Knowledge Engineering

Lecture Notes on Natural Computation
— 2004-2005 —

Matteo Matteucci

matteuccielet.polimi.it

Department of Electronics and Information
Politecnico di Milano

1
Lecture Notes on Natural Computation — p.1/28

Genetic Algorithms

— Introduction —

Lecture Notes on Natural Computation — p.2/28

Terminology (From Biology)

Evolution is a long time scale process that changes a population of
organism by generating better offsprings trough reproduction

1
Lecture Notes on Natural Computation — p.3/28

Terminology (From Biology)

Evolution is a long time scale process that changes a population of
organism by generating better offsprings trough reproduction

® Chromosome: DNA-coded information characterizing an organism

1
Lecture Notes on Natural Computation — p.3/28

Terminology (From Biology)

Evolution is a long time scale process that changes a population of
organism by generating better offsprings trough reproduction

® Chromosome: DNA-coded information characterizing an organism
®* Gene: Elementary DNA block of information (e.g.,: eyes color)

1
Lecture Notes on Natural Computation — p.3/28

Terminology (From Biology)

Evolution is a long time scale process that changes a population of
organism by generating better offsprings trough reproduction

® Chromosome: DNA-coded information characterizing an organism
®* Gene: Elementary DNA block of information (e.g.,: eyes color)
* Allele: One of the possible values for a gene (e.g., brown, blue, ...)

1
Lecture Notes on Natural Computation — p.3/28

Terminology (From Biology)

Evolution is a long time scale process that changes a population of
organism by generating better offsprings trough reproduction
® Chromosome: DNA-coded information characterizing an organism
®* Gene: Elementary DNA block of information (e.g.,: eyes color)
* Allele: One of the possible values for a gene (e.g., brown, blue, ...)
® Trait: The physical characteristic encoded by a gene

1
Lecture Notes on Natural Computation — p.3/28

Terminology (From Biology)

Evolution is a long time scale process that changes a population of
organism by generating better offsprings trough reproduction
® Chromosome: DNA-coded information characterizing an organism
®* Gene: Elementary DNA block of information (e.g.,: eyes color)
* Allele: One of the possible values for a gene (e.g., brown, blue, ...)
® Trait: The physical characteristic encoded by a gene
®* Genome: A complete set of genetic material in an organism

1
Lecture Notes on Natural Computation — p.3/28

Terminology (From Biology)

Evolution is a long time scale process that changes a population of
organism by generating better offsprings trough reproduction

® Chromosome: DNA-coded information characterizing an organism
®* Gene: Elementary DNA block of information (e.g.,: eyes color)

* Allele: One of the possible values for a gene (e.g., brown, blue, ...)
® Trait: The physical characteristic encoded by a gene

®* Genome: A complete set of genetic material in an organism

® Genotype: A particular set of genes in the genome

1
Lecture Notes on Natural Computation — p.3/28

Terminology (From Biology)

Evolution is a long time scale process that changes a population of
organism by generating better offsprings trough reproduction

® Chromosome: DNA-coded information characterizing an organism
®* Gene: Elementary DNA block of information (e.g.,: eyes color)

* Allele: One of the possible values for a gene (e.g., brown, blue, ...)
® Trait: The physical characteristic encoded by a gene

®* Genome: A complete set of genetic material in an organism

® Genotype: A particular set of genes in the genome

®* Phenotype: The physical realization of a genotype (e.g., a person)

1
Lecture Notes on Natural Computation — p.3/28

Terminology (From Biology)

Evolution is a long time scale process that changes a population of
organism by generating better offsprings trough reproduction

® Chromosome: DNA-coded information characterizing an organism
®* Gene: Elementary DNA block of information (e.g.,: eyes color)

* Allele: One of the possible values for a gene (e.g., brown, blue, ...)
® Trait: The physical characteristic encoded by a gene

®* Genome: A complete set of genetic material in an organism

® Genotype: A particular set of genes in the genome

®* Phenotype: The physical realization of a genotype (e.g., a person)
® Fitness: A measure of success in life for an organism

1
Lecture Notes on Natural Computation — p.3/28

Terminology (From Biology)

Evolution is a long time scale process that changes a population of
organism by generating better offsprings trough reproduction

® Chromosome: DNA-coded information characterizing an organism
®* Gene: Elementary DNA block of information (e.g.,: eyes color)

* Allele: One of the possible values for a gene (e.g., brown, blue, ...)
® Trait: The physical characteristic encoded by a gene

®* Genome: A complete set of genetic material in an organism

® Genotype: A particular set of genes in the genome

®* Phenotype: The physical realization of a genotype (e.g., a person)
® Fitness: A measure of success in life for an organism

® Crossover: Chromosomes from the parents exchange genetic
materials to generate a new offspring

1
Lecture Notes on Natural Computation — p.3/28

Terminology (From Biology)

Evolution is a long time scale process that changes a population of
organism by generating better offsprings trough reproduction

® Chromosome: DNA-coded information characterizing an organism
®* Gene: Elementary DNA block of information (e.g.,: eyes color)

* Allele: One of the possible values for a gene (e.g., brown, blue, ...)
® Trait: The physical characteristic encoded by a gene

®* Genome: A complete set of genetic material in an organism

® Genotype: A particular set of genes in the genome

®* Phenotype: The physical realization of a genotype (e.g., a person)
® Fitness: A measure of success in life for an organism

® Crossover: Chromosomes from the parents exchange genetic
materials to generate a new offspring

® Mutation: Error occurring during DNA replication from parents

1
Lecture Notes on Natural Computation — p.3/28

From Biology to Genetic Algorithms

We can borrow some terms (and ideas) from biology ...

®* Chromosome: The coding of a possible solution for a given problem,
usually represented with an array of bits or characters

® Gene: A single bit or a set of bits coding part of the solution
® Allele: One of the elements used to code the genes
® Fitness: Evaluation of the actual solution

1
Lecture Notes on Natural Computation — p.4/28

From Biology to Genetic Algorithms

We can borrow some terms (and ideas) from biology ...

®* Chromosome: The coding of a possible solution for a given problem,
usually represented with an array of bits or characters

® Gene: A single bit or a set of bits coding part of the solution
® Allele: One of the elements used to code the genes
® Fitness: Evaluation of the actual solution

...to model a learning process as evolution:
® Crossover: Generate new solution by “mixing” two existing solutions
® Mutation: Random change in the solution

1
Lecture Notes on Natural Computation — p.4/28

Genetic Algorithms: A Powerful Idea from Nature

Genetic Algorithms are a part of evolutionary computing, and they are
inspired by Darwin’s theory of evolution:

Problems are solved by an evolutionary process that mimics natural
evolution in looking for a best (fittest) solution (survivor)

1
Lecture Notes on Natural Computation — p.5/28

Genetic Algorithms: A Powerful Idea from Nature

Genetic Algorithms are a part of evolutionary computing, and they are
inspired by Darwin’s theory of evolution:

Problems are solved by an evolutionary process that mimics natural
evolution in looking for a best (fittest) solution (survivor)

We can trace a brief history of evolutionary computation:

1. 1960: Ingo Rechenberg introduces the idea of evolutionary computing
In his work "Evolution strategies”

2. 1975: John Holland invents Genetic Algorithms and publish his book
"Adaption in Natural and Artificial Systems"

3. 1992: John Koza has uses genetic algorithm to evolve programs to
perform certain tasks. He called his method Genetic Programming

1
Lecture Notes on Natural Computation — p.5/28

Genetic Algorithm Applications

They have been used for many applications:
® Optimization (e.g., circuits layout, job shop scheduling, ...)
® Prediction (e.g., weather forecast, protein folding, ...)
* Classification (e.g., fraud detection, quality assessment, .. .)
®* Economy (e.g., bidding strategies, market evaluation, ...)
® Ecology (e.g., biological arm races, host-parasite coevolution, .. .)
® Automatic programming

1
Lecture Notes on Natural Computation — p.6/28

Genetic Algorithm Applications

They have been used for many applications:
® Optimization (e.g., circuits layout, job shop scheduling, ...)
® Prediction (e.g., weather forecast, protein folding, ...)
* Classification (e.g., fraud detection, quality assessment, .. .)
®* Economy (e.g., bidding strategies, market evaluation, ...)
® Ecology (e.g., biological arm races, host-parasite coevolution, .. .)
® Automatic programming
¢ B

In general they are best suited for
® Big search space, non unimodal, non smooth
® Noisy fitness function, usually not analytic

® We do not want to spend years looking for the global optimum, but we
just want a good sub-optimum in a reasonable time

1
Lecture Notes on Natural Computation — p.6/28

Outline of the Basic Genetic Algorithm

1. [Start] Generate random population of n chromosomes (suitable solutions)
2. [Fitness] Evaluate the fitness f(x) of each chromosome x in the population

3. [New population] Create a new population by repeating following steps until the new
population is complete

(a) [Selection] Select two parent chromosomes from a population according to their
fitness (the better fitness, the bigger chance to be selected)

(b) [Crossover] With a crossover probability cross over the parents to form new
offspring. If no crossover was performed, offspring is the exact copy of parents.

(C) [Mutation] With a mutation probability mutate new offspring at each locus

(d) [Accepting] Place new offspring in the new population
4. [Replace] Use new generated population for a further run of the algorithm
D. [Test] If the end condition is satisfied, return the best solution in current population

6. [Loop] Go to step 2

1
Lecture Notes on Natural Computation — p.7/28

Two Comments to the Basic Genetic Algorithm

There are many parameters and settings that can be implemented
differently in various problems:

®* How to create chromosomes and what type of encoding choose

®* How to select parents for crossover in the hope that the better parents
will produce better offspring

® How to define crossover and mutation, the two basic operators of GA

1
Lecture Notes on Natural Computation — p.8/28

Two Comments to the Basic Genetic Algorithm

There are many parameters and settings that can be implemented
differently in various problems:

®* How to create chromosomes and what type of encoding choose

®* How to select parents for crossover in the hope that the better parents
will produce better offspring

® How to define crossover and mutation, the two basic operators of GA

It seems there is some “black magic” behind genetic algorithms ... Why do
genetic algorithms work?

® |t can be partially explained by the Schema Theorem
®* They have been modeled using Monte Carlo Markov Chains

1
Lecture Notes on Natural Computation — p.8/28

Two Comments to the Basic Genetic Algorithm

There are many parameters and settings that can be implemented
differently in various problems:

®* How to create chromosomes and what type of encoding choose

®* How to select parents for crossover in the hope that the better parents
will produce better offspring

® How to define crossover and mutation, the two basic operators of GA

It seems there is some “black magic” behind genetic algorithms ... Why do
genetic algorithms work?

® |t can be partially explained by the Schema Theorem
®* They have been modeled using Monte Carlo Markov Chains

But first of all we’ll have a look to a simple example ...

1
Lecture Notes on Natural Computation — p.8/28

Example: Minimum of a Function

In this simple example we are looking for the extreme of a function defined
over a search space.

1. Search Space: An interval of the real line
2. Fitness Function: The value of the function we are “exploring”

Why should we use genetic algorithms for this?

1
Lecture Notes on Natural Computation — p.9/28

Example: Minimum of a Function

In this simple example we are looking for the extreme of a function defined
over a search space.

1. Search Space: An interval of the real line
2. Fitness Function: The value of the function we are “exploring”

Why should we use genetic algorithms for this?

j nhnﬁuﬁj'
oo OTWTTUYAL
AIITY Y TP TAIAL
v AV AR s o ARASAVIV Y
v WHU”\NW "N

Functions can get quite nasty ;)

1
Lecture Notes on Natural Computation — p.9/28

Minimization Example: Chromosome Encoding

The first step in developing a genetic algorithm is defining a solution
encoding:

® A chromosome should in some way contain information about solution
that it represents

®* The encoding depends mainly on the solved problem (e.g., integer or
real numbers, permutations, parsing trees, ...)

®* The most used way of encoding is a binary string; each bit in the
string can represent some characteristics of the solution

1
Lecture Notes on Natural Computation — p.10/28

Minimization Example: Chromosome Encoding

The first step in developing a genetic algorithm is defining a solution
encoding:

® A chromosome should in some way contain information about solution
that it represents

®* The encoding depends mainly on the solved problem (e.g., integer or
real numbers, permutations, parsing trees, ...)

®* The most used way of encoding is a binary string; each bit in the
string can represent some characteristics of the solution

Our chromosome then could look like this:

Cromosome 1 (1101111 {ofoj1j0jo0f112101111(0

Cromosome 2 111110111 11(0j0(0j0f211121110

Each chromosome is represented by the binary code of a real number

1
Lecture Notes on Natural Computation — p.10/28

Minimization Example: Crossover Operator

Crossover operates on selected genes from parent chromosomes and
creates new offspring, the simplest way how to do that is:

1. Choose randomly some crossover point in the chromosome

2. Copy everything before this point from the first parent and then copy
everything after the crossover point from the other parent

1
Lecture Notes on Natural Computation — p.11/28

Minimization Example: Crossover Operator

Crossover operates on selected genes from parent chromosomes and

creates new offspring, the simplest way how to do that is:

1. Choose randomly some crossover point in the chromosome

2. Copy everything before this point from the first parent and then copy
everything after the crossover point from the other parent

Crossover

Cromosome 1

Cromosome 2

Cromosome 1

Cromosome 2

Point
1

Parents

1

1

0

0

1

0

1

1

0

0

0

0

1

1

1

1

0

:: Offspring

0

0

0

0

1

1

1

1

0

Note: Crossover depends mainly on the encoding of chromosomes. Specific crossover made
for a specific problem can improve or reduce performance of the genetic algorithm

Lecture Notes on Natural Computation — p.11/28

Minimization Example: Mutation Operator

After a crossover is performed, mutation takes place:

® Switch a few randomly chosen bits from 1 to 0 or from 0 to 1

Mutation
Point

Parents

111

0

1

1

0

1

0

1

1

1

0

0

0

0

1

1

1

1

0

@ Offspring

0

1

0

0

1

1

0

1

1

0

Lecture Notes on Natural Computation — p.12/28

Minimization Example: Mutation Operator

After a crossover is performed, mutation takes place:
® Switch a few randomly chosen bits from 1 to 0 or from 0 to 1

Mutation Parents
Point

1{1(0fLf{1f{0f0f{1{0]0]1]1]0|21|2]0

1(1(1(0f1(1{1{0f{0]0]0]1]2)1|2]0

@ Offspring

1{1(0(0f1f{0f0f{1{0]0]1]1]0|21|2]0

T(1(1(O0f1f{1f{1f{Lf{0]0]0]1]2110]21]0

Few notes on mutation:

® Mutation is intended to prevent falling of all solutions in the population
Into a local optimum

® Also mutation depends on the encoding of chromosomes (e.g., when
we are encoding permutations, mutation could be performed as an

exchange of two genes)
|

1
Lecture Notes on Natural Computation — p.12/28

Minimization Example: Demo

Stolen from:
http://cs.felk.cvut.cz/ xobitko/ga/example_f.html

1
Lecture Notes on Natural Computation — p.13/28

http://cs.felk.cvut.cz/~xobitko/ga/example_f.html

Genetic Algorithms
— Into the groove —

ecture Notes on Natural Computation

-p.1

4/28

Genetic Algorithms Explained: Encoding (l)

Binary encoding is the most common one (mainly because the first

research of GA used this type of encoding)

® |In binary encoding, every chromosome is a string of bits (0 or 1)

® Simple Implementation of the genetic operators
® Not always natural for many problems

Cromosome 1

Cromosome 2

1

1

0

1

1

0

0

1

1

1

0

1

1

1

Lecture Notes on Natural Computation — p.15/28

Genetic Algorithms Explained: Encoding (l)

Binary encoding is the most common one (mainly because the first
research of GA used this type of encoding)

® In binary encoding, every chromosome is a string of bits (0 or 1)
® Simple Implementation of the genetic operators
® Not always natural for many problems

Cromosome 1 11110121200 121010(1(1j0121210

Cromosome 2 112121011 (1{1101010|0fL1121121210

Example of Problem: Knapsack problem

® There are things with given value and size. The knapsack has given

capacity. Select things to maximize the value of things in knapsack,
but do not extend knapsack capacity.

® Each bit says, whether the corresponding thing is in knapsack.

1
Lecture Notes on Natural Computation — p.15/28

Genetic Algorithms Explained: Encoding (1)

Permutation encoding can be used in ordering problems

®* Every chromosome is a string of numbers that represent a position in

a sequence

® Crossover and mutation must be designed to leave the chromosome
consistent (i.e. have real sequence In it)

Cromosome 1

Cromosome 2

15

13

10

11

16

12

14

14

11

15

13

12

16

10

Lecture Notes on Natural Computation — p.16/28

Genetic Algorithms Explained: Encoding (1)

Permutation encoding can be used in ordering problems

®* Every chromosome is a string of numbers that represent a position in
a sequence

® Crossover and mutation must be designed to leave the chromosome
consistent (i.e. have real sequence In it)

Cromosome 1 [L57|8|3|5ML3LOLULeL2I1[L42]4]|6(9

Cromosome 2 2944 1AYS5|8A5L36L2dLe|7 |3 1L0 4

Example of Problem: Traveling salesman problem (TSP)

® There are cities and given distances between them. Traveling
salesman has to visit all of them, but he does not want to travel more
than necessary. Find a sequence of cities with a minimal travelled
distance.

® Chromosome describes the order of cities
|

1
Lecture Notes on Natural Computation — p.16/28

Genetic Algorithms Explained: Encoding (I11)

Direct value encoding can be used in problems where some more
complicated values are required

®* Every chromosome is a sequence of some values connected to the
problem, such as (real) numbers, chars or any objects

® Good choice for some special problems, but necessary to develop
some specific crossover and mutation

Cromosome A B D H Y Vv S v

Cromosome 2.56781.4361]|3.3426]7.8761

Cromosome open walk back close

1
Lecture Notes on Natural Computation — p.17/28

Genetic Algorithms Explained: Encoding (I11)

Direct value encoding can be used in problems where some more
complicated values are required

®* Every chromosome is a sequence of some values connected to the
problem, such as (real) numbers, chars or any objects

® Good choice for some special problems, but necessary to develop
some specific crossover and mutation

Cromosome A B D H Y Vv S v

Cromosome 2.56781.4361]|3.3426]7.8761

Cromosome open walk back close

Example of Problem: Finding weights for a neural network

® A neural network is given with defined architecture. Find weights
between neurons to get the desired output from the network

® Real values in chromosomes represent weights in the neural network
|

Lecture Notes on Natural Computation — p.17/28

Genetic Algorithms Explained: Encoding (1V)

Tree encoding is used mainly for evolving programs or expressions (i.e.,
genetic programming)
®* Every chromosome is a tree of some objects, such as functions or
commands in programming language.

®* Programming language LISP is often used for this purpose, so
crossover and mutation can be done relatively easily.

Lecture Notes on Natural Computation — p.18/28

Genetic Algorithms Explained: Encoding (1V)

Tree encoding is used mainly for evolving programs or expressions (i.e.,
genetic programming)

®* Every chromosome is a tree of some objects, such as functions or
commands in programming language.

®* Programming language LISP is often used for this purpose, so
crossover and mutation can be done relatively easily.

Example of Problem: Finding a function that

T would approximate given pairs of values
(x) (/) * Input and output values are given. The
task is to find a function that will give the
(5) (¥) best outputs for all inputs.

® Chromosome are functions represented
Cromosome (+ X (/ 5 vy)) In a tree

1
Lecture Notes on Natural Computation — p.18/28

Genetic Algorithms Explained: Selection (1)

According to Darwin’s theory of evolution the best chromosome survive to
create new offspring. There are many methods in selecting the best
chromosomes:

®* Roulette wheel selection,
®* Rank selection

®* Tournament selection

® Boltzmann selection

1
Lecture Notes on Natural Computation — p.19/28

Genetic Algorithms Explained: Selection (1)

According to Darwin’s theory of evolution the best chromosome survive to
create new offspring. There are many methods in selecting the best
chromosomes:

®* Roulette wheel selection,
®* Rank selection

®* Tournament selection

® Boltzmann selection

Elitism
When creating a new population by crossover and mutation, we have a big chance, that we
will loose the best chromosome. Elitism is the name of the method that first copies the best
chromosome (or few best chromosomes) to the new population. It can rapidly increase the
performance, because it prevents a loss of the best found solution.

1
Lecture Notes on Natural Computation — p.19/28

Genetic Algorithms Explained: Selection (Il)

Roulette Wheel Selection: Parents are selected proportionally to their fitness.
The better they are, the more chances to be selected they have.

1. Imagine a roulette wheel where all the chromosomes in the

population are placed

2. The size of the section in the roulette wheel is proportional to the
value of the fitness function of every chromosome - the bigger the

value is, the larger the section is

3. A marble is thrown in the roulette wheel and the chromosome where it

stops is selected

E Chromosome 1
E Chromosome 2
O Chrarmosome 3
O Chromosome 4

Lecture Notes on Natural Computation — p.20/28

Genetic Algorithms Explained: Crossover/Mutation (1)

For binary encoding we have many operators:

® Single point crossover: one crossover point is selected, binary string

from the beginning of the chromosome to the crossover point is
copied from the first parent, the rest is copied from the other parent

® Two point crossover: two crossover points are selected, binary string

from the beginning of the chromosome to the first crossover point is
copied from the first parent, the part from the first to the second
crossover point is copied from the other parent and the rest is copied
from the first parent again

® Uniform crossover: bits are randomly copied from the first or from the
second parent

® Arithmetic crossover: some arithmetic operation is performed to make
a new offspring (e.g., logic AND)

®* Mutation: inversion of selected bits

1
Lecture Notes on Natural Computation — p.21/28

Genetic Algorithms Explained: Crossover/Mutation (Il)

For permutation encoding we have to preserve consistency:

® Single point crossover: one crossover point is selected, the

permutation is copied from the first parent till the crossover point, then
the other parent is scanned looking the other numbers

(123456789 +(453689721)=(123456897)
® QOrder changing mutation: two numbers are selected and exchanged

(123456897)=(183456297)

1
Lecture Notes on Natural Computation — p.22/28

Genetic Algorithms Explained: Crossover/Mutation (Il)

For permutation encoding we have to preserve consistency:

® Single point crossover: one crossover point is selected, the

permutation is copied from the first parent till the crossover point, then
the other parent is scanned looking the other numbers

(123456789 +(453689721)=(123456897)
® QOrder changing mutation: two numbers are selected and exchanged

(123456897)=(183456297)

For real value encoding we can reuse crossover from binary encoding:
® Mutation: a small number is added (or subtracted) to selected values

(1.29 5.68 2.86 4.11 5.55) = (1.29 5.68 2.73 4.22 5.55)

1
Lecture Notes on Natural Computation — p.22/28

Genetic Algorithms Explained: Crossover/Mutation (llI)

Specific operator have to be selected also for tree encoding

® Tree crossover: one crossover point is selected in both parents,
parents are divided in that point and the parts below crossover points
are exchanged to produce new offspring

Parent A Parent B Offspring

(1 (= 0
0w o () 0= ® (A
Y @ ® 2 ¥ @

® Changing mutation: the operator, number, or variable in a randomly
selected nodes is changed

Lecture Notes on Natural Computation — p.23/28

Time for Another Demo

Stolen again from:
http://cs.felk.cvut.cz/ xobitko/ga/tspexample.html

1
Lecture Notes on Natural Computation — p.24/28

http://cs.felk.cvut.cz/~xobitko/ga/tspexample.html

Tips & Tricks

These “rules of thumb” are often results of empiric studies performed on
binary encoding only, but they usually work fine ...

® Crossover rate should be high generally, about 80% — 95% (However
some results show that for some problems crossover rate about 60%
IS the best.)

® Mutation rate should be very low. Best rates seems to be about
0.5% — 1% per allele

® Very big population size usually does not improve performance (in the
sense of speed of finding solution). Good population size is about
20 — 30, however sometimes sizes 50 — 100 are reported as the best

® Basic roulette wheel selection can be used, but sometimes rank
selection can be better. Elitism should be used for sure if you do not
use other method for saving the best found solution.

1
Lecture Notes on Natural Computation — p.25/28

Understanding Genetic Algorithms: Building Blocks

Holland (1975) formalized the idea of building block and schema:

A string S will contain sub-strings. We can represent this as a ‘similarity
template string’ (i.e., the schema) H which uses a ‘wild card’ symbol to
mark positions not belonging to the sub-strings (they can take 1 or 0).

Example: schema **11 represents strings 1111, 0011, 1011 and 0111.
Alternatively, 1011 and 1101 contain common schemata 1***, ***1
and 1**1.

1
Lecture Notes on Natural Computation — p.26/28

Understanding Genetic Algorithms: Building Blocks

Holland (1975) formalized the idea of building block and schema:

A string S will contain sub-strings. We can represent this as a ‘similarity
template string’ (i.e., the schema) H which uses a ‘wild card’ symbol to
mark positions not belonging to the sub-strings (they can take 1 or 0).

Example: schema **11 represents strings 1111, 0011, 1011 and 0111.
Alternatively, 1011 and 1101 contain common schemata 1***, ***1
and 1**1.

Note: Since 2 strings have 3 common schemata each, making a total of 6
schemata, processing a string implicitly processes many more schemata.

In general, for a string of length [, there are 3' schemata.

This property is usually referred as implicit parallelism.

1
Lecture Notes on Natural Computation — p.26/28

Understanding Genetic Algorithms: Schema Theorem

By evaluating many string we implicitly estimate the expected value of
schemas, and working out a “little bit of math” we can approximate the
expected number of schemas at next step:

M(H; t +1) > M(H;, t) - [f({["')] - [1 P - @] - [(1 —pm)O(H@')} |

f

* f(H;): Mean fitness of the i*" schema

* f: Mean fitness of population

* §(H;): Length of the i*" schema

® [: Length of strings in the search space

® o(H;): Number of valid bits in the schema

Lecture Notes on Natural Computation — p.27/28

Understanding Genetic Algorithms: What's going on?

The previous formula states two important concepts for the understanding
of genetics algorithm:

Schema Theorem

Above average fitness, short, low-order schema will have a large
survival probability. They will grow at least exponentially in the
population.

Building Block Hypothesis

Short, highly fit, low order schemata are called building blocks; it
Is thought that they represent partial solutions to the problem and
that processing them will build up the full solution.

1
Lecture Notes on Natural Computation — p.28/28

	{Large Genetic Algorithms} \ vspace {0.2cm} {large -- Introduction --}
	Terminology (From Biology)
	From Biology to Genetic Algorithms
	Genetic Algorithms: A Powerful Idea from Nature
	Genetic Algorithm Applications
	Outline of the Basic Genetic Algorithm
	Two Comments to the Basic Genetic Algorithm
	Example: Minimum of a Function
	Minimization Example: Chromosome Encoding
	Minimization Example: Crossover Operator
	Minimization Example: Mutation Operator
	Minimization Example: Demo
	{Large Genetic Algorithms} \ vspace {0.2cm} {large -- Into the groove --}
	Genetic Algorithms Explained: Encoding (I)
	Genetic Algorithms Explained: Encoding (II)
	Genetic Algorithms Explained: Encoding (III)
	Genetic Algorithms Explained: Encoding (IV)
	Genetic Algorithms Explained: Selection (I)
	Genetic Algorithms Explained: Selection (II)
	Genetic Algorithms Explained: Crossover/Mutation (I)
	Genetic Algorithms Explained: Crossover/Mutation (II)
	Genetic Algorithms Explained: Crossover/Mutation (III)
	Time for Another Demo
	Tips & Tricks
	Understanding Genetic Algorithms: Building Blocks
	Understanding Genetic Algorithms: Schema Theorem
	Understanding Genetic Algorithms: What's going on?

