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Dealing with the real world is hard!

Providing autonomy to robots and vehicles can be a cumbersome matter:

• Complex tasks (e.g., autonomous driving from 

Kolkata to New Delhi)

• Multiple issues to take care of (e.g., batteries,

avoid obstacles, don’t fall to stairs)

• Sensor/effector noise and uncertainty

• Dynamic environment and unexpected events 

• Lack of precise information / models

• Mechanical constraints (e.g., non-holonomic constraints)

To face such a complexity we need to define and organize a set of building blocks / 

tools to take informed decisions ➔ Robot Cognitive Architecture
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Robot architectures

• A principled way of organizing a control system. In addition to providing 

structure, it also imposes constraints on the way the control problem 

can be solved (M. Mataric)

• The description of a set of architectural components and how they interact

(Dean and Wellman)

Different architectural approaches (based on the same building blocks) produces 

different designs/results of the same general concept …
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Robot cognitive paradigms

Classical cognitive approaches are based on different “mental models” (paradigms)

In classic robot cognitive architectures three main paradigms exists

• Deliberative / Model-based / Hierarchical / Orizontal

• Reactive / Behavioral / Vertical

• Hybrid / Multi layered (Deliberative + Reactive)

Paradigm:
A philosophy or set of assumptions and/or techniques which
characterize an approach to a class of problems (R. Murphy).

In the case of robots, it defines the general model of operations.
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Deliberative paradigm: “think hard, act later”

Deliberative control grew out of Classical AI (60’s - 80’s) and its vision of human 

intelligence. To be intelligent, machines/robots have to be able to perform some 

intensive forms of “thinking”, that in turn would require:

• Internal models of the world

• Search through possible solutions

• Planning and reasoning to solve problems

• Hierarchical system organization

Deliberation:
Thoughtfulness in decision and action ➔ Thinking hard

Top-Down Approach 
to Problem Solving
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Deliberative paradigm: “think hard, act later”

The deliberative paradigm adopt a well defined pipeline of functional modules 

Perception Model Plan ActSense

ENVIRONMENT



7

Example of deliberative architecture: ALVIN

The Autonomous Land Vehicle (ALV) Alvin (CMU mid to end 80’s) was the first on-road 

and off-road vehicle performing autonomous navigation.

Sensors:
Lasers + PTU CCD

Perception:
Road description

Reasoning:
Safe trajectory

Pilot:
Vehicle driving

Knowledge 
Base Check SRI Shakey

and Flakey and their 
STRIPS planner!

Data

Controls Cues

Scene model Trajectory

Steering and
Velocity 
Signals
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A more general example: RCS

Real-time Control System (RCS) Architecture was proposed by J. Albus (NIST 1986--) 

as a flexible architecture for manufacturing robots

Semi-autonomous 
control: human provides 

world model, decides 
mission, decomposes it 

into a plan …
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Drawbacks of deliberative architectures (time scale)

Time scale issues

• Inability to react rapidly (e.g., in case of emergency the robot must still 

sense + model + plan before acting) and to meet multiple goals

• The planning step can potentially be very expensive/long in large state 

spaces (sensor + model states)

o This might require the robot to stop and wait for the next plan

o A large planning time compared to robot speeds “encourages” open loop 

control, to avoid keep doing (expensive) re-planning. However, this might 

be a very bad idea in dynamic or uncertain environments
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Drawbacks of deliberative architectures (information)

Information issues

• The representation of the state space needs to be accurate, comprehensive,

and up to date. This is not always the case in the real-world, and requires 

continual updating of the world model (which takes time … see previous issues).

• The robot needs to know with precision the state of the world and of the plan 

execution at all times. What about dynamic environments? Effector errors? …

Closed-world 
assumption
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Reactive paradigm: “don’t think, react!”

Starting from the mid 1980s, a number

of different views (mostly bio-inspired) 

and approaches were developed and 

employed in robotics, and in AI, moving 

from symbolic to sub-symbolic / neural 

models

Top Down 
Problem Solving

Requires a 
closed world

Works in
an open world

Bottom Up
Problem Solving
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Reactive paradigm: “don’t think, react!”

Main difference with respect to the deliberative approach

• Concurrent mode vs. Sequential mode 

• Vertical decomposition vs. Horizontal decomposition (alternative view)

Ethological view (Behavior):
Direct mapping of sensory inputs to a pattern of motor actions 

that are then used to achieve a task.

Mathematical view (Function):
A transfer function, transforming sensory inputs into 

actuator commands
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Deliberative paradigm: “think hard, act later”

The deliberative paradigm adopt a well defined pipeline of functional modules 

Perception Model Plan ActSense

ENVIRONMENT
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Reactive paradigm: “don’t think, react!”

The Reactive paradigm executes sense-act 

transfer rules behaviors

ActSense

ENVIRONMENT

Rule n

…

Rule 2

Rule 1
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Reactive paradigm: “don’t think, react!”

The Reactive paradigm executes sense-act 

transfer rules behaviors

ActSense

ENVIRONMENT

Rule n

…

Rule 2

Rule 1

Sense

ENVIRONMENT

Avoid Objects Act

Wander

Explore

Monitor Changes

Identify Objects
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Reactive paradigm: “don’t think, react!”

The Reactive paradigm executes sense-act 

transfer rules behaviors

ActSense

ENVIRONMENT

Rule n

…

Rule 2

Rule 1

Sense

ENVIRONMENT

Avoid Objects Act

Follow Wall

Track Person

Find Path

Build Map
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Reactive paradigm: “don’t think, react!”

The Reactive paradigm executes sense-act 

transfer rules behaviors

• Where the Reactive 

paradigm finds its roots?

• What is the exact 

nature/characteristic 

of the Sense-Act rules?

• How the Act output from 

the different rules is arbitrated 

as a single, coherent command

to the effectors?

ActSense

ENVIRONMENT

Rule n

…

Rule 2

Rule 1
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The biological roots of the reactive approach

Dissatisfaction with the limitations of the Deliberative approach led to observing that:

• Animals live in an open world, and roboticists would like to overcome the 

closed world assumption

• Many “simple” animals exhibit individual and collective intelligent behavior yet 

have virtually no brain. Therefore, they must be doing something to manage 

world’s representation complexity!
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Reactive rules as Behaviors

A fundamental building block of natural intelligence is a behavior:
a mapping of sensory inputs to a pattern of motor actions,

which then are used to achieve a task

Behavior
Sensor 
Input

Pattern of 
Motor 
Actions

Releaser



21

Reactive rules as Behaviors

A fundamental building block of natural intelligence is a behavior:
a mapping of sensory inputs to a pattern of motor actions,

which then are used to achieve a task

Sensor input: Water source detected

Releaser: Giraffe is thirsty

No predators

Action pattern:
Move head checking for predators

Put legs in right position,

Lower the neck

Adjust legs position

Drink rapidly

Neck up and check surroundings

Ethology studies 
animal behavior
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What kind of (animal) behaviors?

Reflexive behaviors

• Stimulus-response, “hardwired” behaviors.

• Stimulus is directly connected to the motor

action to produce the fastest response time.

• No cognition: if you sense it, you do it!

Reactive behaviors:

• Learned, and then consolidated so they can

be executed without conscious thought, but 

can be changed by conscious thought.

Conscious behaviors:

• Deliberative, requiring conscious thought, 

possibly combining previously developed behaviors

In
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A practical example: object collection

Task specification

• Search for type A objects

• When an A object is found, brought it (pushing)

at a storing location identified by a bright light

• Collect as many A objects as possible

• Other objects cannot be pushed

• The environment can feature walls

The robot:

• Frontal IR emitters / detectors

• Light sensors

• Frontal bumper

• Two standard wheels

Seems an easy 
task …
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A practical example: object collection

Bumper force

ENVIRONMENT

Home

Motor Control

Go to object

Anti moth

No dark-push

Escape

Cruise

Light sensor

IR detector

Arbiter

Emergent behavior: a set of simple 
behaviors that, when acting together, 

produce the overall desired activity 
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Behavior arbitration

Several aproaches have been proposed

• Fixed priority: B1(t) ≻ B2(t), ∀t 

• Alternate: B2([t1,t2]), B1([t2,t3])

• Variable priority B1(t1) ≻ B2(t1), B2(t2) ≻ B1(t2)

• Subsumption

o Suppression: BNew ≻ Bold

o Inhibition: BNew ⋀ BOld then ∅

• Voting: {R1, R2, R3}: X, {R4}: Y, then X

• Averaging / Composition: B1 ⊕ B2

Sense

ENVIRONMENT

Avoid Objects

Act

Wander

Explore

Monitor Changes

Identify Objects

A
rb

it
ra

ti
o

n

Conflict 
resolution
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Composition approach by Potential Fields

A navigation method commonly adopted uses Motor schemas / Potential fields.

The robot can be represented as a particle under the influence of an artificial potential 

field U(q) which superimposes:

• Repulsive forces from obstacles

• Attractive force from goal(s)

Different behaviors feels different fields, and the 

arbiter combines their proposed motion vectors

Following a gradient descent moves the robot

towards the minima (goal = global minimum)
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Potential fields at work
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Reactive paradigm and beyond

• Real-time capabilities, works in open worlds, doesn’t need models

• Task-oriented decomposition of the controller in parallel modules, 

• Can deal with multiple sensors operating at different time-scales

• Easily extensible / modifiable by adding / removing modules/behaviors

• A network of behaviors can be created to build up more complex behaviors

• Rely only on minimal state, have no memory, no learning, no internal models

Bottom-up design, emergent behavior:

• Looks easier compared to top-down specification, but it’s also a sort of art

• Issues with predictability and formal analysis

High-level reasoning and planning:

• Planning, and more general, cognition and deliberation are 

useful,  if not needed in complex scenarios
They complete 

each other
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Hybrid architectures: Deliberative + Reactive

Combine the best of two world in a single architecture

• Deliberative:

o Representations

o Models

o Planning

• Reactive

o Real-time

o Multiple goals

o Robustness

o Flexibility

o Modularity

The most used 
approach today, but 

still an art!

Strategic
planning / reasoning

Low(er)-level
controls and behaviors
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Hybrid architectures: Deliberative + Reactive

Combine the best of two world in a single architecture

• Deliberative:

o Representations

o Models

o Planning

• Reactive

o Real-time

o Multiple goals

o Robustness

o Flexibility

o Modularity

ActSense

ENVIRONMENT

Rule n

…

Rule 2

Rule 1

Model Plan

How to combine 
the two?
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Example of hybrid architecture: AURA

Strategic
planning / reasoning

Low(er)-level
controls and behaviors
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An example in space robotics

ESA has developed a hybrid architecture

named Functional Reference Model (FRM).

It uses three layers:

• Mission layer to perform decisional

planning for high lever objectives

• Task layer handling in reactive way

the tasks using pre-defined 

activities / behaviors

• Action layer implements control 

schemes to achieve stability and 

the reflexes to adapt the system
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Examples from the DARBA Urban Challenge 2007

Annieway
Karlsruhe/Munich

not finished

Boss
Carnegie Mellon

1st place

Junior
Stanford
2nd place
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Team Annieway (Karlsruhe/Munich)
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Team Annieway (Karlsruhe/Munich)

Perception performs several tasks simultaneously

• Environment mapping through 3D lidar

(Occupancy Grid mapping)

• Tracking of dynamic objects 

(Occupancy grid and Kalman Filter)

• Line marker detection

(Combined lidar range and intensity)
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Team Annieway (Karlsruhe/Munich)

High-level state machine with several states

• Regular driving on lanes

• Turning at intersections with 

oncoming traffic

• Lane changing maneuvers

• Vehicle following and passing

• Following order of precedence at 

4-way stops

• Merging into moving traffic

Mission planning by A* on roadgraph
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Team Annieway (Karlsruhe/Munich)

Situational awareness module enhances capabilities of the state-machine

• Enforce spatial and temporal gap 

to moving objects along lanes

• Simple feasibility check of maneuver

Assumptions:

• Constant velocity of other traffic 

participants

• Constant acceleration of ego 

vehicle until  desired velocity
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Team Annieway (Karlsruhe/Munich)

Pre-computed sets of motion primitives for different initial velocities

• Constant steering angles circular arcs 

(Dynamic Window Approach)

• Arc lengths shorter for high curvatures 

to avoid endpoints behind vehicle

Cost Function:

• Clearance: distance to closest 

obstacle along trajectory

• Flatness: averaged terrain flatness 

over support area

• Trajectory: alignment of trajectory with a reference path



39

Team Annieway (Karlsruhe/Munich)

Trajectory planning is performed on a search graph

• A* search algorithm

• Single track motion primitives

• Two heuristic combined

o Kinematic constraints (close)

o Voronoi diagram (far)

Plannig assume two independent integrators

for the longitudinal and lateral control and 

generates two sets of trajectories then merged
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Team Annieway (Karlsruhe/Munich)
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Team Boss (Carnegie Mellon)

Team Boss uses and hybrid architecture too

• Mission Planning 

o In charge of computing expected time 

to reach the waypoints

• Behavioral Executive

o High-level management (follow lane, park)

o Goal-assignment

o On-road driving

o Lane-change maneuvers 

o Intersection handling

• Motion Planning

o On-road driving

o Unstructured zone navigation C
. 
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Team Boss (Carnegie Mellon)

Motion Planning in unstructured areas

• Anytime D* graph-search

• Multires 4D state-lattice (𝑥, 𝑦 , 𝜃, 𝑣)

• Maximum-of-two heuristic

• Set of concatenations of two motion

primitives (diverging / returning to path)

for control

Motion Planning on road

• Take the lane center

• Motion primitives with final lateral offset to reference path
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Team Boss (Carnegie Mellon)

Success recipies:

• Fast computation ensure smooth behavior

o Preprocessing suggested wherever possible

• Detailed global planning stage increases 

system performance

o Minimize divergence between 

planning stages

• Accurate vehicle modeling minimizes 

divergence between planning & execution

o Higher speeds become safely driveable
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Team Boss (Carnegie Mellon)



45

Team Junior (Stanford)
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Team Junior (Stanford)

Perception performs several (usual) tasks simultaneously

• Obstacle detection (Velodyne + IBEO)

• Grid mapping by evidence accumulation

• Object detection by scan differencing 

• Localization on road network description file
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Team Junior (Stanford)

Motion planning

• Hybrid architecture based on a state machine

• Hybrid A* for navigation in unstructured space

using maximum-of-two heuristic

• Graph-search on roadmap provides location cost

• Post-smoothing of paths by conjugate gradient
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Team Junior (Stanford)

Motion planning

• Hybrid architecture based on a state machine

• Hybrid A* for navigation in unstructured space

using maximum-of-two heuristic

• Graph-search on roadmap provides location cost

• Post-smoothing of paths by conjugate gradient
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Team Junior (Stanford)
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Let’s wrap up!

More to come if you 
include learning …
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Wrap-up slide on “Robots Cognitive Architectures”

What should remain from this lecture?

• What a control architecture is for and why it is useful

• Difference between Deliberative / Reactive / Hybrid approaches

• What the «Sense / Plan / Act» paradigm is 
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