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Example: Default dataset 3 

Overall Default  

Rate 3% 



Pattern Analysis & Machine Intelligence 

Linear regression for classification? 

o Suppose to predict the medical condition of a patient.  

How should this be encoded? 

 

 We could use dummy variables in case of binary output 

 

 

 

but how to deal with multiple output? 

 

 Different encodings could result in different models 
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Pattern Analysis & Machine Intelligence 

Recall here the Bayesian Classifier 

o For a classification problem we can use the error rate i.e. 

 

 

 Where                   is an indicator function, which will give 1 if 

the condition               is correct, otherwise it gives a 0. 

 The error rate represents the fraction of incorrect 

classifications, or misclassifications  

o The Bayes Classifier minimizes the Average Test Error Rate 

 

o The Bayes error rate refers to the lowest possible Error Rate 

achievable knowing the “true” distribution of the data 
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The best classifier 

possible estimates 

the class posterior 

probability!! 



Pattern Analysis & Machine Intelligence 

Logistic Regression 

o We want to model the probability of the class given the input  

 

 

 

but a linear model has some drawbacks 
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Pattern Analysis & Machine Intelligence 

Example: Default data & Linear Regression 7 

Negative 

probability? 

Overall Default  

Rate 3% 



Pattern Analysis & Machine Intelligence 

Logistic Regression 

o We want to model the probability of the class given the input  

 

 

 

but a linear model has some drawbacks 

o Logistic regression solves the negative probability (ad other 

issues as well) by regressing the logistic function 
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Example: Default data & Logistic Regression 9 



Pattern Analysis & Machine Intelligence 

Logistic Regression 

o We want to model the probability of the class given the input  

 

 

 

but a linear model has some drawbacks (see later slide) 

o Logistic regression solves the negative probability (ad other 

issues as well) by regressing the logistic function 

 

 

from this we derive 

 

 

and taking logarithms 
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This is called odds 

This is called  

log-odds or logit 

Linear Regression 

Logistic Regression 
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Coefficient interpretation 

o Interpreting what 1 means is not very easy with logistic 

regression, simply because we are predicting P(Y) and not Y. 

 

 

 If 1 =0, this means that there is no relationship between Y 

and X 

 If 1 >0, this means that when X gets larger so does the 

probability that Y = 1 

 If 1 <0, this means that when X gets larger, the probability 

that Y = 1 gets smaller. 

o But how much bigger or smaller depends on where we are on 

the slope, i.e., it is not linear 
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Pattern Analysis & Machine Intelligence 

Training Logistic Regression (1/4) 

o For the basic logistic regression wee need two parameters 

 

 

o In principle we could use (non linear) Least Squares fitting on the 

observed data the corresponding model 

 

 

o But a more principled approach for training in classification 

problems is based on Maximum Likelihood 

 We want to find the parameters which maximize the 

likelihood function 
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Pattern Analysis & Machine Intelligence 

Maximum Likelihood flash-back (1/6) 

o Suppose we observe some i.i.d. samples coming from a Gaussian 

distribution with known variance: 

 

 

 

 

 

 

 

 

 

Which distribution do you prefer? 
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Pattern Analysis & Machine Intelligence 

Maximum Likelihood flash-back (2/6) 

o There is a simple recipe for Maximum Likelihood estimation 

 

 

 

 

 

 

 

 

o Let’s try to apply it to our example 
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Pattern Analysis & Machine Intelligence 

Maximum Likelihood flash-back (3/6) 

o Let’s try to apply it to our example 

 

 

 

1. Write le likelihood for the data 
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Pattern Analysis & Machine Intelligence 

Maximum Likelihood flash-back (4/6) 

o Let’s try to apply it to our example 

 

 

 

2. (Take the logarithm of the likelihood -> log-likelihood) 
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Pattern Analysis & Machine Intelligence 

Maximum Likelihood flash-back (5/6) 

o Let’s try to apply it to our example 

 

 

 

3. Work out the derivatives using high-school calculus 
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Pattern Analysis & Machine Intelligence 

Maximum Likelihood flash-back (6/6) 

o Let’s try to apply it to our example 

 

 

 

4. Solve the unconstrained equations 
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Pattern Analysis & Machine Intelligence 

Training Logistic Regression (1/4) 

o For the basic logistic regression wee need two parameters 

 

 

o In principle we could use (non linear) Least Squares fitting on the 

observed data the corresponding model 

 

 

o But a more principled approach for training in classification 

problems is based on Maximum Likelihood 

 We want to find the parameters which maximize the 

likelihood function 
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Pattern Analysis & Machine Intelligence 

Training Logistic Regression (2/4) 

o Let’s find the parameters which maximize the likelihood function 

 

 

o If we compute the log-likelihood for N observations 

 

 

 

where  

o We obtain a log-likelihood in the form of 
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Taken from ESL 

Can you derive it? 
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Training Logistic Regression (3/4) 

o Let’s find the parameters which maximize the likelihood function 

 

 

 Z-statistics has the same role of the regression t-statistics, a 

large value means the parameter is not null 

 Intercept does not have a particular meaning is used to adjust 

the probability to class proportions 
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Pattern Analysis & Machine Intelligence 

Example: Default data & Logistic Regression 22 



Pattern Analysis & Machine Intelligence 

Training Logistic Regression (4/4) 

o Let’s find the parameters which maximize the likelihood function 

 

 

 We can train the model using qualitative variables through the 

use of binary (dummy) variables 
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Pattern Analysis & Machine Intelligence 

Making predictions with Logistic Regression 

o Once we have the model parameters we can predict the class 

 

o The Default probability having 1000$ balance is <1% 

 

 

 

while with a balance of 2000$ this becomes 58.6% 

 

o With qualitative variables, i.e., dummy variables, we get that being 

a students results in  
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Pattern Analysis & Machine Intelligence 

Multiple Logistic Regression 

o So far we have considered only one predictor, but we can extend 

the approach to multiple regressors 

 

 

 

o By maximum likelihood we learn the corresponding parameters 

25 

What about this? 
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An apparent contradiction 26 

Positive 

Negative!!! 
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Example: Confounding in Default data set 27 
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Example: South African Heart Disease  28 

Taken from ESL 
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Logistic Regression for Feature Selection 

o If we fit the complete model on these data we get 

 

 

 

 

 

 

o While if we use stepwise Logistic Regression 
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Taken from ESL 

Taken from ESL 



Pattern Analysis & Machine Intelligence 

Logistic Regression parameters meaning 

o Regression parameters represent the increment on the logit of 

probability given by a unitary increment of a variable 

 

 

o Let consider the increase of tobacco consumption in life od 1Kg, 

this count for an increase in log-odds of exp(0.081)=1.084 which 

means an overall increase of 8.4% 

o With a 95% confidence interval  
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Taken from ESL 
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Regularized Logistic Regression 

o As for Linear Regression we can compute a “Lasso” version 
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Pattern Analysis & Machine Intelligence 

Regularized Logistic Regression 

o As for Linear Regression we can compute a “Lasso” version 
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Taken from ESL 
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Multiclass Logistic Regression 

o Logistic Regression extends naturally to multiclass problems by 

computing the log-odds w.r.t. the Kth class 

 

 

 

 

 

 

o This is equivalent to  

 

 

 

o Can you prove it ?!?!? 
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Comes from ESL,  

but it’s worth 

knowing!!! 

Notation different 

because it comes 

from ESL 



Pattern Analysis & Machine Intelligence 

Wrap-up on Logistic Regression 

o We model the log-odds as a linear regression model 

 

 

o This means the posterior probability becomes 

 

 

o Parameters represent log-odds increase per variable unit 

increment keeping fixed the others 

o We can use it to perform feature selection using z-scores and 

forward stepwise selection 

o The class decision boundary is linear, but points close to the 

boundary count more … this will be discussed later 
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Pattern Analysis & Machine Intelligence 

Beyond Logistic Regression … 

o Logistic Regression models directly class posterior probability 

 

 

o Linear Discriminant Analysis uses the Bayes Theorem 

 

 

 

o What improvements come with this model? 

 Parameter learning unstable in Logistic Regressione for well 

separated classes 

 With little data and normal predictor distribution LDA is 

more stable 

 A very popular algorithm with more than 2 response classes 
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Pattern Analysis & Machine Intelligence 

Linear Discriminant Analysis (1/3) 

o Suppose we want to discriminate among K>2 classes 

o Each class has a prior probability 

o Given the class we model the density function of predictors as 

 

 

o Using the Bayes Theorem we obtain 

 

 

 Prior probability     is relatively simple to learn 

 Likelihood          might be more tricky and we need some 

assumptions to simplify it 

o If we correctly estimate the likelihood          we obtain the Bayes 

Classifier, i.e., the one with the smallest error rate!  
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Pattern Analysis & Machine Intelligence 

Linear Discriminant Analysis (2/3) 

o Let assume p=1 and use a Gaussian distribution  

 

 

o Let assume all classes have the same covariance 

 

o The posteriors probability as computed by LDA becomes  

 

 

 

o The selected class is the one with the highest posterior which is 

equivalent to the highest discriminating function 
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Linear discriminant 

function in x Can you 

derive this? 



Pattern Analysis & Machine Intelligence 

Linear Discriminant Analysis (3/3) 

o With 2 classes having the same prior probability 

we decide the class according to the inequality 

 

o The Bayes decision boundary corresponds to 

 

 

o Training is as simple as estimating the model parameters 
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Pattern Analysis & Machine Intelligence 

LDA Simple Example (with p=1) 39 



Pattern Analysis & Machine Intelligence 

Linear Discriminant Analysis with p>1 (1/3) 

o In case p>1 we assume                                  comes from  
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Pattern Analysis & Machine Intelligence 

Linear Discriminant Analysis with p>1 (2/3) 

o In the case of p>1 the LDA classifier assumes  

 Observations from the k-th class are drawn from 

 The covariance structure is common to all classes  

 

o The Bayes discriminating function becomes 

 

 

o From this we can compute the boundary between each class 

(considering the two classes having the same prior probability) 

 

 

o Training formulas for the LDA parameters are similar to the case 

of p=1 … 
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Still linear in x!!! 

Can you 

derive this? 
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Linear Discriminant Analysis Example 42 



Pattern Analysis & Machine Intelligence 

Example: LDA on the Default Dataset 

o LDA on the Default dataset gets 2.75% training error rate 

 Having 10000 records and p=3 we do not expect much 

overfitting … by the way how many parameters we have? 

 Being 3.33% the number of defaulters a dummy classifier 

would get a similar error rate  

43 
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On the performance of LDA 

o Errors in classification are often reported as a Confusion Matrix 

 

 

 

 

 Sensitivity: percentage of true defaulters 

 Specificity: percentage of non-defaulters correctly identified 

 

o The Bayes classifier optimize the overall error rate independently 

from the class they belong to an it does this by thresholding 

 

 

o Can we improve on this? 
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Example: Increasing LDA Sensitivity 

o We might want to improve classifier sensitivity with respect to a 

given class because we consider it more “critical” 

 

 Reduced “Default” error rate from 75.7% to 41.4%  

 Increased overall error of 3.73% (but it is worth) 
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Pattern Analysis & Machine Intelligence 

Tweaking LDA sensitivity 46 

The right choice comes 

from domain knowledge 
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ROC Curve 

o The ROC (Receiver Operating Characteristics) summarizes false 

positive and false negative errors 

 

o Obtained by testing all possible thresholds  

 Overall performance given by Area Under the ROC Curve  

 A classifier which randomly guesses (with two classes) has an 

AUC = 0.5 a perfect classifier has AUC = 1 

 

o ROC curve considers true positive and false positive rates 

 Sensitivity is equivalent to true positive rate 

 Specificity is equivalent to 1 – false positive rate 
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ROC Curve for LDA on Default data 
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ROC Curve for Logistic 

Regression is ~ the same 

All subjects are 

defaulters 

No subject is 

defaulter 
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Clearing out terminology 

o When applying a classifier we can obtain  

 

 

 

 

 

o Out of this we can define the following 
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Pattern Analysis & Machine Intelligence 

Quadratic Discriminant Analysis 

o Linear Discriminant Analysis assumes all classes having a common 

covariance structure 

o Quadratic Discriminant Analysis assumes different covariances 

 

 

o Under this hypothesis the Bayes discriminant function becomes 

 

 

 

 

 

o The decision LDA vs. QDA boils down to bias-variance trade-off 

 QDA requires                   parameters while LDA only  
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Can you 

derive this? 
Quadratic function 
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QDA vs LDA Example 
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Pattern Analysis & Machine Intelligence 

Which classifier is better? 

o Let consider 2 classes and 1 predictor 

 It can be seen that for LDA the log odds is given by 

 

 

 While for Logistic Regression the log odds is 

 

 

 Both linear functions but learning procedures are different … 

 

o Linear Discriminant Analysis is the Optimal Bayes if its hypothesis 

holds otherwise Logistic Regression outperforms it! 

o Quadratic Discriminant Analysis is to be preferred if the class 

covariances are different and we have a non linear boundary 
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Can you 

derive this? 
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Some scenarios tested … 

o Linear Baoundary Scenarios 

1. Samples from 2 uncorrelated normal distributions 

2. Samples from 2 slightly correlated normal distributions 

3. Samples from t-student distributed classes 
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Some other scenarios tested … 

o Non Linear Boundary Scenarios 

4. Samples from 2 normal distribution with different correlation 

5. Samples from 2 normals, predictors are quadratic functions 

6. As previous but with a more complicated function 
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Overall conclusion on the comparison  

o No method is better than all the others 

 

 In the decision boundary is linear then LDA and Logistic 

Regression are those performing better 

 

 When the decision boundary is moderately non linear QDA 

may give better results 

 

 For much complex decision boundaries non parametric 

approaches such as KNN perform better, but the right level 

of smoothness has to be chosen 
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