iy,
7
“,

\\

\\\\\\\

» 2
e\ 7,
= =

4 s
4
5
A

Unmanned autonomous vehicles
INn air land and sea

Trajectory planning in land vehicles

Matteo Matteucci
matteo.matteucci@polimi.it

Artificial Intelligence and Robotics Lab - Politecnico di Milano

Motion planning

“...eminently necessary since, by definition,

a robot accomplishes tasks by moving in the real world.”
J.-C. Latombe (1991)

Robot Motion Planning Goals

* Collision-free trajectories

° Robot should reach the goal location as fast as
possible (or maximizing an optimality criterion)

"HIS PATH-PLANNING MAY BE
SUB-OPTIMAL, BUT IT'S GOT FLAIR."

; POLITECNICO MILANO 1863

Problem statement

Find a collision free path between an initial pose and the goal, taking into account the
constraints (geometrical, physical, temporal)

° Path Planning: A PATH is a geometric
locus of way points, in a given space,
where the vehicle must pass

° Trajectory Generation: A TRAJECTORY _
IS a path for which a temporal law is]

specified (e.g., acceleration and velocity

at each point)

* Maneuver Planning: a MANOUVER is a
series of actions or a scheme or plot that
the vehicle should execute

577 POLITECNICO MILANO 1863

Motion planning definition

Given the following notation:
° A: single rigid object (the vehicle)
* W: Euclidean space where A moves (typically W =R* or R°)
° By, B,, ..., B, fixed rigid objects distributed in W (obstacles)
Let assume
° The geometry of A and B; is known
° The localization of the B; in W is accurately known
° There are no kinematic constraints in the motion of A (A is a free-flying object)

Given an initial pose and a goal pose of A in W, generate a continuous
sequence of poses of A avoiding contact with the B,
starting at the initial pose and terminating at the goal pose.

) POLITECNICO MILANO 1863

Configuration Space (C-Space)

To speed up collision detection the Configuration space is used

] II
° A configuration of an object
is a point g =(q1, 92,...,gn) |
° Point g is free if the robot
In g does not collide

° C-obstacle = union of all g
where the robot collides

* C-free = union of all free q
* Cspace = C-free + C-obstacle

Planning can be performed in C-Space

workspace configuration space

%iy POLITECNICO MILANO 1863

Mobile robot 2D C-Space

A robot can translate in the plane and/or rotate
YA

C-space: 2D (X, y3

Non holonomic
constraints can’t be
C-Space obstacles

A .‘.
0
Y
: X
X

c-space: 3D (X, Y, ei

Obstacles should be expanded according to the robot orientation

’ l’l l'l r
) £ 1 AL
i £l s, 0 d
N7}
// :
r
2 -
rh 1
A 1
1 £ Loy
T _’:t
<! <7 Lo
V ~’
/
r
B
- P
2 \:,l <‘l’r

What a planner for an autonomous car?

Several planners have been used for trajectory planning on unmanned vehicles

* The Dynamic Window Approach
° Graph-Search & State-Lattice planning

° Randomized Approaches:
Probabilistic Roadmaps, RRT, RRT*

° Potential fields & the Fast Marching
algorithm

We will se only few
of these!

T77)) POLITECNICO MILANO 1863

Graph (search) based planning basics

The overall idea:
° Generate a discretized representation of the planning problem

° Build a graph out of this discretized representation (e.g., through 4 neighbors
or 8 neighbors connectivity)

* Search the graph for the optimal solution

° Can interleave the construction of the representation with the search
(i.e., construct only what is necessary)

%) POLITECNICO MILANO 1863

Planning problem ingredients

Typical components of a Search-based Planner

* Graph construction (given a state what are its successor states)
Cost function (a cost associated with every transition in the graph) [Pomain dependent
Heuristic function (estimates of cost-to-goal)
* Graph search algorithm (for example, A* search) - Domain independent

The graph can be built taking into account robot dynamics/kinematics constraints

(9 construct search the graph ?«
the graph: for solution:

- 5,
Cis,8,) =100
Clg.8) =5

motion primitives - D,

%‘:}; POLITECNICO MILANO 1863

Planning with graphs

Graph can be constructed by using motion primitives
° Pros: sparse graph, feasible path, incorporate a variety of constraints
° Cons: possible incompleteness

set of mofion primitives
pre-computed for each robot orientation
(action template)

§

e eplcat

online .
by translating it

T 5
G, 850 = 100
G555 = &

Ty

) POLITECNICO MILANO 1863

Planning with graphs

Graph can be constructed by using motion primitives
° Pros: sparse graph, feasible path, incorporate a variety of constraints
° Cons: possible incompleteness

planning on 4D (<x,v,orientation,velocity=) multi-resolution lattice using Anytime D*

[Likhachev & Ferguson, ‘09]

POLITECNICO MILANO 1863

Exact and approximate planning

Different algorithms are available
° Returning the optimal path (e.g., Dijstra, A*, ...)

° Returning an € sub-optimal path
(e.g., weighted A*, ARA*, AD*, R*, D* Lite, ...)

Dijstra A* weighted A*

) POLITECNICO MILANO 1863

Searching graphs for least cost path

Given a graph search for the path that minimizes costs as much as possible

the cost (51,5 ,q) Of
an edgeﬁom 5110 Sgpq

20
@-@

Many search algorithms compute optimal q-values for relevant states
° g(s)—an estimate of the cost of a least-cost path from s .10 S
* optimal values satisfy: g(s) = MiNg., preqis) 9(S7) + €(S7,S)

i:;; POLITECNICO MILANO 1863

Searching graphs for least cost path

Given a graph search for the path that minimizes costs as much as possible

the cost (51,5 ,q) Of
an edge from s; 10 5.,

g=1 g=3 /

1
1
—(s)
g=/ g=5
Least-cost path is a greedy path computed by backtracking:

° start with s, and from any state s move to the predecessor
state s’such that

S’ =argmin s” in pred(s) (g(S”)+C(S”’S))

POLITECNICO MILANO 1863

A* search algorithm

an (under) estimate of the cost

. .
A* speeds up search by computing g-values as of a shortast path from s 10 S

Hﬂgﬁ) h(s) o

the cost of a shorfest path
from 5., 10 5 found seo far

Heuristic function must be
* Admissible: for every state s, h(s) < ¢*(S,Syq)
* Consistent (satisfy triangle inequality):

© h(sgoalisgoal) =0
o for every s#s .y, h(s) = ¢(s,succ(s)) + h(succ(s))

Admissibility follows from consistency and often viceversa

(557 POLITECNICO MILANO 1863

A* Search Algorithm

Main function

° 0(S4a) = 0; all other g-values are infinite;

* OPEN = {Sga};
* ComputePath();

Set of candidates for expansion

ComputePath function

* While(s,,, is Not expanded) —

For every expanded state g(s) is optimal
(if heuristics are consistent)

- remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

- expand s;

POLITECNICO MILANO 1863

A* Search Algorithm

Main function
° 0(S4a) = 0; all other g-values are infinite;

°* OPEN ={sg.«}; - Set of candidates for expansion
* ComputePath();

ComputePath function
* while(sy,, Is NOt expanded)
- remove s with the smallest [f(s) = g(s)+h(s)]from OPEN;
> Insert s into CLOSED,;
- for every successor s’of s such that s’ not in CLOSED
o ifg(s’) > g(s) + c(s,s’)
. g(s)) = g(s) + o(s,5): \ Tries to decrease g(s’) using the

> insert s’ into OPEN; found path from Sy t0 S

Set of states already expanded

start

) POLITECNICO MILANO 1863

A* Search Algorithm

ComputePath function
* while(sy,, Is NOt expanded)

* remove s with the smallest [f(s) = g(s)+h(s)]from OPEN;

* Insert s into CLOSED;

 for every successor s’of s such that s’not in CLOSED
* it g(s) >g(s) +¢(s;s)

* g(s) =9(s) +c(s;s); g

* insert s’into OPEN; h

CLOSED = {}

OPEN = {Sgo) (s)—2—

next state to expand: Sq,

OLITECNICO MILANO 1863

9(52) > g(sstart) + C(Sstartisz)

g= «©

h=1

A* Search Algorithm

ComputePath function
* while(s,,, IS NOt expanded)

* remove s with the smallest [f(s) = g(s)+h(s)]from OPEN;
* Insert s into CLOSED;
 for every successor s’of s such that s’not in CLOSED
* it g(s) > g(s) +¢c(s.;s)
* g(s) =g(s) +¢(s:s);
* insert s’into OPEN;

CLOSED = {S¢t}
OPEN = {s,}
next state to expand: s,

T77)) POLITECNICO MILANO 1863

A* Search Algorithm

ComputePath function
* while(sy,, Is NOt expanded)
* remove s with the smallest [f(s) = g(s)+h(s)]from OPEN;
 Insert s into CLOSED,;
 for every successor s’of s such that s’not in CLOSED
* it g(s) >g(s) + c(s.s)
* 9(s) =9(s) +c(s;s);
* insert s’into OPEN;

CLOSED = {Sga1s So}
OPEN = {s;,S,}
next state to expand: s,

POLITECNICO MILANO 1863

A* Search Algorithm

ComputePath function
* while(sy,, Is NOt expanded)
* remove s with the smallest [f(s) = g(s)+h(s)]from OPEN;
 Insert s into CLOSED,;
 for every successor s’of s such that s’not in CLOSED
* it g(s) >g(s) + c(s.s)
* 9(s) =9(s) +c(s;s);
* insert s’into OPEN;

CLOSED = {Sstart’ S Sl}
OPEN = {s4,Sgoa1}
next state to expand: s,

POLITECNICO MILANO 1863

A* Search Algorithm

ComputePath function
* while(s,,, IS NOt expanded)

* remove s with the smallest [f(s) = g(s)+h(s)]from OPEN;
 Insert s into CLOSED,;

 for every successor s’of s such that s’not in CLOSED
* it g(s) >g(s) +¢(s;s)

* g(s) =9(s) +c(s;s); g

- insert s’into OPEN; n

0
h=3
1
CLOSED = {Sstart’ 52’ S1 J S4}

OPEN = {S3,5,4} _3,

next state to expand: S,

T77)) POLITECNICO MILANO 1863

A* Search Algorithm

ComputePath function
* while(sy, Is Not expanded)
* remove s with the smallest [f(s) = g(s)+h(s)]from OPEN;
* insert s into CLOSED;
 for every successor sof s such that s’not in CLOSED
* ifg(s) >g(s) +¢(s,s)
* 9(s) =9(s) +c(s;s),
« insert s’into OPEN; ﬁ

h
CLOSED = {S¢4t» So: S1 »S4 ’Sgoal}

OPEN = {s,}

DONE!

POLITECNICO MILANO 1863

A* Properties

A* Is guaranteed to
° Return an optimal path in terms of the solution
* Perform provably minimal number of state expansions

Algorithms state expansion:
* Dijkstra’s: expands states in the order of f = g values (roughly)
° A* Search: expands states in the order of f = g + h values

* Weighted A*:expands states in the order of f = g + € h values,
> 1= bias towards states that are closer to goal

“Heuristics: Intelligent Search Strategies for

Computer Problem Solving”, Addison-Wesley, 1984

Weighted A* Search in many domains, it has been shown to be orders
of magnitude faster than A*

J. Pearl.,

7)) POLITECNICO MILANO 1863

C
“start

88

A* Properties

Algorithms state expansion:
* Dijkstra’s: expands states in the order of f = g values (roughly)
° A* Search: expands states in the order of f = g + h values

i:;; POLITECNICO MILANO 1863

A* Properties

Algorithms state expansion:
* Dijkstra’s: expands states in the order of f = g values (roughly)
° A* Search: expands states in the order of f = g + h values

° Weighted A*.expands states in the order of f = g + € h values,
> 1= bias towards states that are closer to goal

Shallow minima help in
finding solution fast.

POLITECNICO MILANO 1863

Other variations of A*

ARA* (Anytime Repairing A¥*)
° Subsequent queries with decreasing suboptimality factor e
* Fast initial (suboptimal) solution

° Refinement over time
bl g2 Bal w,
D*/D*-Light 3’}3 \sy;.ﬁ / ?;ﬁ

° Re-use parts of the previous query
. . A*: 25s ARA* (e=2.5): 0.6s. ARA* (e=1.0): 25s.
and only repair solution locally where

changes occured Likhachev, M. (2003). “ARA*: Anytime A* with provable bounds on sub-
optimality”, Advances in Neural Information Processing Systems

Anytime D* (D* + ARAY*)
* Anytime graph-search re-using previous query

} POLITECNICO MILANO 1863

State-Lattice planning

Motion planning for constrained platforms as a graph search in state-space

° Discretize state-space into a
hypergrid (e.g. (x, y, 6, k))
* Compute neighborhood set by

connecting each tuple of states
with feasible motions

* Define cost-function/edge-weights

° Run any graph-search algorithm
to find lowest-cost path

Pivtoraiko, M., & Kelly, A. (2005). Constrained Motion Planning in
Discrete State Spaces. In Field and Service Robotics pp. 269-280.

%) POLITECNICO MILANO 1863

State-Lattice planning pros and cons

Resolution complete “Curse of dimensionality”. Number of states grows exponentially
with dimensionality of state-space

Optimal State-lattice construction requires solving nontrivial two-state
boundary value problem

Offline computations due to regular Regular discretization might cause problems in narrow passages,
structure possible not aligned with the hypergrid

Discretization causes discontinuities in state variables not
considered in the hypergrid thus motion plans are not inherently
executable

Design minimal neighborhood sets

* Avoid insertion of edges that can be
decomposed with the existing control

* Decomposition “close” in cost-space

Pivtoraiko, M., & Kelly, A. (2005). Constrained Motion Planning in
Discrete State Spaces. In Field and Service Robotics pp. 269-280.

%‘:}; POLITECNICO MILANO 1863

An example of State-Lattice «curse of dimensionality»

Discretization of the state-space for an Ackermann vehicle
* x =[-50.0, 50.0], 0.2 m resolution — 501 states
° y=[-50.0, 50.0], 0.2 m resolution — 501 states
° heading 6 = [-r, +m], 0.1 rad resolution — ~64 states
° steering angle ¢ =[-0.6, +0.6], 0.1 rad resolution — 13 states

Overall state lattice size
°* S=xxyxfgx¢=208832'832 states
* Impossible to search exhaustively (during online operation)

Opportunities for speed-up:
* Well-informed heuristics
* Multi-resolution state-lattices

o

27\ POLITECNICO MILANO 1863

Well informed heuristics for State-Lattice search

The closer the heuristics estimates the true cost-to-go, the faster the search

° hy: non-holonomic-without-obstacles
- EXxpensive, but can be computed offline
- Better estimate of true cost in vicinity of goal

° h,: holonomic-with-obstacles
- Cheap to compute/online
- DBetter estimate of true cost far from the goal

°* h=max(hy, h,)

7)) POLITECNICO MILANO 1863

Two-state boundary value problem

Control set generation for state-lattice search requires to obtain motion primitives
connect two states in state space exactly

* Define this as an optimization problem
u’ = argmin (Cb(u, tf) + f L(x, u, t)dt)
u t

* Convert functional optimization problem into parametric one by restriction to a
parametrized function of the inputs

Ly
p* = argmin (d)(u(p), tf) +f L(x,u(p),t)dt)
14 t

o

r

o

° Subjectto: x(t,) = x,
x(tr) = %

Kelly, A., Nagy, B., “Reactive Nonholonomic Trajectory Generation via
Parametric Optimal Control”, The International Journal of Robotics

Research, 2003

7)) POLITECNICO MILANO 1863

Two-state boundary value problem

Control set generation for state-lattice search requires to obtain motion primitives
connect two states in state space exactly

° Often convenient to parametrize problem over path length

Sf
p* = argmin (Cb(u(p, Sf), sf) + f L(x,u(p), s)ds)
p 0

E.g., with polynomial curvature input

u(p,s) = k(p,s) =py + pis +pys?+ -

Subject to: x(to) = xo
x(tr) = %

T
* Design variables for optimization problem q = [p, Sf]

Kelly, A., Nagy, B., “Reactive Nonholonomic Trajectory Generation via
Parametric Optimal Control”, The International Journal of Robotics

Research, 2003

7} POLITECNICO MILANO 1863

Two-state boundary value problem

Control set generation for state-lattice search requires to obtain motion primitives
connect two states in state space exactly

* Cartesian coordinates X(s), y(s) cannot be computed in closed form
for an Ackermann system model even for simple inputs

S

Kelly, A., Nagy, B., “Reactive Nonholonomic Trajectory Generation via
Parametric Optimal Control”, The International Journal of Robotics

miE) = Jr cos(@(r)) dt A f(x)
0
y(s) = Jr sin(@(r)) dt |
0 :
B(s) = Jf k(1) dTt ‘
0 : : S
K(S)=p0+p1$+p2$2+'” g E i
* Solved by numerical approximation of integrals . : N §
a m b o

y

) POLITECNICO MILANO 1863

Two-state boundary value problem

Control set generation for state-lattice search requires to obtain motion primitives
connect two states in state space exactly

° For 3rd order curvature polynomials, the problem has a unique solution

T
q=po = K0, P1, P23, 5]

* Constraints on Ax, Ay, A6, k,, k, can be included in the optimization criterion

Ky — x(sf)‘

p° = argmin 2 y(sf)
p Or — 0(sr)

Kp — K(Sr).

* Gradient-based nonlinear optimization to obtain remaining design variables

Kelly, A., Nagy, B., “Reactive Nonholonomic Trajectory Generation via
Parametric Optimal Control”, The International Journal of Robotics

Research, 2003

y

) POLITECNICO MILANO 1863

Two-state boundary value problem

Control set generation for state-lattice search requires to obtain motion primitives
connect two states in state space exactly

. _initialstate [x = 0,y = 0,6 = 0,k = 0]
| _ | | B desired state [x = 4,y = 4,8 = 0,k = 0.78]"
P O S SO SN
B terminal state

0D [e cErmerrames e e s e oBb feen Febie moe i ne i el e ekt b e i b et v e e feee e ey

-ﬂ.ﬂ Berr rrrermrerre res re rmr rrepmer rew ._ T I N L T NNt R L5, ST A AN L

0.3

Kelly, A., Nagy, B., “Reactive Nonholonomic Trajectory Generation via
Parametric Optimal Control”, The International Journal of Robotics

Research, 2003

L L L L 1 1}
-0.4 -0.2 o 0.2 04 0.6 0B 1 1.2

POLITECNICO MILANO 1863

Two-state boundary value problem

Control set generation for state-lattice search requires to obtain motion primitives
connect two states in state space exactly

08,

B initial state [x = 0,y = 0,0 = 0,x = 0]”

Do’
B desired state [x = 4,y = 4,0 = 0,k = 0.78]7

04
B terminal state
o2t

» 0!

02t

D4+

0808}

08

Kelly, A., Nagy, B., “Reactive Nonholonomic Trajectory Generation via
Parametric Optimal Control”, The International Journal of Robotics

Research, 2003

y § J
04 o8 08 ! 12

POLITECNICO MILANO 1863

Hybrid A*

Generate motion primitives by sampling control space
* No need to solve boundary value problem

° Resulting continuous states are associated e 0
with a discrete state in the hypergrid

“Path Planning for Autonomous Vehicles in Unknown Semi-

structured Environments”, The Int. Journal of Robotics Research, 2010

* Each grid-cell stores a continuous state e @
No completeness guarantee any more ® .
* Changing reachable statespace
: , Conventional ok
° Pruning of continuous-state branches Stale-Lattice Hybrid A

Produces inherently driveable paths and above mentioned shortcomings almost never
happen in practice

Dolgov, D., et al.,

y

) POLITECNICO MILANO 1863

Sampling based planners

Sample based methods incrementally construct a search tree by gradually
Improving the resolution

° Incremental sampling and searching
approach without any parameter tuning

° In the limit the tree densely covers the space .

* Dense sequence of samples is used
as a guide in the construction of the tree

Several version exists:
* Rapidly exploring dense tree (RDT)
* Rapidly exploring random tree (RRT — RRT¥)

7)) POLITECNICO MILANO 1863

Rapidly exploring dense trees (RDT)

SIMPLE RDT(g)
1 G.init(go);
2 fori=1tokdo
3 G.add vertex(a(i));
4 gn - NEAREST(S(G), a(i));
5 G.add edge(g,, a(i));

a: Dnse sequence of samples in C
a(i): ™ sample of the sample sequence
G(V,E): topological representation of RDT
S C Cpree : Set of points reached by G

S = UeEE e([o,l]) where 6([0,1]) € Cfree

LaValle, S. (1998). Rapidly-Exploring Random Trees

A New Tool for Path Planning.

45 iterations 2345 iterations

OLITECNICO MILANO 1863

Rapidly Exploring Dense Trees (RDTSs)

RDT(qo)
1 G.init(qo);
2 fori=1tokdo
gn + NEAREST(S, a(7));
g, + STOPPING-CONFIGURATION(q,,x(7));
if g, # g, then
G.add vertex(q,);
G.add_edge(q,, ¢,);

-1 O O = W

dn

do

LaValle, S. (1998). Rapidly-Exploring Random Trees

A New Tool for Path Planning.

; POLITECNICO MILANO 1863

Rapidly Exploring Dense Trees (RDTSs)

RDT BALANCED BIDIRECTIONAL(q;, g¢)
1 T,.init(q;); T3.init(ge);
2 fori=1to K do
3 @n < NEAREST(S,, a(7));
4 ¢y + STOPPING-CONFIGURATION(g,,,c(7));
5 if g, # ¢, then
6 T,.add vertex(qs);
7 T,.add_edge(gy, g,);
8 /¢, — NEAREST(Sp, G5); ™\
9 ¢, +~ STOPPING-CONFIGURATION(q),,qs);
10 if ¢, # ¢/, then
11 Ty.add vertex(q.);
12 ____T).add edge(q;, 4.);)
13 if ¢, = g, then return SOLUTION; |——
14 it |7, > |71,]| then MR T
15 return FAILURE

POLITECNICO MILANO 1863

Rapidly Exploring Random Trees (RRT)

Algorithm 1 7 = (V. E) + RRT(z4)

1: 7 + InitializeTree();

2: 7 + InsertNode(V, zinit, 7)3

B fori=1toi=N do

Zrand SEI.IIIPIE{I'};

Znearest ¥ N'E'-EII‘ESt-{T, z'il‘l:!ﬂ-d]:-'

{xnew s Unews Tne-w:] — EtEEl‘{anE_rE“, zruﬂd};

if ObstacleFree(r, ..) then
7 + InsertNode(zpew. 7);

O end if

10: end for

11: return 7

e N A

RRT improves on the basic RDT

* Steering the system toward random
samples according to kinodinamics

° Bias the tree towards unexplored
areas by using a Voronoy bias

OLITECNICO MILANO 1863

rand

3 \ Tt I A T
/ 2 X R .J“ R, \ X
/ - A, . " - ‘ -
e ¥ i o e o
\ / e R R
| et < an iRt TS
\ / e s R S o L 2
Y g L B ey |
/ s G 27 . =
/ o B 3o Ji A g 3
_ T TR g
= \ Kot TS Loy = 0 ST
< Y . b o L
T o — x -}.A,»‘ft' Lot .
— 1 3 . -
’ 4 b PR N okar L% = 'JJ
/ iy o) S
/ > | 6; o U R e ,"“ 1
S N y N h bl F
e f Tt et TR A el
A Y e
| oo :A' A %]':‘v a:‘
. | \ W P - —_—
} | T NS -]
[S -..,1} g oy \ 8
t)|) NS a e M

LaValle, S. M., Kuffner, J., “Randomized Kinodynamic Planning”,
IEEE International Conference on Robotics and Automatio, 1999

RRT pros and cons

Not Asymptotlically

Optimal !
[]
Asymptotically complete No optimality guarantee (!)

Works reasonably well in high dimensional state-spaces Produces “jerky” paths in finite time

No two-state boundary value solver required Hardly any offline computations possible

Easy implementation

Easy to deal with constrained platforms

RRT exploration quality is sensitive to distance metric and obtaining metrics and
obtaining distance metrics for non-holonomic systems is non-trivial

Xnearest

X nearest

!

2\

POLITECNICO MILANO 1863

RRT exstensions and RTT*

Few extensions have been proposed to the basic RRT algorithm

° Bidirectional RRT grows two trees from start and goal and
frequently tries to merge them

° Goal-biased RRT samples the goal state every n-th sample to
tradeoff exploration and exploitation

* RRT* Introduces local rewiring step to obtain asymptotic optimality...

Cannot rewire
Tree at k=16: existing nodes

(O o o

i:;; POLITECNICO MILANO 1863

S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms for

optimal motion planning”, Robotics: Science and Systems, 2010

RRT exstensions and RTT*

Few extensions have been proposed to the basic RRT algorithm

° Bidirectional RRT grows two trees from start and goal and
frequently tries to merge them

° Goal-biased RRT samples the goal state every n-th sample to
tradeoff exploration and exploitation

* RRT* Introduces local rewiring step to obtain asymptotic optimality...

near vertices

COSt(xsample) 5 COSt(xsample'xnear) < cost(Xnear)?

-o—@

xsample Xnear

S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms for

optimal motion planning”, Robotics: Science and Systems, 2010

y

) POLITECNICO MILANO 1863

RRT* pros and cons

s cons

Asymptotically complete Two-state boundary value solver required for the
rewiring

Asymptotically optimal guarantee Produces “jerky” paths in finite time

Works reasonably well in high dimensional Hardly any offline computations possible

state-spaces

No two-state boundary value solver required
Easy implementation

Easy to deal with constrained platforms

OLITECNICO MILANO 1863

Motion planning vs control

In unmanned vehicles motion planning and control are highly coupled

u = f(Ax

Ustk

Motion Trajectory

Planning

Feedforward Uy

Dispatcher

Control mainly responsible to account for errors built up in between planning cycles:

* Cope with modeling inaccuracies in between planning steps
* Regulate vehicle onto trajectory

* Compute valid vehicle control input u

* Error states are frequently reset due to re-planning

i:;; POLITECNICO MILANO 1863

The Dynamic Window Approach (DWA)

The kinematics of the vehicle is considered via local search in velocity space:
* Consider pairs V_=(v,w) of translational and rotational speeds

* Apair V_=(v, w) is considered admissible, if it allows to stop before the closest
obstacle on the corresponding curvature.

* A dynamic window restricts the reachable velocities V, to those that can
bf_%\ched within a short time given limited robot accelerations
N

Fox, D., Burgard, W., & Thrun, S. (1997). The dynamic window

approach to collision avoidance. IEEE RAM, 4(1), 23-33.

Vs A 90 cm/sec
. v ={ VEI|V—ay "tLv+a, -t
d wE [w—arpr " t,w+ appr " t]
dynamic window V, | L
'f L

F v\ — DWA Search Space
dctdal velocity]

Vi =Vs nVa MV

ﬁ(l deg/sec - 90 dcg;'sec>

y

) POLITECNICO MILANO 1863

How to choose the best (v,w) in DWA?

Steering commands are chosen maximizing a heuristic navigation function:

* Minimize the travel time by “driving fast in the right direction”
* Planning restricted to V, space [Fox, Burgard, Thrun ‘97]

G(v,m) =o(a. -heading(v,m)+p -dist(v,w)+y -velocity(v,m))

Alignment with Distance to closest obstacle Forward velocity of
target direction intersecting with curvature the robot
velocity -
clearance 0.5
predicted position 80
90 - : mmnbdty[mvsec]
\ actual position rot. velocity (deg/sec] 45 0

) POLITECNICO MILANO 1863

How to choose the best (v,w) in DWA?

Steering commands are chosen maximizing a heuristic navigation function:

* Minimize the travel time by “driving fast in the right direction”
* Planning restricted to V, space [Fox, Burgard, Thrun ‘97]

G(v,m) =o(a -heading(v,m)+p -dist(v,w)+y -velocity(v,m))

Solution found by exhaustive evaluation of the discretized search space

® = optimum

collision free

objective function

collision soon

—

o

collision inevitable

objective value

solution

(=]

7} POLITECNICO MILANO 1863

The DWA Algorithm

1. Discretely sample robot control space | e -
. (Ve — AL, we + waAl) (Ve + Vo AL, we + wa Al)
2. For each sampled velocity, perform ol ~ ; e
forward simulation from current state S any”
to predict what would happen if applied S N
. Ve — Up AL, we — wpAt s
for some (short) time. 3 '
3. Evaluate (score) each trajectory 18] et
. . . 60 60.5 61 61.5 62 62.5
resulting from the forward simulation [}

4. Discard illegal trajectories, i.e.,
those that collide with obstacles, and
pick the highest-scoring trajectory

What about non circular kinematics?
Clothoid: 5(z) = [: sin(t*)dt, C(z)= [: cos(t?) dt.

y

) POLITECNICO MILANO 1863

DWA pros and cons

Fast to compute (<10ms) Local DWA can get stuck in local minima
Incorporates vehicle model Constant input assumption often too simplistic
Intuitive parameter tuning

The Global DWA deals well with local minima

* Global approach [Brock & Khatib 99] in <x,y>-space uses

[Forward robow @ global path }

NF = a-vel + B -nf +yAnf + dgoal

[Cost to reach the goal Goal nearness }

Goal

y

) POLITECNICO MILANO 1863

Wrap-up slide on “Trajectory planning in land vehicles ”

What should remain from this lecture?
° What is trajectory planning
° How graph-based methods such as A* work
° How randomized methods such as RRT work
* How the Dynamic Window Approach navigation method works

References

° LaValle, S. M. (2006). Planning algorithms. Cambridge university press.

° Latombe, J-C (2012). Robot motion planning. Vol. 124. Springer Science &
Business Media.

° Fox, D., Burgard, W., & Thrun, S. (1997). The dynamic window approach to
collision avoidance. IEEE RAM, 4(1), 23-33.

T77)) POLITECNICO MILANO 1863

