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Motion planning

Robot Motion Planning Goals

• Collision-free trajectories

• Robot should reach the goal location as fast as 

possible (or maximizing an optimality criterion)

“…eminently necessary since, by definition, 
a robot accomplishes tasks by moving in the real world.”

J.-C. Latombe (1991)
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Problem statement

Find a collision free path between an initial pose and the goal, taking into account the 

constraints (geometrical, physical, temporal)

• Path Planning: A PATH is a geometric 

locus of way points, in a given space,

where the vehicle must pass

• Trajectory Generation: A TRAJECTORY

is a path for which a temporal law is 

specified (e.g., acceleration and velocity

at each point)

• Maneuver Planning: a MANOUVER is a 

series of actions or a scheme or plot that

the vehicle should execute
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Motion planning definition

Given the following notation:

• A: single rigid object (the vehicle)

• W: Euclidean space where A moves (typically

• B1, B2, ..., Bm fixed rigid objects distributed in W (obstacles)

Let assume

• The geometry of A and Bi is known

• The localization of the Bi in W is accurately known

• There are no kinematic constraints in the motion of A (A is a free-flying object)

)     32  orW

Given an initial pose and a goal pose of A in W, generate a continuous 
sequence of poses of A avoiding contact with the Bi, 

starting at the initial pose and terminating at the goal pose.
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Configuration Space (C-Space)

To speed up collision detection the Configuration space is used

• A configuration of an object 

is a point  q = (q1, q2,…,qn)

• Point q is free if the robot 

in q does not collide

• C-obstacle =  union of all q 

where the robot collides

• C-free = union of all free q

• Cspace =  C-free + C-obstacle

Planning can be performed in C-Space

workspace configuration space
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Mobile robot 2D C-Space

A robot can translate in the plane and/or rotate

Obstacles should be expanded according to the robot orientation

X

Y

C-space: 3D (x, y, ) 



x

Y

C-space: 2D (x, y) 

X

Y

x

Y

Non holonomic 
constraints can’t be 
𝐶-Space obstacles
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What a planner for an autonomous car?

Several planners have been used for trajectory planning on unmanned vehicles

• The Dynamic Window Approach

• Graph-Search & State-Lattice planning

• Randomized Approaches: 

Probabilistic Roadmaps, RRT, RRT*

• Potential fields & the Fast Marching

algorithm

• …
We will se only few 

of these!
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Graph (search) based planning basics

The overall idea: 

• Generate a discretized representation of the planning problem 

• Build a graph out of this discretized representation (e.g., through 4 neighbors
or 8 neighbors connectivity)

• Search the graph for the optimal solution

• Can interleave the construction of the representation with the search 
(i.e., construct only what is necessary)
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Planning problem ingredients

Typical components of a Search-based Planner  

• Graph construction (given a state what are its successor states) 

• Cost function (a cost associated with every transition in the graph)

• Heuristic function (estimates of cost-to-goal)

• Graph search algorithm (for example, A* search) 

The graph can be built taking into account robot dynamics/kinematics constraints

Domain dependent

Domain independent
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Graph can be constructed by using motion primitives

• Pros: sparse graph, feasible path, incorporate a variety of constraints

• Cons: possible incompleteness

Planning with graphs
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Planning with graphs

Graph can be constructed by using motion primitives

• Pros: sparse graph, feasible path, incorporate a variety of constraints

• Cons: possible incompleteness
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Exact and approximate planning

Different algorithms are available 

• Returning the optimal path (e.g., Dijstra, A*, …)

• Returning an ε sub-optimal path 

(e.g., weighted A*, ARA*, AD*, R*, D* Lite, ...)

Dijstra A* weighted A*
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Searching graphs for least cost path

Given a graph search for the path that minimizes costs as much as possible

Many search algorithms compute optimal g-values for relevant states

• g(s)–an estimate of the cost of a least-cost path from sstart to s

• optimal values satisfy: g(s) = mins’’ in pred(s) g(s’’) + c(s’’,s)
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Searching graphs for least cost path

Given a graph search for the path that minimizes costs as much as possible

Least-cost path is a greedy path computed by backtracking: 

• start with sgoal and from any state s move to the predecessor 

state s’ such that 

s’ =argmin s’’ in pred(s) (g(s’’)+c(s’’,s))
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A* speeds up search by computing g-values as

Heuristic function must be

• Admissible: for every state s, h(s) ≤ c*(s,sgoal)

• Consistent (satisfy triangle inequality):

o h(sgoal,sgoal) = 0 

o for every s≠sgoal, h(s) ≤ c(s,succ(s)) + h(succ(s))

Admissibility follows from consistency and often viceversa

A* search algorithm
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A* Search Algorithm

Main function

• g(sstart) = 0; all other g-values are infinite; 

• OPEN = {sstart};

• ComputePath();

ComputePath function

• while(sgoal is not expanded)

o remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

o expand s;

For every expanded state g(s) is optimal

(if heuristics are consistent)

Set of candidates for expansion
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A* Search Algorithm

Main function

• g(sstart) = 0; all other g-values are infinite; 

• OPEN = {sstart};

• ComputePath();

ComputePath function

• while(sgoal is not expanded)

o remove s with the smallest [f(s) = g(s)+h(s)]from OPEN;

o insert s into CLOSED;

o for every successor s’of s such that s’ not in CLOSED

o if g(s’) > g(s) + c(s,s’)

o g(s’) = g(s) + c(s,s’);

o insert s’ into OPEN;

Set of states already expanded

Tries to decrease g(s’) using the

found path from sstart to s

Set of candidates for expansion
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A* Search Algorithm

ComputePath function

• while(sgoal is not expanded)

• remove s with the smallest [f(s) = g(s)+h(s)]from OPEN;

• insert s into CLOSED;

• for every successor s’of s such that s’ not in CLOSED

• if g(s’) > g(s) + c(s,s’)

• g(s’) = g(s) + c(s,s’);

• insert s’ into OPEN;

CLOSED = {}

OPEN = {sstart}

next state to expand: sstart

g(s2) > g(sstart) + c(sstart,s2)

S2 S1

Sgoal

2

g=

h=2

g= 

h=1

g= 

h=02

S4 S3

3

g= 

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3
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A* Search Algorithm

ComputePath function

• while(sgoal is not expanded)

• remove s with the smallest [f(s) = g(s)+h(s)]from OPEN;

• insert s into CLOSED;

• for every successor s’of s such that s’ not in CLOSED

• if g(s’) > g(s) + c(s,s’)

• g(s’) = g(s) + c(s,s’);

• insert s’ into OPEN;

CLOSED = {sstart}

OPEN = {s2}

next state to expand: s2

S2 S1

Sgoal

2

g=1

h=2

g= 

h=1

g= 

h=02

S4 S3

3

g= 

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3
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A* Search Algorithm

ComputePath function

• while(sgoal is not expanded)

• remove s with the smallest [f(s) = g(s)+h(s)]from OPEN;

• insert s into CLOSED;

• for every successor s’of s such that s’ not in CLOSED

• if g(s’) > g(s) + c(s,s’)

• g(s’) = g(s) + c(s,s’);

• insert s’ into OPEN;

CLOSED = {sstart, s2}

OPEN = {s1,s4}

next state to expand: s1

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 

h=02

S4 S3

3

g= 2

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3
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A* Search Algorithm

ComputePath function

• while(sgoal is not expanded)

• remove s with the smallest [f(s) = g(s)+h(s)]from OPEN;

• insert s into CLOSED;

• for every successor s’of s such that s’ not in CLOSED

• if g(s’) > g(s) + c(s,s’)

• g(s’) = g(s) + c(s,s’);

• insert s’ into OPEN;

CLOSED = {sstart, s2, s1}

OPEN = {s4,sgoal}

next state to expand: s4

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 5

h=02

S4 S3

3

g= 2

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3
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A* Search Algorithm

ComputePath function

• while(sgoal is not expanded)

• remove s with the smallest [f(s) = g(s)+h(s)]from OPEN;

• insert s into CLOSED;

• for every successor s’of s such that s’ not in CLOSED

• if g(s’) > g(s) + c(s,s’)

• g(s’) = g(s) + c(s,s’);

• insert s’ into OPEN;

CLOSED = {sstart, s2, s1 , s4}

OPEN = {s3,sgoal}

next state to expand: sgoal

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 5

h=02

S4 S3

3

g= 2

h=2

g= 5

h=1

1

Sstart

1

1

g=0

h=3
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A* Search Algorithm

ComputePath function

• while(sgoal is not expanded)

• remove s with the smallest [f(s) = g(s)+h(s)]from OPEN;

• insert s into CLOSED;

• for every successor s’of s such that s’ not in CLOSED

• if g(s’) > g(s) + c(s,s’)

• g(s’) = g(s) + c(s,s’);

• insert s’ into OPEN;

CLOSED = {sstart, s2, s1 ,s4 , sgoal}

OPEN = {s3}

DONE!

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 5

h=02

S4 S3

3

g= 2

h=2

g= 5

h=1

1

Sstart

1

1

g=0

h=3
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A* Properties

A* is guaranteed to 

• Return an optimal path in terms of the solution

• Perform provably minimal number of state expansions

Algorithms state expansion:

• Dijkstra’s: expands states in the order of f = g values (roughly)

• A* Search: expands states in the order of f = g + h values

• Weighted A*:expands states in the order of f = g + ε h values, 

ε> 1= bias towards states that are closer to goal

Weighted A* Search in many domains, it has been shown to be orders

of magnitude faster than A*
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A* Properties

Algorithms state expansion:

• Dijkstra’s: expands states in the order of f = g values (roughly)

sgoal

sstart
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A* Properties

Algorithms state expansion:

• Dijkstra’s: expands states in the order of f = g values (roughly)

• A* Search: expands states in the order of f = g + h values

sgoal

sstart
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A* Properties

Algorithms state expansion:

• Dijkstra’s: expands states in the order of f = g values (roughly)

• A* Search: expands states in the order of f = g + h values

• Weighted A*:expands states in the order of f = g + ε h values, 

ε> 1= bias towards states that are closer to goal

sstart
sgoal

Shallow minima help in 
finding solution fast.
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Other variations of A* 

ARA* (Anytime Repairing A*)

• Subsequent queries with decreasing suboptimality factor 𝜖

• Fast initial (suboptimal) solution

• Refinement over time

D*/D*-Light

• Re-use parts of the previous query

and only repair solution locally where 

changes occured

Anytime D* (D* + ARA*)

• Anytime graph-search re-using previous query

A*: 25s           ARA* (ϵ=2.5): 0.6s.         ARA* (ϵ=1.0): 25s.

Likhachev, M. (2003). “ARA*: Anytime A* with provable bounds on sub-

optimality”, Advances in Neural Information Processing Systems



92

State-Lattice planning

Motion planning for constrained platforms as a graph search in state-space

• Discretize state-space into a 

hypergrid (e.g. (𝑥, 𝑦, 𝜃, 𝜅))

• Compute neighborhood set by

connecting each tuple of states 

with feasible motions

• Define cost-function/edge-weights

• Run any graph-search algorithm 

to find lowest-cost path
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State-Lattice planning pros and cons

Design minimal neighborhood sets

• Avoid insertion of edges that can be 

decomposed with the existing control

• Decomposition “close” in cost-space
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Pros Cons

Resolution complete “Curse of dimensionality”. Number of states grows exponentially 
with dimensionality of state-space

Optimal State-lattice construction requires solving nontrivial two-state 
boundary value problem

Offline computations due to regular 
structure possible

Regular discretization might cause problems in narrow passages, 
not aligned with the hypergrid

Discretization causes discontinuities in state variables not 
considered in the hypergrid thus motion plans are not inherently 
executable
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An example of State-Lattice «curse of dimensionality»

Discretization of the state-space for an Ackermann vehicle

• 𝑥 = [-50.0, 50.0], 0.2 m resolution → 501 states

• 𝑦 = [-50.0, 50.0], 0.2 m resolution → 501 states

• heading 𝜃 = [-𝜋, +𝜋], 0.1 rad resolution → ~64 states

• steering angle 𝜙 = [-0.6, +0.6], 0.1 rad resolution → 13 states

Overall state lattice size

• S = 𝑥 × 𝑦 × 𝜃 × 𝜙 = 208′832′832 states

• Impossible to search exhaustively (during online operation)

Opportunities for speed-up:

• Well-informed heuristics

• Multi-resolution state-lattices
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Well informed heuristics for State-Lattice search

The closer the heuristics estimates the true cost-to-go, the faster the search

• ℎ1: non-holonomic-without-obstacles 

o Expensive, but can be computed offline

o Better estimate of true cost in vicinity of goal

• ℎ2: holonomic-with-obstacles 

o Cheap to compute/online

o Better estimate of true cost far from the goal

• ℎ = max(ℎ1, ℎ2)
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Two-state boundary value problem

Control set generation for state-lattice search requires to obtain motion primitives 

connect two states in state space exactly

• Define this as an optimization problem

• Convert functional optimization problem into parametric one by restriction to a 

parametrized function of the inputs

• Subject to:
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Two-state boundary value problem

Control set generation for state-lattice search requires to obtain motion primitives 

connect two states in state space exactly

• Often convenient to parametrize problem over path length

• E.g., with polynomial curvature input

• Subject to:

• Design variables for optimization problem 
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Two-state boundary value problem

Control set generation for state-lattice search requires to obtain motion primitives 

connect two states in state space exactly

• Cartesian coordinates x(𝑠), y(𝑠) cannot be computed in closed form

for an Ackermann system model even for simple inputs

• Solved by numerical approximation of integrals
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Two-state boundary value problem

Control set generation for state-lattice search requires to obtain motion primitives 

connect two states in state space exactly

• For 3rd order curvature polynomials, the problem has a unique solution

• Constraints on Δ𝑥, Δy, Δ𝜃, 𝜅0, 𝜅𝑓 can be included in the optimization criterion

• Gradient-based nonlinear optimization to obtain remaining design variables
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Two-state boundary value problem

Control set generation for state-lattice search requires to obtain motion primitives 

connect two states in state space exactly
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Two-state boundary value problem

Control set generation for state-lattice search requires to obtain motion primitives 

connect two states in state space exactly
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Hybrid A*

Generate motion primitives by sampling control space

• No need to solve boundary value problem

• Resulting continuous states are associated 

with a discrete state in the hypergrid

• Each grid-cell stores a continuous state

No completeness guarantee any more

• Changing reachable statespace

• Pruning of continuous-state branches

Produces inherently driveable paths and above mentioned shortcomings almost never 

happen in practice
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Sampling based planners

Sample based methods incrementally construct a search tree by gradually 

improving the resolution

• Incremental sampling and searching 

approach without any parameter tuning

• In the limit the tree densely covers the space

• Dense sequence of samples is used 

as a guide in the construction of the tree

Several version exists:

• Rapidly exploring dense tree (RDT)

• Rapidly exploring random tree (RRT – RRT*)
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Rapidly exploring dense trees (RDT)

𝛼: Dnse sequence of samples in C
𝛼 𝑖 : ith sample of the sample sequence
G(𝑉, 𝐸):  topological representation of RDT
𝑆 ⊂ 𝐶𝑓𝑟𝑒𝑒 : Set of points reached by G

𝑆 =  𝑒∈𝐸 𝑒( 0,1 ) where 𝑒( 0,1 ) ∈ 𝐶𝑓𝑟𝑒𝑒
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Rapidly Exploring Dense Trees (RDTs)
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Rapidly Exploring Dense Trees (RDTs)

Instead of using a new sample 
of the dense sequence to grow 
Ta, the new vertex qs is used to 
grow Tb towards Ta.

Two trees are connected

Two trees are swapped when one is larger 
than the other (e.g., #vertices; #edges)
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Rapidly Exploring Random Trees (RRT)

RRT improves on the basic RDT

• Steering the system toward random

samples according to kinodinamics

• Bias the tree towards unexplored

areas by using a Voronoy bias L
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RRT pros and cons

RRT exploration quality is sensitive to distance metric and obtaining metrics and 

obtaining distance metrics for non-holonomic systems is non-trivial

Pros Cons

Asymptotically complete No optimality guarantee (!)

Works reasonably well in high dimensional state-spaces Produces “jerky” paths in finite time

No two-state boundary value solver required Hardly any offline computations possible

Easy implementation

Easy to deal with constrained platforms

Not AsymptotIcally
Optimal !!!
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RRT exstensions and RTT*

Few extensions have been proposed to the basic RRT algorithm

• Bidirectional RRT grows two trees from start and goal and 

frequently tries to merge them

• Goal-biased RRT samples the goal state every n-th sample to 

tradeoff exploration and exploitation

• RRT* Introduces local rewiring step to obtain asymptotic optimality…

Cannot rewire 
existing nodes
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RRT exstensions and RTT*

Few extensions have been proposed to the basic RRT algorithm

• Bidirectional RRT grows two trees from start and goal and 

frequently tries to merge them

• Goal-biased RRT samples the goal state every n-th sample to 

tradeoff exploration and exploitation

• RRT* Introduces local rewiring step to obtain asymptotic optimality…
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RRT* pros and cons

Pros Cons

Asymptotically complete Two-state boundary value solver required for the 
rewiring

Asymptotically optimal guarantee Produces “jerky” paths in finite time

Works reasonably well in high dimensional 
state-spaces

Hardly any offline computations possible

No two-state boundary value solver required

Easy implementation

Easy to deal with constrained platforms
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Motion planning vs control

In unmanned vehicles motion planning and control are highly coupled

Control mainly responsible to account for errors built up in between planning cycles:

• Cope with modeling inaccuracies in between planning steps

• Regulate vehicle onto trajectory

• Compute valid vehicle control input 𝒖

• Error states are frequently reset due to re-planning

Motion 
Planning

Control Vehicle

Dispatcher

Trajectory u = f(Δx)

Feedforward Uff

uff,k
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The Dynamic Window Approach (DWA)

The kinematics of the vehicle is considered via local search in velocity space:

• Consider pairs Vs=(v,ω) of translational and rotational speeds

• A pair Va=(v, ω) is considered admissible, if it allows to stop before the closest 

obstacle on the corresponding curvature.

• A dynamic window restricts the reachable velocities Vd to those that can 

be reached within a short time given limited robot accelerations

Vr Vs Va Vd

DWA Search Space
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How to choose the best (v,ω) in DWA?

Steering commands are chosen maximizing a heuristic navigation function:

• Minimize the travel time by “driving fast in the right direction”

• Planning restricted to Vr space [Fox, Burgard, Thrun ‘97]

Alignment with 

target direction

Distance to closest obstacle 

intersecting with curvature

Forward velocity of 

the robot

Gv,  heading(v,) dist(v,) velocity(v,)
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How to choose the best (v,ω) in DWA?

Steering commands are chosen maximizing a heuristic navigation function:

• Minimize the travel time by “driving fast in the right direction”

• Planning restricted to Vr space [Fox, Burgard, Thrun ‘97]

• Solution found by exhaustive evaluation of the discretized search space

Gv,  heading(v,) dist(v,) velocity(v,)
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The DWA Algorithm

1. Discretely sample robot control space

2. For each sampled velocity, perform 

forward simulation from current state 

to predict what would happen if applied 

for some (short) time.

3. Evaluate (score) each trajectory 

resulting from the forward simulation

4. Discard illegal trajectories, i.e.,

those that collide with obstacles, and

pick the highest-scoring trajectory

What about non circular kinematics?

Clothoid:
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DWA pros and cons

• Global approach [Brock & Khatib 99] in <x,y>-space uses

Forward robot velocity

Cost to reach the goal Goal nearness

Follows global path

Pros Cons

Fast to compute (<10ms) Local DWA can get stuck in local minima

Incorporates vehicle model Constant input assumption often too simplistic

Intuitive parameter tuning

The Global DWA deals well with local minima
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Wrap-up slide on “Trajectory planning in land vehicles ”

What should remain from this lecture?

• What is trajectory planning

• How graph-based methods such as A* work

• How randomized methods such as RRT work

• How the Dynamic Window Approach navigation method works
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