applications.

39

 Small boats and hydrographic ships;

 Acoustic means: single beam sonar and multi-beam;

 Side scan sonar complementarity;

 Subottom profilers to evaluate sediment.

Current methods
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Oceanographic data collection

 Water flow Characterization

– CTD, salinity, pressure, temperature;

– Dissolved oxygen;

– Ph;

– Turbidity;

– Chemical elements.

 Sea currents

 Study of marine geology
– Seismology;

– Volcanism and hydrothermal vents;

– geological environment characterization.

 Temporal and spatial characterization;

 Vast areas of the ocean;

 Long periods of time.

40
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Marine biology studies
 Tracking cetaceans and marine animals;

 Long-term studies;

 High areas of study;

 Identification of species;

 Ecosystem characterization;

 Great variability of the environment (from the sea surface to the 

abyssal depths);

 Variability in life study (from single-celled organisms, plankton to 

large cetaceans).

41

 Tags ID for large animals;

– GPS;

– Iridium, ARGOS.

 Water samplers;

 Diverse means (oceanographic ships, small boats, ships opportunity)

 Study campaigns;

 Characterization and acoustic tracking.

Current methods
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Search and Rescue
 Large areas

 adverse weather conditions

 Most of the deaths occurs in the sea near the coast in 

the surf zone

 Need for very short response times

42

 Aerial operations with human detection;

 Lifesavers and light means (boards, buoys, jetski);

 Naval means  (boats, ships) to search;

 Ferries and lifejackets for closed  seas;

 Operating difficulties at night.

Current methods
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Marine pollution management
 Oil spills

 Effluent plume effects (along the coast)

 Circumscription, and location

 Containment, cleaning and collection

 Characterization of long term effects of pollutants (eg effluent)

43

 Ships and boats manned

 Little use of robots in oil spills

 AUV in the characterization of feathers (effluent).

Current methods



Marine robotic systems

44
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Marine Robotics

 Large covered areas by automatic devices;

 Cost / performance;

 Reduce security risks;

 Robots can operate in environments where human presence 

is virtually impossible (eg abyssal plains or nuclear reactors).

45
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Systems

 ASV Autonomous surface  vehicles;

 ROV (Remotely Operated Vehicles);

 AUV (Autonomous Underwater Vehicles);

 Towfish

 Fixed systems (measuring stations, oceanographic 

buoys, acoustic navigation nets, etc.)

46
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Operation Systems Support

 Research vessels and / or 

support;

 Oil rigs;

 Support means on fixed 

structures;

 Boats or small boats.

47
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Trailing vehicles (towfish)

 Vehicles dragged by boats;

 They have little or no control board;

 They are "boxes" transmission dedicated sensors;

 May or may not have electrical connection to the boat propeller;

 Different types of sensors (sonar side scan, magnetometers 

etc.).

48



Alfredo MartinsUnmanned Autonomous Vehicles in Air, Land and Sea |  Polit. Milano 2016

Fixed Systems
 Wide range of systems (from simple sensors to 

dock stations for AUV)

 Fixed at the bottom, next to structures or buoys 

Common solution for measuring oceanographic 

data;

 With radio communication or local data storage

 Fixed or mobile positioning (Drifters).

49
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Autonomous marine vehicles

UnderwaterSurface



Autonomous surface robots

51
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Surface robots
 Military applications

– Surveilance

– Patrol

– Intervention

 Civilian applications

– Science data gathering

– Monitoring

– Bathymetry

– Long term permanence

– Monitoring
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Surface robots
 Propulsion

– Propeller;

– Hydrojet (propeller);

– Flippers (very inefficient);

– Engines combustion or electric.

 Direction

– Control Surface (rudder);

– Differential Propulsion;

– Vectorized thrust.

 Usual traditional boats settings (monohull or catamaran);

 Special cases (SWATH, hovercraft).

53
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ROAZ
 LSA-ISEP (INESC TEC);

 Catamaran (4.2 m);

 Electric propulsion (autonomy 10 hr);

 Research platform marine robotics 

and validation of applications;

 Operation at sea, high operability, 

multi-use;

 Accuracy RTK GPS, IMU;

 Visible and infrared light cameras;

 Sidescan sonar, multibeam, 

subbottom profiler;

 CTD;

 3D laser scanner;

 CPU board and autonomous 

operation;

 Image processing on board;

 Bathymetry, coastal modeling, 

security, search and rescue ...

54
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Delfim, Delfimx
 ISR-IST

 Catamaran, aluminum hull

 Relay communications for AUVs

 acoustic communications vertically with AUVs

 electric propulsion

 MOOS

 Missions cooperative control and path following (EU FP7 Grex, Co3auv)

55

[1] A. Aguiar, J. Almeida, M. Bayat, B. Cardeira, R. Cunha, A. Hausler, P. Maurya, A. Oliveira, A. Pascoal, A. Pereira, M. Rufino, L. 

Sebastiao, C. Silvestre, and F. Vanni, “Cooperative Autonomous Marine Vehicle motion control in the scope of the EU GREX Project: 

Theory and Practice,” in OCEANS 2009-EUROPE, 2009, pp. 1–10.
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Sesamo / Charlie
 CNR-ISSI Genova (Italy)

 Study of the water interface layer / air boundary

 small catamarans (2.4 x 1.7 m 300kg Charlie)

 electric propulsion, steering rudders

56

[1] M. Caccia, “Autonomous Surface Craft: prototypes and basic research issues,” in 2006 14th Mediterranean 

Conference on Control and Automation, 2006, pp. 1–6.

[2] M. Caccia, R. Bono, G. Bruzzone, E. Spirandelli, G. Veruggio, A. M. Stortini, and G. Capodaglio, “Sampling sea 

surfaces with SESAMO,” IEEE Robotics & Automation Magazine, vol. 12, no. 3, pp. 95–105, Sep. 2005.
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SCOUT
 Adapted canoe

 Electric propulsion

 MOOS

 Developed at MIT

 Low cost R & D platform

 Monitoring and multi-vehicle cooperation

57

[1] J. Curcio, J. Leonard, and A. Patrikalakis, “SCOUT — A Low Cost Autonomous Surface Platform for Research 

in Cooperative Autonomy,” in Proceedings of OCEANS 2005 MTS/IEEE, 2005, pp. 1–5
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Ribcraft USV
 VaCAS - Vtech (Virginia Polytechnic and State University)

 Semi-rigid 4.8m

 50 HP, 20 knots

 Ibeo laser scanner (line) mounted on pan and tilt

 DGPS

58

[1]C. Sonnenburg, A. Gadre, D. Horner, S. Kragelund, A. Marcus, D. J. Stilwell, and C. A. Woolsey, “Control-Oriented Planar 

Motion Modeling of Unmanned Surface Vehicles,” in OCEANS 2010 MTS/IEEE SEATTLE, 2010, pp. 1–10.
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AutoCat
 MIT Sea Grant

 Research Platform (since 1993, ARTEMIS, ACES, 2000 AutoCAT)

 Survey accuracy and communications relay for AUVs

 20 knots, electric propulsion

 Control software similar to the Odyssey AUV

 Freewave RF modem

 DGPS

 PC104 133MHz

59

[1] J. Manley, J. Curran, B. Lockyer, J. Morash, and C. Chryssostomidis, “Applying AUV lessons and technologies to 

autonomous surface craft development,” in MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings, 2001, 

vol. 1, pp. 545–549.
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CSIRO Aut. Syst. Lab - Autonomous Boat
 CSIRO - ICT Centre, Autonomous Systems Lab (Australia)

 Research platform for interaction with networks of distributed 

sensors (WSN)

 environmental monitoring

 Catamaran

 electric propulsion

 Photovoltaic panels

 PC board

 GPS

60

[Image: CSIRO ]
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WaveGlider
 Wave propulsion

 2 bodies

– Surface board

– Control surfaces at 6m 

depth

 Long term permanence at 

sea



Autonomous Underwater Vehicles

62
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ROVs
 Cable 

– Power 

– Communications

 Floating foam

 Multiple motors

 Low speed high maneuverability

 Manipulating arms

 Workclass, inspection

 Relevant tool in offshore exploration

 From 1Kg vehicles to multiple tons up to 

6000m

63
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Typical ROV

64
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JASON
• WHOI

• ROV line since 1990

• 6500m depth

• 3.6 ton, 3.4x2.4x2.2m  

(20mm diam tether)

• 1.5 nos

• 6 motors BLDC (120 Kgf

cada)

[ Imagens:www.whoi.edu ]
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ROV Deep sea operations
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Trenchers
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AUVs
 Autonomous submarines

 No cable

 In general without communications

 Multiple payloads

 Wet hull

– Water inside

– Electronics and batteries in watertight 

compartments

– Pressure proof sensors

– Ex: Bluefin 21

 Dry hull

– External hull pressure resistant

– Wet sections

– Ex: REMUS 100, MARES
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MARES AUV

 Applications

– Mapping

– Monitoring

– Inspection

 Modular

 Vertical control

 35Kg, 1.5m, max. depth 200m
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Trimares AUV

 CEB Lageado – Electric power dam in Brasil

 Application

– Basin and structures inspection

– Bottom basin mapping

 Trimares AUV Modular

– 75Kg,  3 knots, 10 hr

– LBL

– Optional ROV mode
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Deep ocean AUVs
 ABE (4000 m) , Nereus (11000m)

 Build at WHOI

 AUV or ROV

 Both lost at sea (Abe in March 2010 offshore Chile)

 NEREUS lost in 10 May 2014
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ABE – Autonomous Benthic Explorer

• WHOI

• More than 200 dives since 1996

• Lost at sea near Chille in March

2010

• LBL,DVL

• 4500m depth

• 5 thrusters

• 3x2x2.5m, 550kg

• 14-20 hr autonomy (20-40km)

• 5KWh de batteries (Li-Ion)

• Ascente and descent with

droppable weights – 1000m/hr

• Extensive set of sensors

[Image:WHOI ]

[1] D. R. Yoerger, A. M. Bradley, B. B. Walden, H. Singh, and R. Bachmayer, “Surveying a subsea lava flow using the Autonomous 

Benthic Explorer (ABE),” International Journal of Systems Science, vol. 29, no. 10, pp. 1031–1044, Oct. 1998.]
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NEREUS

 Hybrid ROV AUV

 Full ocean depth 

 Only AUV that reached the 

Marianas trench

 Ceramic spheres as flotation 

(cause of failure)
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Gliders
● Submarines that glide in the water – “fly”

● Variable buoyancy (oil reservoir and bladder)

● IO-IO motion

● Long term presence at sea

● Reduced speed
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