
Soft Computing
Lecture Notes on Machine Learning

Matteo Matteucci

matteucci@elet.polimi.it

Department of Electronics and Information

Politecnico di Milano

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 1/31



Unsupervised Learning
– Bayesian Networks –

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 2/31



Beyond Independence . . .

We are thankful to the independence hypothesis because:
• It makes computation possible
• It yields optimal classifiers when satisfied
• It gives good enough generalization to our Bayes Classifiers

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 3/31



Beyond Independence . . .

We are thankful to the independence hypothesis because:
• It makes computation possible
• It yields optimal classifiers when satisfied
• It gives good enough generalization to our Bayes Classifiers

Seldom satisfied in practice, as attributes are often correlated!

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 3/31



Beyond Independence . . .

We are thankful to the independence hypothesis because:
• It makes computation possible
• It yields optimal classifiers when satisfied
• It gives good enough generalization to our Bayes Classifiers

Seldom satisfied in practice, as attributes are often correlated!

To overcome this limitation we can describe the probability distribution
governing a set of variables by specifying:

• Conditional Independence Assumptions that apply on subsets of them
• A set of conditional probabilities

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 3/31



Beyond Independence . . .

We are thankful to the independence hypothesis because:
• It makes computation possible
• It yields optimal classifiers when satisfied
• It gives good enough generalization to our Bayes Classifiers

Seldom satisfied in practice, as attributes are often correlated!

To overcome this limitation we can describe the probability distribution
governing a set of variables by specifying:

• Conditional Independence Assumptions that apply on subsets of them
• A set of conditional probabilities

These models are often referred also as Graphical Models

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 3/31



Bayesian Networks Intro

A Bayesian Belief Networks, or Bayesian Network, is a method to
describe the joint probability distribution of a set of variables.

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 4/31



Bayesian Networks Intro

A Bayesian Belief Networks, or Bayesian Network, is a method to
describe the joint probability distribution of a set of variables.

Let x1, x2, . . . , xn be a set of variables or features. A Bayesian Network will
tell us the probability of any combination of x1, x2, . . . , xn.

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 4/31



Bayesian Networks Intro

A Bayesian Belief Networks, or Bayesian Network, is a method to
describe the joint probability distribution of a set of variables.

Let x1, x2, . . . , xn be a set of variables or features. A Bayesian Network will
tell us the probability of any combination of x1, x2, . . . , xn.

• Age, Occupation and Income determine if
customer will buy this product.

• Given that customer buys product, whether
there is interest in insurance is now inde-
pendent of Age, Occupation, Income.

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 4/31



Bayesian Networks Intro

A Bayesian Belief Networks, or Bayesian Network, is a method to
describe the joint probability distribution of a set of variables.

Let x1, x2, . . . , xn be a set of variables or features. A Bayesian Network will
tell us the probability of any combination of x1, x2, . . . , xn.

• Age, Occupation and Income determine if
customer will buy this product.

• Given that customer buys product, whether
there is interest in insurance is now inde-
pendent of Age, Occupation, Income.

Similar to Naïve Bayes we will make some independence assumptions, but
not as strong as the assumption of all variables being independent.

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 4/31



Bayesian Networks

A Bayesian Network is a compact representation of the joint probability
distribution of a set of variables by explicitly indicating the assumptions of
conditional independence through the following:

• A Directed Acyclic Graph (DAG)
◦ Nodes - random variables
◦ Edges - direct influence

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 5/31



Bayesian Networks

A Bayesian Network is a compact representation of the joint probability
distribution of a set of variables by explicitly indicating the assumptions of
conditional independence through the following:

• A Directed Acyclic Graph (DAG)
◦ Nodes - random variables
◦ Edges - direct influence

• Set of Conditional Probability
Distributions (CPD) for “influ-
enced” variables

S,B S,∼ B ∼ S,B ∼ S,∼ B

C 0.4 0.1 0.8 0.2

∼ C 0.6 0.9 0.2 0.8

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 5/31



Conditional Independence

We say X1 is conditionally independent of X2 given X3 if the probability of
X1 is independent of X2 given some knowledge about X3:

P (X1|X2, X3) = P (X1|X3)

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 6/31



Conditional Independence

We say X1 is conditionally independent of X2 given X3 if the probability of
X1 is independent of X2 given some knowledge about X3:

P (X1|X2, X3) = P (X1|X3)

The same can be said for a set of variables: X1, X2, X3 is independent of
Y1, Y2, Y3 given Z1, Z2, Z3:

P (X1, X2, X3|Y1, Y2, Y3, Z1, Z2, Z3) = P (X1, X2, X3|Z1, Z2, Z3)

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 6/31



Conditional Independence

We say X1 is conditionally independent of X2 given X3 if the probability of
X1 is independent of X2 given some knowledge about X3:

P (X1|X2, X3) = P (X1|X3)

The same can be said for a set of variables: X1, X2, X3 is independent of
Y1, Y2, Y3 given Z1, Z2, Z3:

P (X1, X2, X3|Y1, Y2, Y3, Z1, Z2, Z3) = P (X1, X2, X3|Z1, Z2, Z3)

Example: Martin and Norman toss the same coin. Let be A “Norman’s
outcome”, and B “Martin’s outcome”. Assume the coin might be biased; in
this case A and B are not independent: observing that B is Heads causes
us to increase our belief in A being Heads.

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 6/31



Conditional Independence

We say X1 is conditionally independent of X2 given X3 if the probability of
X1 is independent of X2 given some knowledge about X3:

P (X1|X2, X3) = P (X1|X3)

The same can be said for a set of variables: X1, X2, X3 is independent of
Y1, Y2, Y3 given Z1, Z2, Z3:

P (X1, X2, X3|Y1, Y2, Y3, Z1, Z2, Z3) = P (X1, X2, X3|Z1, Z2, Z3)

Example: Martin and Norman toss the same coin. Let be A “Norman’s
outcome”, and B “Martin’s outcome”. Assume the coin might be biased; in
this case A and B are not independent: observing that B is Heads causes
us to increase our belief in A being Heads.

Variables A and B are both dependent on C, “the coin is biased towards
Heads with probability θ”. Once we know for certain the value of C then
any evidence about B cannot change our belief about A.

P (A|B,C) = P (A|C)

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 6/31



The Sprinkler Example: Modeling

The event “grass is wet” (W=true) has two possible causes: either the
water Sprinker is on (S=true) or it is Raining (R=true).

Cloudy

WetGrass

Sprinkler Rain

P(C=false)P(C=true)

0.5 0.5

P(S=false)P(S=true)

0.5 0.5

C

0.9 0.1

true

false

P(R=false)P(R=true)

0.8 0.2

C

0.2 0.8

true

false

P(W=false)P(W=true)

10

R

0.10.9false

false

true
true

true

S

false

false
true

0.10.9

0.010.99
‘

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 7/31



The Sprinkler Example: Modeling

The event “grass is wet” (W=true) has two possible causes: either the
water Sprinker is on (S=true) or it is Raining (R=true).

Cloudy

WetGrass

Sprinkler Rain

P(C=false)P(C=true)

0.5 0.5

P(S=false)P(S=true)

0.5 0.5

C

0.9 0.1

true

false

P(R=false)P(R=true)

0.8 0.2

C

0.2 0.8

true

false

P(W=false)P(W=true)

10

R

0.10.9false

false

true
true

true

S

false

false
true

0.10.9

0.010.99
‘

The strength of this relationship is shown in the tables. For example, on
second row, P (W = true|S = true,R = false) = 0.9, and, since each row
sums up to one, P (W = false|S = true,R = false) = 1− 0.9 = 0.1.

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 7/31



The Sprinkler Example: Modeling

The event “grass is wet” (W=true) has two possible causes: either the
water Sprinker is on (S=true) or it is Raining (R=true).

Cloudy

WetGrass

Sprinkler Rain

P(C=false)P(C=true)

0.5 0.5

P(S=false)P(S=true)

0.5 0.5

C

0.9 0.1

true

false

P(R=false)P(R=true)

0.8 0.2

C

0.2 0.8

true

false

P(W=false)P(W=true)

10

R

0.10.9false

false

true
true

true

S

false

false
true

0.10.9

0.010.99
‘

The strength of this relationship is shown in the tables. For example, on
second row, P (W = true|S = true,R = false) = 0.9, and, since each row
sums up to one, P (W = false|S = true,R = false) = 1− 0.9 = 0.1.

The C node has no parents, its Conditional Probability Table (CPT) simply
specifies the prior probability that it is Cloudy (in this case, 0.5).

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 7/31



The Sprinkler Example: Joint Probability

The simplest conditional independence encoded in a Bayesian network
can be stated as: “a node is independent of its ancestors given its parents.”

Cloudy

WetGrass

Sprinkler Rain

P(C=false)P(C=true)

0.5 0.5

P(S=false)P(S=true)

0.5 0.5

C

0.9 0.1

true

false

P(R=false)P(R=true)

0.8 0.2

C

0.2 0.8

true

false

P(W=false)P(W=true)

10

R

0.10.9false

false

true
true

true

S

false

false
true

0.10.9

0.010.99
‘

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 8/31



The Sprinkler Example: Joint Probability

The simplest conditional independence encoded in a Bayesian network
can be stated as: “a node is independent of its ancestors given its parents.”

Cloudy

WetGrass

Sprinkler Rain

P(C=false)P(C=true)

0.5 0.5

P(S=false)P(S=true)

0.5 0.5

C

0.9 0.1

true

false

P(R=false)P(R=true)

0.8 0.2

C

0.2 0.8

true

false

P(W=false)P(W=true)

10

R

0.10.9false

false

true
true

true

S

false

false
true

0.10.9

0.010.99
‘

Using the chain rule we get the joint probability of nodes in the graph

P (C, S,R,W ) = P (W |C, S,R)P (R|C, S)P (S|C)P (C)

= P (W |S,R)P (R|C)P (S|C)P (C).

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 8/31



The Sprinkler Example: Joint Probability

The simplest conditional independence encoded in a Bayesian network
can be stated as: “a node is independent of its ancestors given its parents.”

Cloudy

WetGrass

Sprinkler Rain

P(C=false)P(C=true)

0.5 0.5

P(S=false)P(S=true)

0.5 0.5

C

0.9 0.1

true

false

P(R=false)P(R=true)

0.8 0.2

C

0.2 0.8

true

false

P(W=false)P(W=true)

10

R

0.10.9false

false

true
true

true

S

false

false
true

0.10.9

0.010.99
‘

Using the chain rule we get the joint probability of nodes in the graph

P (C, S,R,W ) = P (W |C, S,R)P (R|C, S)P (S|C)P (C)

= P (W |S,R)P (R|C)P (S|C)P (C).

In general, with N binary nodes and being k the maximum node fan-in, the
full joint requires O(2N ) parameters while the factored one O(N · 2k).

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 8/31



The Sprinkler Example: Making Inference

We observe the fact that the grass is wet. There are two possible causes
for this: (a) the sprinkler is on or (b) it is raining. Which is more likely?

Cloudy

WetGrass

Sprinkler Rain

P(C=false)P(C=true)

0.5 0.5

P(S=false)P(S=true)

0.5 0.5

C

0.9 0.1

true

false

P(R=false)P(R=true)

0.8 0.2

C

0.2 0.8

true

false

P(W=false)P(W=true)

10

R

0.10.9false

false

true
true

true

S

false

false
true

0.10.9

0.010.99
‘

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 9/31



The Sprinkler Example: Making Inference

We observe the fact that the grass is wet. There are two possible causes
for this: (a) the sprinkler is on or (b) it is raining. Which is more likely?

Cloudy

WetGrass

Sprinkler Rain

P(C=false)P(C=true)

0.5 0.5

P(S=false)P(S=true)

0.5 0.5

C

0.9 0.1

true

false

P(R=false)P(R=true)

0.8 0.2

C

0.2 0.8

true

false

P(W=false)P(W=true)

10

R

0.10.9false

false

true
true

true

S

false

false
true

0.10.9

0.010.99
‘

Use Bayes’ rule to compute the posterior probability of each explanation:

P (S|W ) = P (S,W )/P (W ) =
∑

c,r P (C, S,R,W )/P (W ) = 0.430

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 9/31



The Sprinkler Example: Making Inference

We observe the fact that the grass is wet. There are two possible causes
for this: (a) the sprinkler is on or (b) it is raining. Which is more likely?

Cloudy

WetGrass

Sprinkler Rain

P(C=false)P(C=true)

0.5 0.5

P(S=false)P(S=true)

0.5 0.5

C

0.9 0.1

true

false

P(R=false)P(R=true)

0.8 0.2

C

0.2 0.8

true

false

P(W=false)P(W=true)

10

R

0.10.9false

false

true
true

true

S

false

false
true

0.10.9

0.010.99
‘

Use Bayes’ rule to compute the posterior probability of each explanation:

P (S|W ) = P (S,W )/P (W ) =
∑

c,r P (C, S,R,W )/P (W ) = 0.430

P (R|W ) = P (R,W )/P (W ) =
∑

c,s P (C, S,R,W )/P (W ) = 0.708

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 9/31



The Sprinkler Example: Making Inference

We observe the fact that the grass is wet. There are two possible causes
for this: (a) the sprinkler is on or (b) it is raining. Which is more likely?

Cloudy

WetGrass

Sprinkler Rain

P(C=false)P(C=true)

0.5 0.5

P(S=false)P(S=true)

0.5 0.5

C

0.9 0.1

true

false

P(R=false)P(R=true)

0.8 0.2

C

0.2 0.8

true

false

P(W=false)P(W=true)

10

R

0.10.9false

false

true
true

true

S

false

false
true

0.10.9

0.010.99
‘

Use Bayes’ rule to compute the posterior probability of each explanation:

P (S|W ) = P (S,W )/P (W ) =
∑

c,r P (C, S,R,W )/P (W ) = 0.430

P (R|W ) = P (R,W )/P (W ) =
∑

c,s P (C, S,R,W )/P (W ) = 0.708

P (W ) is a normalizing constant, equal to the probability (likelihood) of the
data; the likelihood ratio is 0.7079/0.4298 = 1.647.

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 9/31



The Sprinkler Example: Explaining Away

In Sprinkler Example the two causes “compete” to “explain” the observed
data. Hence S and R become conditionally dependent given that their
common child, W , is observed.

Example: Suppose the grass is wet, but we know that it is raining. Then the
posterior probability of sprinkler being on goes down: P (S|W,R) = 0.1945

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 10/31



The Sprinkler Example: Explaining Away

In Sprinkler Example the two causes “compete” to “explain” the observed
data. Hence S and R become conditionally dependent given that their
common child, W , is observed.

Example: Suppose the grass is wet, but we know that it is raining. Then the
posterior probability of sprinkler being on goes down: P (S|W,R) = 0.1945

This is phaenomenon is called Explaining Away , and, in statistics, it is
also known as Berkson’s Paradox, or Selection Bias.

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 10/31



The Sprinkler Example: Explaining Away

In Sprinkler Example the two causes “compete” to “explain” the observed
data. Hence S and R become conditionally dependent given that their
common child, W , is observed.

Example: Suppose the grass is wet, but we know that it is raining. Then the
posterior probability of sprinkler being on goes down: P (S|W,R) = 0.1945

This is phaenomenon is called Explaining Away , and, in statistics, it is
also known as Berkson’s Paradox, or Selection Bias.

Example: Consider a college which admits students who are either Brainy
or Sporty (or both!). Let C denote the event that someone is admitted to
College, which is made true if they are either Brainy (B) or Sporty (S).
Suppose in the general population, B and S are independent.

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 10/31



The Sprinkler Example: Explaining Away

In Sprinkler Example the two causes “compete” to “explain” the observed
data. Hence S and R become conditionally dependent given that their
common child, W , is observed.

Example: Suppose the grass is wet, but we know that it is raining. Then the
posterior probability of sprinkler being on goes down: P (S|W,R) = 0.1945

This is phaenomenon is called Explaining Away , and, in statistics, it is
also known as Berkson’s Paradox, or Selection Bias.

Example: Consider a college which admits students who are either Brainy
or Sporty (or both!). Let C denote the event that someone is admitted to
College, which is made true if they are either Brainy (B) or Sporty (S).
Suppose in the general population, B and S are independent.

In College population, being Brainy makes you less
likely to be Sporty and vice versa, because either
property alone is sufficient to explain evidence on C

P (S = 1|C = 1, B = 1) ≤ P (S = 1|C = 1)

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 10/31



Bottom-up and Top-down Reasoning

Looking at the simple Sprinkler Example we can already see the two kind
of reasoning we can make with Bayesian Networks:

• “bottom up” reasoning: we had evidence of an effect (Wet Grass), and
inferred the most likely cause; it goes from effects to causes and it is a
common task in expert systems or diagnostic;

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 11/31

http://bayes.cs.ucla.edu/BOOK-2K/index.html


Bottom-up and Top-down Reasoning

Looking at the simple Sprinkler Example we can already see the two kind
of reasoning we can make with Bayesian Networks:

• “bottom up” reasoning: we had evidence of an effect (Wet Grass), and
inferred the most likely cause; it goes from effects to causes and it is a
common task in expert systems or diagnostic;

• “top down”, reasoning: we can compute the probability that the grass
will be wet given that it is cloudy; for this reason Bayesian Networks
are often called “generative” models.

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 11/31

http://bayes.cs.ucla.edu/BOOK-2K/index.html


Bottom-up and Top-down Reasoning

Looking at the simple Sprinkler Example we can already see the two kind
of reasoning we can make with Bayesian Networks:

• “bottom up” reasoning: we had evidence of an effect (Wet Grass), and
inferred the most likely cause; it goes from effects to causes and it is a
common task in expert systems or diagnostic;

• “top down”, reasoning: we can compute the probability that the grass
will be wet given that it is cloudy; for this reason Bayesian Networks
are often called “generative” models.

The most interesting property of Bayesian Networks is that they can be
used to reason about causality on a solid mathematical basis:

Question: Can we distinguish causation from mere correlation? So we
don’t need to make experiments to infer causality.

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 11/31

http://bayes.cs.ucla.edu/BOOK-2K/index.html


Bottom-up and Top-down Reasoning

Looking at the simple Sprinkler Example we can already see the two kind
of reasoning we can make with Bayesian Networks:

• “bottom up” reasoning: we had evidence of an effect (Wet Grass), and
inferred the most likely cause; it goes from effects to causes and it is a
common task in expert systems or diagnostic;

• “top down”, reasoning: we can compute the probability that the grass
will be wet given that it is cloudy; for this reason Bayesian Networks
are often called “generative” models.

The most interesting property of Bayesian Networks is that they can be
used to reason about causality on a solid mathematical basis:

Question: Can we distinguish causation from mere correlation? So we
don’t need to make experiments to infer causality.

Answer: Yes, “sometimes”, but we need to measure the relationships
between at least three variables.

For details refer to Causality: Models, Reasoning and Inference,Judea Pearl, 2000.

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 11/31

http://bayes.cs.ucla.edu/BOOK-2K/index.html


Conditional Independence in Bayesian Networks

Two (sets of) nodes A and B are conditionally independent (d-separated)
given C if and only iif all the path from A to B are shielded by C.

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 12/31



Conditional Independence in Bayesian Networks

Two (sets of) nodes A and B are conditionally independent (d-separated)
given C if and only iif all the path from A to B are shielded by C.

The dotted arcs indicate direction of flow in the path:
• C is a “root”: if C is hidden, children are dependent due to a hidden

common cause. If C is observed, they are conditionally independent;

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 12/31



Conditional Independence in Bayesian Networks

Two (sets of) nodes A and B are conditionally independent (d-separated)
given C if and only iif all the path from A to B are shielded by C.

The dotted arcs indicate direction of flow in the path:
• C is a “root”: if C is hidden, children are dependent due to a hidden

common cause. If C is observed, they are conditionally independent;
• C is a “leaf”: if C is hidden, its parents are marginally independent, but

if c is observed, the parents become dependent (Explaining Away);

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 12/31



Conditional Independence in Bayesian Networks

Two (sets of) nodes A and B are conditionally independent (d-separated)
given C if and only iif all the path from A to B are shielded by C.

The dotted arcs indicate direction of flow in the path:
• C is a “root”: if C is hidden, children are dependent due to a hidden

common cause. If C is observed, they are conditionally independent;
• C is a “leaf”: if C is hidden, its parents are marginally independent, but

if c is observed, the parents become dependent (Explaining Away);
• C is a “bridge”: nodes upstream and downstream of C are dependent

iff C is hidden, because conditioning breaks the graph at that point.

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 12/31



Undirected Bayesian Networks

Undirected graphical models, also called Markov Random Fields (MRFs)
or Markov Networks, are more popular with the Physics and Computer
Vision communities, and have a simpler definition of independence:

Two (sets of) nodes A and B are conditionally independent given set C, if
all paths between the nodes in A and B are separated by a node in C.

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 13/31



Undirected Bayesian Networks

Undirected graphical models, also called Markov Random Fields (MRFs)
or Markov Networks, are more popular with the Physics and Computer
Vision communities, and have a simpler definition of independence:

Two (sets of) nodes A and B are conditionally independent given set C, if
all paths between the nodes in A and B are separated by a node in C.

Directed graph independence is more complex independence, but:
• We can regard an arc from A to B as indicating that A “causes” B;

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 13/31



Undirected Bayesian Networks

Undirected graphical models, also called Markov Random Fields (MRFs)
or Markov Networks, are more popular with the Physics and Computer
Vision communities, and have a simpler definition of independence:

Two (sets of) nodes A and B are conditionally independent given set C, if
all paths between the nodes in A and B are separated by a node in C.

Directed graph independence is more complex independence, but:
• We can regard an arc from A to B as indicating that A “causes” B;
• Causality can be used to construct the graph structure;

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 13/31



Undirected Bayesian Networks

Undirected graphical models, also called Markov Random Fields (MRFs)
or Markov Networks, are more popular with the Physics and Computer
Vision communities, and have a simpler definition of independence:

Two (sets of) nodes A and B are conditionally independent given set C, if
all paths between the nodes in A and B are separated by a node in C.

Directed graph independence is more complex independence, but:
• We can regard an arc from A to B as indicating that A “causes” B;
• Causality can be used to construct the graph structure;
• We can encode deterministic relationships too;

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 13/31



Undirected Bayesian Networks

Undirected graphical models, also called Markov Random Fields (MRFs)
or Markov Networks, are more popular with the Physics and Computer
Vision communities, and have a simpler definition of independence:

Two (sets of) nodes A and B are conditionally independent given set C, if
all paths between the nodes in A and B are separated by a node in C.

Directed graph independence is more complex independence, but:
• We can regard an arc from A to B as indicating that A “causes” B;
• Causality can be used to construct the graph structure;
• We can encode deterministic relationships too;
• They are easier to learn (fit to data).

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 13/31



Undirected Bayesian Networks

Undirected graphical models, also called Markov Random Fields (MRFs)
or Markov Networks, are more popular with the Physics and Computer
Vision communities, and have a simpler definition of independence:

Two (sets of) nodes A and B are conditionally independent given set C, if
all paths between the nodes in A and B are separated by a node in C.

Directed graph independence is more complex independence, but:
• We can regard an arc from A to B as indicating that A “causes” B;
• Causality can be used to construct the graph structure;
• We can encode deterministic relationships too;
• They are easier to learn (fit to data).

When converting a directed graph to an undirected graph, we must add
links between “unmarried” parents who share a common child (i.e.,
“moralize” the graph) to prevent reading incorrect independences.

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 13/31



Graphical Models with Real Values

We can have Bayesian Networks with real valued nodes:
• For discrete nodes with continuous parents, we can use the

logistic/softmax distribution;
• The most common distribution for real nodes is Gaussian.

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 14/31

http://www.cs.toronto.edu/~roweis/papers/NC110201.pdf


Graphical Models with Real Values

We can have Bayesian Networks with real valued nodes:
• For discrete nodes with continuous parents, we can use the

logistic/softmax distribution;
• The most common distribution for real nodes is Gaussian.

Using these nodes we can obtain a rich toolbox for complex probabilistic
modeling (circle=real, square=discrete, clear=hidden, shaded=observed):

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 14/31

http://www.cs.toronto.edu/~roweis/papers/NC110201.pdf


Graphical Models with Real Values

We can have Bayesian Networks with real valued nodes:
• For discrete nodes with continuous parents, we can use the

logistic/softmax distribution;
• The most common distribution for real nodes is Gaussian.

Using these nodes we can obtain a rich toolbox for complex probabilistic
modeling (circle=real, square=discrete, clear=hidden, shaded=observed):

More details in the illuminating paper by Sam Roweis & Zoubin Ghahramani:
A Unifying Review of Linear Gaussian Models, Neural Computation 11(2) (1999) pp.305-345.

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 14/31

http://www.cs.toronto.edu/~roweis/papers/NC110201.pdf


Inference Algorithms in Bayesian Networks

A graphical model specifies a complete joint probability distribution:
• Given the joint probability, we can answer all possible inference

queries by marginalization (i.e., summing out irrelevant variables);

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 15/31



Inference Algorithms in Bayesian Networks

A graphical model specifies a complete joint probability distribution:
• Given the joint probability, we can answer all possible inference

queries by marginalization (i.e., summing out irrelevant variables);
• The joint probability distribution has size O(2n), where n is the number

of nodes, and we have assumed each node can have 2 states.

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 15/31



Inference Algorithms in Bayesian Networks

A graphical model specifies a complete joint probability distribution:
• Given the joint probability, we can answer all possible inference

queries by marginalization (i.e., summing out irrelevant variables);
• The joint probability distribution has size O(2n), where n is the number

of nodes, and we have assumed each node can have 2 states.

Hence inference on Bayesian Networks takes exponential time!

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 15/31



Inference Algorithms in Bayesian Networks

A graphical model specifies a complete joint probability distribution:
• Given the joint probability, we can answer all possible inference

queries by marginalization (i.e., summing out irrelevant variables);
• The joint probability distribution has size O(2n), where n is the number

of nodes, and we have assumed each node can have 2 states.

Hence inference on Bayesian Networks takes exponential time!

Lots of work have been done to overcome this issue:
• Variable Elimination

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 15/31



Inference Algorithms in Bayesian Networks

A graphical model specifies a complete joint probability distribution:
• Given the joint probability, we can answer all possible inference

queries by marginalization (i.e., summing out irrelevant variables);
• The joint probability distribution has size O(2n), where n is the number

of nodes, and we have assumed each node can have 2 states.

Hence inference on Bayesian Networks takes exponential time!

Lots of work have been done to overcome this issue:
• Variable Elimination
• Dynamic Programming (message passing & junction trees)

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 15/31



Inference Algorithms in Bayesian Networks

A graphical model specifies a complete joint probability distribution:
• Given the joint probability, we can answer all possible inference

queries by marginalization (i.e., summing out irrelevant variables);
• The joint probability distribution has size O(2n), where n is the number

of nodes, and we have assumed each node can have 2 states.

Hence inference on Bayesian Networks takes exponential time!

Lots of work have been done to overcome this issue:
• Variable Elimination
• Dynamic Programming (message passing & junction trees)
• Approximated methods:

◦ Sampling (Monte Carlo) methods
◦ Variational approximation
◦ . . .

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 15/31



Inference Algorithms in Bayesian Networks

A graphical model specifies a complete joint probability distribution:
• Given the joint probability, we can answer all possible inference

queries by marginalization (i.e., summing out irrelevant variables);
• The joint probability distribution has size O(2n), where n is the number

of nodes, and we have assumed each node can have 2 states.

Hence inference on Bayesian Networks takes exponential time!

Lots of work have been done to overcome this issue:
• Variable Elimination
• Dynamic Programming (message passing & junction trees)
• Approximated methods:

◦ Sampling (Monte Carlo) methods
◦ Variational approximation
◦ . . .

We’ll see just a few of them ... don’t worry!

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 15/31



Inference in Bayes Nets: Variable Elimination

We can sometimes use the factored representation of Joit Probability to do
marginalisation efficiently. The key idea is to “push sums in” as far as
possible when summing (marginalizing) out irrelevant terms:

p(W ) =
∑

c

∑

s

∑

r

P (C, S,R,W )

=
∑

c

∑

s

∑

r

P (W |S,R)P (R|C)P (S|C)P (C)

=
∑

c

P (C)
∑

s

P (S|C)
∑

r

P (W |S,R)P (R|C)

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 16/31



Inference in Bayes Nets: Variable Elimination

We can sometimes use the factored representation of Joit Probability to do
marginalisation efficiently. The key idea is to “push sums in” as far as
possible when summing (marginalizing) out irrelevant terms:

p(W ) =
∑

c

∑

s

∑

r

P (C, S,R,W )

=
∑

c

∑

s

∑

r

P (W |S,R)P (R|C)P (S|C)P (C)

=
∑

c

P (C)
∑

s

P (S|C)
∑

r

P (W |S,R)P (R|C)

As we perform the innermost sums we create new terms to be summed:
• T1(C,W, S) =

∑

r P (W |S,R)P (R|C);

• T2(C,W ) =
∑

s P (S|C)T1(C,W, S);

• P (W ) =
∑

c P (C)T2(C,W ).

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 16/31



Inference in Bayes Nets: Variable Elimination

We can sometimes use the factored representation of Joit Probability to do
marginalisation efficiently. The key idea is to “push sums in” as far as
possible when summing (marginalizing) out irrelevant terms:

p(W ) =
∑

c

∑

s

∑

r

P (C, S,R,W )

=
∑

c

∑

s

∑

r

P (W |S,R)P (R|C)P (S|C)P (C)

=
∑

c

P (C)
∑

s

P (S|C)
∑

r

P (W |S,R)P (R|C)

As we perform the innermost sums we create new terms to be summed:
• T1(C,W, S) =

∑

r P (W |S,R)P (R|C);

• T2(C,W ) =
∑

s P (S|C)T1(C,W, S);

• P (W ) =
∑

c P (C)T2(C,W ).

Complexity is bounded by the size of the largest term. Finding the optimal
order is NP-hard, although greedy algorithms work well in practice.

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 16/31



Inference in Bayes Nets: Local Message Passing (I)

If the underlying undirected graph of the BN is acyclic (i.e., a tree), we can
use a local message passing algorithm:

• Suppose we want P (Xi|E) where E is some set of evidence variables

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 17/31



Inference in Bayes Nets: Local Message Passing (I)

If the underlying undirected graph of the BN is acyclic (i.e., a tree), we can
use a local message passing algorithm:

• Suppose we want P (Xi|E) where E is some set of evidence variables

• Let’s Split E into two parts:
◦ E−

i assignments to variables in the subtree rooted at Xi;
◦ E+

i the rest of E

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 17/31



Inference in Bayes Nets: Local Message Passing (I)

If the underlying undirected graph of the BN is acyclic (i.e., a tree), we can
use a local message passing algorithm:

• Suppose we want P (Xi|E) where E is some set of evidence variables

• Let’s Split E into two parts:
◦ E−

i assignments to variables in the subtree rooted at Xi;
◦ E+

i the rest of E

P (Xi|E) = P (Xi|E
−

i , E+

i )

=
P (E−

i |Xi, E
+

i )P (Xi|E
+

i )

P (E−

i |E+

i )

=
P (E−

i |Xi)P (Xi|E
+

i )

P (E−

i |E+

i )

= απ(Xi)λ(Xi)

With α independent from Xi, π(Xi) = P (Xi|E
+
i ), λ(Xi) = P (E−

i |Xi).

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 17/31



Inference in Bayes Nets: Local Message Passing (II)

We can exploit such decomposition to compute λ(Xi) = P (E−
i |Xi) for all

Xi recursively as follows:

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 18/31



Inference in Bayes Nets: Local Message Passing (II)

We can exploit such decomposition to compute λ(Xi) = P (E−
i |Xi) for all

Xi recursively as follows:

• if Xi is a leaf
◦ Xi ∈ E : then λ(Xi) = 1 if Xi matches E, 0 otherwise;
◦ Xi /∈ E : E−

i is the empty set so λ(Xi) = 1

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 18/31



Inference in Bayes Nets: Local Message Passing (II)

We can exploit such decomposition to compute λ(Xi) = P (E−
i |Xi) for all

Xi recursively as follows:

• if Xi is a leaf
◦ Xi ∈ E : then λ(Xi) = 1 if Xi matches E, 0 otherwise;
◦ Xi /∈ E : E−

i is the empty set so λ(Xi) = 1

• if Xi has one child Xc

λ(Xi) = P (E−

i |Xi) =
∑

j

P (Ei, Xc = j|Xi)

=
∑

j

P (Xc = j|Xi)P (E−

i |Xi, Xc = j) =
∑

j

P (Xc = j|Xi)λ(Xc = j)

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 18/31



Inference in Bayes Nets: Local Message Passing (II)

We can exploit such decomposition to compute λ(Xi) = P (E−
i |Xi) for all

Xi recursively as follows:

• if Xi is a leaf
◦ Xi ∈ E : then λ(Xi) = 1 if Xi matches E, 0 otherwise;
◦ Xi /∈ E : E−

i is the empty set so λ(Xi) = 1

• if Xi has one child Xc

λ(Xi) = P (E−

i |Xi) =
∑

j

P (Ei, Xc = j|Xi)

=
∑

j

P (Xc = j|Xi)P (E−

i |Xi, Xc = j) =
∑

j

P (Xc = j|Xi)λ(Xc = j)

• if Xi has a set of children C since Xi d-separates them

λ(Xi) = P (E−

i |Xi) =
∏

Xj∈C

λj(Xj) =
∏

Xj∈C





∑

Xj

P (Xj |Xi)λ(Xj)





where λj(Xj) is the conribution to P (E−
i |Xi) of subtree rooted at Xj .

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 18/31



Inference in Bayes Nets: Local Message Passing (III)

We can now compute the rest of our inference: π(Xi) = P (Xi|E
+
i )

• For the root of the tree Xr we have E+
i is empty thus π(Xi) = P (Xi)

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 19/31



Inference in Bayes Nets: Local Message Passing (III)

We can now compute the rest of our inference: π(Xi) = P (Xi|E
+
i )

• For the root of the tree Xr we have E+
i is empty thus π(Xi) = P (Xi)

• For an arbitrary Xi with parent Xp knowing Xp and/or P (Xp|E) :

π(Xi) = P (Xi|E
+

i ) =
∑

j

P (Xi, Xp = j|E+

i )

=
∑

j

P (Xi|Xp = j, E+

i )P (Xp = j|E+

i )

=
∑

j

P (Xi|Xp = j)P (Xp = j|E+

i )

=
∑

j

P (Xi|Xp = j)
P (Xp = j|E)

λi(Xp = j)

=
∑

j

P (Xi|Xp = j)πi(Xp = j).

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 19/31



Inference in Bayes Nets: Local Message Passing (III)

We can now compute the rest of our inference: π(Xi) = P (Xi|E
+
i )

• For the root of the tree Xr we have E+
i is empty thus π(Xi) = P (Xi)

• For an arbitrary Xi with parent Xp knowing Xp and/or P (Xp|E) :

π(Xi) = P (Xi|E
+

i ) =
∑

j

P (Xi, Xp = j|E+

i )

=
∑

j

P (Xi|Xp = j, E+

i )P (Xp = j|E+

i )

=
∑

j

P (Xi|Xp = j)P (Xp = j|E+

i )

=
∑

j

P (Xi|Xp = j)
P (Xp = j|E)

λi(Xp = j)

=
∑

j

P (Xi|Xp = j)πi(Xp = j).

Having defined πi(Xp = j) equal to P (Xp=j|E)
λi(Xp=j) we can now compute all

π(Xi)s and then all the P (Xi|E)s!

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 19/31



Inference in Bayes Nets: Local Message Passing (IV)

In the message passing algorithm, we can thing nodes as autonomous
processors passing λ and π messages to their neighbors.

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 20/31



Inference in Bayes Nets: Local Message Passing (IV)

In the message passing algorithm, we can thing nodes as autonomous
processors passing λ and π messages to their neighbors.

If we want P (A,B|C) instead of just marginal
distrtibutions P (A|C) and P (B|C)?

• Apply the chain rule:
P (A,B|C) = P (A|B,C)P (B|C);

• Apply Local Message Passing twice.

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 20/31



Inference in Bayes Nets: Local Message Passing (IV)

In the message passing algorithm, we can thing nodes as autonomous
processors passing λ and π messages to their neighbors.

If we want P (A,B|C) instead of just marginal
distrtibutions P (A|C) and P (B|C)?

• Apply the chain rule:
P (A,B|C) = P (A|B,C)P (B|C);

• Apply Local Message Passing twice.

This technique can be generalized to polytrees:

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 20/31



Inference in Bayes Nets: Message Passing with Cycles

The Local Message Passing algorithm can deal also with cycles:

• Clustering variables together:

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 21/31



Inference in Bayes Nets: Message Passing with Cycles

The Local Message Passing algorithm can deal also with cycles:

• Clustering variables together:

• Conditioning:

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 21/31



Inference in Bayes Nets: Message Passing with Cycles

The Local Message Passing algorithm can deal also with cycles:

• Clustering variables together:

• Conditioning:

• Join Tree:

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 21/31



Inference in Bayes Nets: Simulation & Sampling (I)

We can sample from the Bayesian Network a set of assignments with the
same probability as the underlying joint distribution:

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 22/31



Inference in Bayes Nets: Simulation & Sampling (I)

We can sample from the Bayesian Network a set of assignments with the
same probability as the underlying joint distribution:

1. Randomly choose a sample c, c = true with prob P (C)

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 22/31



Inference in Bayes Nets: Simulation & Sampling (I)

We can sample from the Bayesian Network a set of assignments with the
same probability as the underlying joint distribution:

1. Randomly choose a sample c, c = true with prob P (C)

2. Randomly choose a sample s, s = true with prob P (S|c)

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 22/31



Inference in Bayes Nets: Simulation & Sampling (I)

We can sample from the Bayesian Network a set of assignments with the
same probability as the underlying joint distribution:

1. Randomly choose a sample c, c = true with prob P (C)

2. Randomly choose a sample s, s = true with prob P (S|c)

3. Randomly choose a sample r, r = true with prob P (R|c)

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 22/31



Inference in Bayes Nets: Simulation & Sampling (I)

We can sample from the Bayesian Network a set of assignments with the
same probability as the underlying joint distribution:

1. Randomly choose a sample c, c = true with prob P (C)

2. Randomly choose a sample s, s = true with prob P (S|c)

3. Randomly choose a sample r, r = true with prob P (R|c)

4. Randomly choose a sample w, w = true with prob P (W |s, r)

The sample c, s, r, w is a sample from the joint distribution of C, S,R,W.

Cloudy

WetGrass

Sprinkler Rain

P(C=false)P(C=true)

0.5 0.5

P(S=false)P(S=true)

0.5 0.5

C

0.9 0.1

true

false

P(R=false)P(R=true)

0.8 0.2

C

0.2 0.8

true

false

P(W=false)P(W=true)

10

R

0.10.9false

false

true
true

true

S

false

false
true

0.10.9

0.010.99
‘

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 22/31



Inference in Bayes Nets: Simulation & Sampling (II)

Suppose we are interested in knowing P (E1|E2), now we have a simple
mechanism to estimate this:

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 23/31



Inference in Bayes Nets: Simulation & Sampling (II)

Suppose we are interested in knowing P (E1|E2), now we have a simple
mechanism to estimate this:

• Take a lot of random samples from the joint distributiona and count:
◦ Nc: the number of sample in which E2 is verified.
◦ Ns: the number of sample in which both E1 and E2 are verified.
◦ N :the total number of samples.

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 23/31



Inference in Bayes Nets: Simulation & Sampling (II)

Suppose we are interested in knowing P (E1|E2), now we have a simple
mechanism to estimate this:

• Take a lot of random samples from the joint distributiona and count:
◦ Nc: the number of sample in which E2 is verified.
◦ Ns: the number of sample in which both E1 and E2 are verified.
◦ N :the total number of samples.

• When N is big enough we have:
◦ P (E2) ≈ Nc/N

◦ P (E1, E2) ≈ Ns/N

◦ P (E1|E2) = P (E1, E2)/P (E2) ≈ Ns/Nc

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 23/31



Inference in Bayes Nets: Simulation & Sampling (II)

Suppose we are interested in knowing P (E1|E2), now we have a simple
mechanism to estimate this:

• Take a lot of random samples from the joint distributiona and count:
◦ Nc: the number of sample in which E2 is verified.
◦ Ns: the number of sample in which both E1 and E2 are verified.
◦ N :the total number of samples.

• When N is big enough we have:
◦ P (E2) ≈ Nc/N

◦ P (E1, E2) ≈ Ns/N

◦ P (E1|E2) = P (E1, E2)/P (E2) ≈ Ns/Nc

With lots of constraints or unlikely events in E the most of the simulation
thrown away (no effect on Nc and Ns).

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 23/31



Inference in Bayes Nets: Simulation & Sampling (II)

Suppose we are interested in knowing P (E1|E2), now we have a simple
mechanism to estimate this:

• Take a lot of random samples from the joint distributiona and count:
◦ Nc: the number of sample in which E2 is verified.
◦ Ns: the number of sample in which both E1 and E2 are verified.
◦ N :the total number of samples.

• When N is big enough we have:
◦ P (E2) ≈ Nc/N

◦ P (E1, E2) ≈ Ns/N

◦ P (E1|E2) = P (E1, E2)/P (E2) ≈ Ns/Nc

With lots of constraints or unlikely events in E the most of the simulation
thrown away (no effect on Nc and Ns).

We should use Likelihood Sampling!

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 23/31



Inference in Bayes Nets: Simulation & Sampling (III)

We can exploit a simple idea to improve our sampling strategy
• Suppose in E2 we have the constraint Xi = v

• We are about generating a random value with P (Xi = v|parents) = w;

• Generate always Xi = v but weight the final answer by w.

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 24/31



Inference in Bayes Nets: Simulation & Sampling (III)

We can exploit a simple idea to improve our sampling strategy
• Suppose in E2 we have the constraint Xi = v

• We are about generating a random value with P (Xi = v|parents) = w;

• Generate always Xi = v but weight the final answer by w.

This turns into the following algorithm (initalize Nc = 0 and Ns = 0):

1. Generate a random assignment for all variables matching E2;

2. Define w to be the probability that this assignment would have been
generated instead of an unmatching assignment (w is the product of
all likelihood factors involved in its generation);

3. Nc = Nc + w;

4. if our sample matches E1 the Ns = Ns + w;

5. Go to 1.

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 24/31



Inference in Bayes Nets: Simulation & Sampling (III)

We can exploit a simple idea to improve our sampling strategy
• Suppose in E2 we have the constraint Xi = v

• We are about generating a random value with P (Xi = v|parents) = w;

• Generate always Xi = v but weight the final answer by w.

This turns into the following algorithm (initalize Nc = 0 and Ns = 0):

1. Generate a random assignment for all variables matching E2;

2. Define w to be the probability that this assignment would have been
generated instead of an unmatching assignment (w is the product of
all likelihood factors involved in its generation);

3. Nc = Nc + w;

4. if our sample matches E1 the Ns = Ns + w;

5. Go to 1.

Again the ratio Ns/Nc estimates our query P (E1|E2)

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 24/31



Bayesian Networks Applications

They originally arose to add probabilities in expert systems; a famous
example is the reformulation of the Quick Medical Reference model.

• Top layer represents hidden disease;
• Bottom layer represents observed symptoms;
• QMR-DT is so densely connected that exact

inference is impossible.

The goal is to infer the posterior probability of each disease given all the
symptoms (which can be present, absent or unknown).

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 25/31

http://www.cs.ubc.ca/~murphyk/Bayes/econ.22mar01.html


Bayesian Networks Applications

They originally arose to add probabilities in expert systems; a famous
example is the reformulation of the Quick Medical Reference model.

• Top layer represents hidden disease;
• Bottom layer represents observed symptoms;
• QMR-DT is so densely connected that exact

inference is impossible.

The goal is to infer the posterior probability of each disease given all the
symptoms (which can be present, absent or unknown).

The most widely used Bayes Nets are embedded in Microsoft’s products:
• Answer Wizard in Office 95;
• Office Assistant in Office 97;
• Over 30 Technical Support Troubleshooters.

Check the Economist article (22/3/01) about Microsoft’s application of BNs.

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 25/31

http://www.cs.ubc.ca/~murphyk/Bayes/econ.22mar01.html


Learning Bayesian Networks

In order to define a Bayesian Network we need to specify:
• The graph topology (structure)
• The parameters of each Conditional Probability Densisty.

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 26/31



Learning Bayesian Networks

In order to define a Bayesian Network we need to specify:
• The graph topology (structure)
• The parameters of each Conditional Probability Densisty.

We can specify both of them with the help of experts or it is possible to
learn both of these from data; however remember that:

• Learning the structure is much harder than learning parameters
• Learning when some of the nodes are hidden, or we have missing

data, is much harder than when everything is observed

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 26/31



Learning Bayesian Networks

In order to define a Bayesian Network we need to specify:
• The graph topology (structure)
• The parameters of each Conditional Probability Densisty.

We can specify both of them with the help of experts or it is possible to
learn both of these from data; however remember that:

• Learning the structure is much harder than learning parameters
• Learning when some of the nodes are hidden, or we have missing

data, is much harder than when everything is observed

This gives rise to 4 approaches:

Structure/Oservability Full Partial

Known Maximum Likelihood Estimation EM (or gradient ascent)

Unknown Search through model space EM + search through model space

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 26/31



Learning: Known Structure & Full Observability

Learning has to find the values of the parameters of each Coditional
Probability Distribution which maximizes the likelihood of the training data:

L =
∑m

i=1

∑R

r=1 logP (Xi|Pa(Xi),Dr)

Log-likelihood decomposes according to the structure of the graph; we can
maximize the contribution of each node independently.

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 27/31



Learning: Known Structure & Full Observability

Learning has to find the values of the parameters of each Coditional
Probability Distribution which maximizes the likelihood of the training data:

L =
∑m

i=1

∑R

r=1 logP (Xi|Pa(Xi),Dr)

Log-likelihood decomposes according to the structure of the graph; we can
maximize the contribution of each node independently.

• Sparse data problems can be solved by using (mixtures of) Dirichlet
priors (pseudo counts), Wishart prior with Gaussians, etc.

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 27/31



Learning: Known Structure & Full Observability

Learning has to find the values of the parameters of each Coditional
Probability Distribution which maximizes the likelihood of the training data:

L =
∑m

i=1

∑R

r=1 logP (Xi|Pa(Xi),Dr)

Log-likelihood decomposes according to the structure of the graph; we can
maximize the contribution of each node independently.

• Sparse data problems can be solved by using (mixtures of) Dirichlet
priors (pseudo counts), Wishart prior with Gaussians, etc.

• For Gaussian nodes, we can compute the sample mean and variance,
and use linear regression to estimate the weight matrix;

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 27/31



Learning: Known Structure & Full Observability

Learning has to find the values of the parameters of each Coditional
Probability Distribution which maximizes the likelihood of the training data:

L =
∑m

i=1

∑R

r=1 logP (Xi|Pa(Xi),Dr)

Log-likelihood decomposes according to the structure of the graph; we can
maximize the contribution of each node independently.

• Sparse data problems can be solved by using (mixtures of) Dirichlet
priors (pseudo counts), Wishart prior with Gaussians, etc.

• For Gaussian nodes, we can compute the sample mean and variance,
and use linear regression to estimate the weight matrix;

Example: For the WetGrass node, from a set of training data, we can just
count the number of times the “grass is wet” when it is “raining” and the
“sprinler” is on, N(W = 1, S = 1, R = 1), and so on:

P (W |S,R) = N(W,S,R)
N(S,R) = N(W,S,R)

N(W,S,R)+N(W,S,R)

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 27/31



Learning: Known Structure & Partial Observability

When some of the nodes are hidden, we can use the Expectation
Maximization (EM) algorithm to find a (locally) optimal estimate:

• E-Step: compute expected values using an inference algorithm, and
then treat these expected values as observed;

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 28/31



Learning: Known Structure & Partial Observability

When some of the nodes are hidden, we can use the Expectation
Maximization (EM) algorithm to find a (locally) optimal estimate:

• E-Step: compute expected values using an inference algorithm, and
then treat these expected values as observed;

• M-Step: consider the model as fully observable and apply the
previous algorithm.

Given the expected counts, maximize parameters, and recompute the
expected counts iteratively. EM converges to a likelihood local maximum.

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 28/31



Learning: Known Structure & Partial Observability

When some of the nodes are hidden, we can use the Expectation
Maximization (EM) algorithm to find a (locally) optimal estimate:

• E-Step: compute expected values using an inference algorithm, and
then treat these expected values as observed;

• M-Step: consider the model as fully observable and apply the
previous algorithm.

Given the expected counts, maximize parameters, and recompute the
expected counts iteratively. EM converges to a likelihood local maximum.

Inference becomes a subroutine called by learning: it should be fast!

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 28/31



Learning: Known Structure & Partial Observability

When some of the nodes are hidden, we can use the Expectation
Maximization (EM) algorithm to find a (locally) optimal estimate:

• E-Step: compute expected values using an inference algorithm, and
then treat these expected values as observed;

• M-Step: consider the model as fully observable and apply the
previous algorithm.

Given the expected counts, maximize parameters, and recompute the
expected counts iteratively. EM converges to a likelihood local maximum.

Inference becomes a subroutine called by learning: it should be fast!

Example: in the case of WetGrass node, we replace the observed counts
of the events with the number of times we expect to see each event:

P (W |S,R) = E[N(W,S,R)]
E[N(S,R)]

where E[N(x)] is the expected number of times x occurs in the training
set, given the current guess of the parameters: E[N(.)] =

∑

k P (.|Dk).

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 28/31



Learning: Unknown Structure & Full Observability (I)

The maximum likelihood model GMLE will be a complete graph:
• It has the largest number of parameters and can fit the data the best
• This is a joint distribution, it will overfit for sure!

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 29/31



Learning: Unknown Structure & Full Observability (I)

The maximum likelihood model GMLE will be a complete graph:
• It has the largest number of parameters and can fit the data the best
• This is a joint distribution, it will overfit for sure!

To avoid overfitting we can use MAP:

P (G|D) = P (D|G)P (G)
P (D)

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 29/31



Learning: Unknown Structure & Full Observability (I)

The maximum likelihood model GMLE will be a complete graph:
• It has the largest number of parameters and can fit the data the best
• This is a joint distribution, it will overfit for sure!

To avoid overfitting we can use MAP:

P (G|D) = P (D|G)P (G)
P (D)

taking logs, we find:

logP (G|D) = logP (D|G) + logP (G) + c.

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 29/31



Learning: Unknown Structure & Full Observability (I)

The maximum likelihood model GMLE will be a complete graph:
• It has the largest number of parameters and can fit the data the best
• This is a joint distribution, it will overfit for sure!

To avoid overfitting we can use MAP:

P (G|D) = P (D|G)P (G)
P (D)

taking logs, we find:

logP (G|D) = logP (D|G) + logP (G) + c.

Last term c = − logP (D) does not depend on G. We could use structure
prior P (G) to penalizes overly complex models, however, this is not
necessary since the marginal likelihood term

P (D|G) =
∫

θ
P (D|G, θ)

has already a similar effect; it embodies the Bayesian Occam’s razor.

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 29/31



Learning: Unknown Structure & Full Observability (II)

The goal of structure learning is to learn a DAG that best explains the data:
• it is an NP-hard problem, since the number of DAGs on M variables is

super-exponential in M
◦ there are 543 DAGs on 4 nodes;
◦ there are O(1018) DAGSs on 10 nodes.

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 30/31



Learning: Unknown Structure & Full Observability (II)

The goal of structure learning is to learn a DAG that best explains the data:
• it is an NP-hard problem, since the number of DAGs on M variables is

super-exponential in M
◦ there are 543 DAGs on 4 nodes;
◦ there are O(1018) DAGSs on 10 nodes.

• if we know the ordering of the nodes, we can learn the parent set for
each node independently
◦ there are at most

∑M

k=0

(

M
k

)

= 2M sets of possible parents.

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 30/31



Learning: Unknown Structure & Full Observability (II)

The goal of structure learning is to learn a DAG that best explains the data:
• it is an NP-hard problem, since the number of DAGs on M variables is

super-exponential in M
◦ there are 543 DAGs on 4 nodes;
◦ there are O(1018) DAGSs on 10 nodes.

• if we know the ordering of the nodes, we can learn the parent set for
each node independently
◦ there are at most

∑M

k=0

(

M
k

)

= 2M sets of possible parents.

We can start with an initial guess of the model structure, and then perform
local search, evaluating the score of neighboring structures and move to
the best one, until we reach a local optimum.

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 30/31



Learning: Unknown Structure & Full Observability (II)

The goal of structure learning is to learn a DAG that best explains the data:
• it is an NP-hard problem, since the number of DAGs on M variables is

super-exponential in M
◦ there are 543 DAGs on 4 nodes;
◦ there are O(1018) DAGSs on 10 nodes.

• if we know the ordering of the nodes, we can learn the parent set for
each node independently
◦ there are at most

∑M

k=0

(

M
k

)

= 2M sets of possible parents.

We can start with an initial guess of the model structure, and then perform
local search, evaluating the score of neighboring structures and move to
the best one, until we reach a local optimum.

• use the Tabu Search algorithm;

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 30/31



Learning: Unknown Structure & Full Observability (II)

The goal of structure learning is to learn a DAG that best explains the data:
• it is an NP-hard problem, since the number of DAGs on M variables is

super-exponential in M
◦ there are 543 DAGs on 4 nodes;
◦ there are O(1018) DAGSs on 10 nodes.

• if we know the ordering of the nodes, we can learn the parent set for
each node independently
◦ there are at most

∑M

k=0

(

M
k

)

= 2M sets of possible parents.

We can start with an initial guess of the model structure, and then perform
local search, evaluating the score of neighboring structures and move to
the best one, until we reach a local optimum.

• use the Tabu Search algorithm;
• use Genetic Algorithms to fing a global optimmum;

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 30/31



Learning: Unknown Structure & Full Observability (II)

The goal of structure learning is to learn a DAG that best explains the data:
• it is an NP-hard problem, since the number of DAGs on M variables is

super-exponential in M
◦ there are 543 DAGs on 4 nodes;
◦ there are O(1018) DAGSs on 10 nodes.

• if we know the ordering of the nodes, we can learn the parent set for
each node independently
◦ there are at most

∑M

k=0

(

M
k

)

= 2M sets of possible parents.

We can start with an initial guess of the model structure, and then perform
local search, evaluating the score of neighboring structures and move to
the best one, until we reach a local optimum.

• use the Tabu Search algorithm;
• use Genetic Algorithms to fing a global optimmum;
• use multiple restarts to try to find the global optimum, and to learn an

ensemble of models.
Matteo Matteucci c©Lecture Notes on Machine Learning – p. 30/31



Learning: Unknown Structure & Partial Observability

Here come the tough part! We have that
• the structure is unknown;
• there are hidden variables and/or missing data.

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 31/31



Learning: Unknown Structure & Partial Observability

Here come the tough part! We have that
• the structure is unknown;
• there are hidden variables and/or missing data.

This is usually intractable; we can use an approximation of the posterior
called Bayesian Information Criterion (BIC):

logP (D|G) ≈ logP (D|G, Θ̂G)−
N
2 logR

where R is the number of samples, Θ̂G is the ML estimate of model
parameters, and N is the dimension of the model:

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 31/31



Learning: Unknown Structure & Partial Observability

Here come the tough part! We have that
• the structure is unknown;
• there are hidden variables and/or missing data.

This is usually intractable; we can use an approximation of the posterior
called Bayesian Information Criterion (BIC):

logP (D|G) ≈ logP (D|G, Θ̂G)−
N
2 logR

where R is the number of samples, Θ̂G is the ML estimate of model
parameters, and N is the dimension of the model:

• in the fully observable case, dimension of a model is the number of
free parameters; in models with hidden variables, it might be less;

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 31/31



Learning: Unknown Structure & Partial Observability

Here come the tough part! We have that
• the structure is unknown;
• there are hidden variables and/or missing data.

This is usually intractable; we can use an approximation of the posterior
called Bayesian Information Criterion (BIC):

logP (D|G) ≈ logP (D|G, Θ̂G)−
N
2 logR

where R is the number of samples, Θ̂G is the ML estimate of model
parameters, and N is the dimension of the model:

• in the fully observable case, dimension of a model is the number of
free parameters; in models with hidden variables, it might be less;

• BIC score decomposes into a sum of local terms, but local search is
still expensive, because we need to run EM at each step to compute
Θ̂G. We can do local search inside the M-Step (Structural EM).

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 31/31


	{Large Unsupervised Learning} \ vspace {0.2cm} {large -- Bayesian Networks --}
	Beyond Independence dots 
	Beyond Independence dots 
	Beyond Independence dots 
	Beyond Independence dots 

	Bayesian Networks Intro
	Bayesian Networks Intro
	Bayesian Networks Intro
	Bayesian Networks Intro

	Bayesian Networks
	Bayesian Networks

	Conditional Independence
	Conditional Independence
	Conditional Independence
	Conditional Independence

	The Sprinkler Example: Modeling
	The Sprinkler Example: Modeling
	The Sprinkler Example: Modeling

	The Sprinkler Example: Joint Probability
	The Sprinkler Example: Joint Probability
	The Sprinkler Example: Joint Probability

	The Sprinkler Example: Making Inference
	The Sprinkler Example: Making Inference
	The Sprinkler Example: Making Inference
	The Sprinkler Example: Making Inference

	The Sprinkler Example: Explaining Away
	The Sprinkler Example: Explaining Away
	The Sprinkler Example: Explaining Away
	The Sprinkler Example: Explaining Away

	Bottom-up and Top-down Reasoning
	Bottom-up and Top-down Reasoning
	Bottom-up and Top-down Reasoning
	Bottom-up and Top-down Reasoning

	Conditional Independence in Bayesian Networks
	Conditional Independence in Bayesian Networks
	Conditional Independence in Bayesian Networks
	Conditional Independence in Bayesian Networks

	Undirected Bayesian Networks
	Undirected Bayesian Networks
	Undirected Bayesian Networks
	Undirected Bayesian Networks
	Undirected Bayesian Networks
	Undirected Bayesian Networks

	Graphical Models with Real Values
	Graphical Models with Real Values
	Graphical Models with Real Values

	Inference Algorithms in Bayesian Networks
	Inference Algorithms in Bayesian Networks
	Inference Algorithms in Bayesian Networks
	Inference Algorithms in Bayesian Networks
	Inference Algorithms in Bayesian Networks
	Inference Algorithms in Bayesian Networks
	Inference Algorithms in Bayesian Networks

	Inference in Bayes Nets: Variable Elimination
	Inference in Bayes Nets: Variable Elimination
	Inference in Bayes Nets: Variable Elimination

	Inference in Bayes Nets: Local Message Passing (I)
	Inference in Bayes Nets: Local Message Passing (I)
	Inference in Bayes Nets: Local Message Passing (I)

	Inference in Bayes Nets: Local Message Passing (II)
	Inference in Bayes Nets: Local Message Passing (II)
	Inference in Bayes Nets: Local Message Passing (II)
	Inference in Bayes Nets: Local Message Passing (II)

	Inference in Bayes Nets: Local Message Passing (III)
	Inference in Bayes Nets: Local Message Passing (III)
	Inference in Bayes Nets: Local Message Passing (III)

	Inference in Bayes Nets: Local Message Passing (IV)
	Inference in Bayes Nets: Local Message Passing (IV)
	Inference in Bayes Nets: Local Message Passing (IV)

	Inference in Bayes Nets: Message Passing with Cycles
	Inference in Bayes Nets: Message Passing with Cycles
	Inference in Bayes Nets: Message Passing with Cycles

	Inference in Bayes Nets: Simulation & Sampling (I)
	Inference in Bayes Nets: Simulation & Sampling (I)
	Inference in Bayes Nets: Simulation & Sampling (I)
	Inference in Bayes Nets: Simulation & Sampling (I)
	Inference in Bayes Nets: Simulation & Sampling (I)

	Inference in Bayes Nets: Simulation & Sampling (II)
	Inference in Bayes Nets: Simulation & Sampling (II)
	Inference in Bayes Nets: Simulation & Sampling (II)
	Inference in Bayes Nets: Simulation & Sampling (II)
	Inference in Bayes Nets: Simulation & Sampling (II)

	Inference in Bayes Nets: Simulation & Sampling (III)
	Inference in Bayes Nets: Simulation & Sampling (III)
	Inference in Bayes Nets: Simulation & Sampling (III)

	Bayesian Networks Applications
	Bayesian Networks Applications

	Learning Bayesian Networks
	Learning Bayesian Networks
	Learning Bayesian Networks

	Learning: Known Structure & Full Observability
	Learning: Known Structure & Full Observability
	Learning: Known Structure & Full Observability
	Learning: Known Structure & Full Observability

	Learning: Known Structure & Partial Observability
	Learning: Known Structure & Partial Observability
	Learning: Known Structure & Partial Observability
	Learning: Known Structure & Partial Observability

	Learning: Unknown Structure & Full Observability (I)
	Learning: Unknown Structure & Full Observability (I)
	Learning: Unknown Structure & Full Observability (I)
	Learning: Unknown Structure & Full Observability (I)

	Learning: Unknown Structure & Full Observability (II)
	Learning: Unknown Structure & Full Observability (II)
	Learning: Unknown Structure & Full Observability (II)
	Learning: Unknown Structure & Full Observability (II)
	Learning: Unknown Structure & Full Observability (II)
	Learning: Unknown Structure & Full Observability (II)

	Learning: Unknown Structure & Partial Observability
	Learning: Unknown Structure & Partial Observability
	Learning: Unknown Structure & Partial Observability
	Learning: Unknown Structure & Partial Observability


