R
\\\\\\\\ /I[//I///
N 2,

% S A
%, o
iy W
W

Deep Learning: Theory, Techniques & Applications
- Neural Network Training: Overfitting -

Prof. Matteo Matteucci — matteo.matteucci@ polimi.it

Department of Electronics, Information and Bioengineering
Artificial Intelligence and Robotics Lab - Politecnico di Milano

Neural Networks are Universal Approximators

“A single hidden layer feedforward neural network
with S shaped activation functions can approximate
any measurable function to any desired degree of
accuracy on a compact set ”

Universal approximation theorem (Kurt Hornik, 1991)

Regardless of what function we are learning, a single layer can do it ...
° ... butit doesn't mean we can find the necessary weights!
° ... but an exponential number of hidden units may be required
° ... butit might be useless in practice if it does not generalize!

“Entia non sunt multiplicanda praeter necessitatem” '
William of Ockham (c 1285 — 1349) |

“\ POLITECNICO MILANO 1863

Model Complexity

Inductive Hypothesis: A solution approximating the target function over a sufficiently large set of
training examples will also approximate it over unobserved examples

Too simple models
Underfit the data ...

Too complex models
Overfit the data and do
not Generalize

POLITECNICO MILANO 1863

How to Measure Generalization?

Training error/loss is not a good indicator of performance on future data:

* The classifier has been learned from the very same training data,
any estimate based on that data will be optimistic

New data will probably not be exactly the same as training data
You can find patterns even in random data

We need to test on an independent new test set Done for training on
' Il dataset
* Someone provides you a new dataset L LRSS

* Split the data and hide some of them for later evaluation
* Perform random subsampling (with replacement) of the dataset

In classification you should preserve class distribution, i.e., stratified sampling!

" POLITECNICO MILANO 1863

Cross-validation Variations

Cross-validation uses training data itselves to estimate the error on new data
* When enough data available use an hold out set and perform validation

OLITECNICO MILANO 1863

123

!

FIGURE 5.1. A schematic display of the validation set approach. A set of n
observations are randomly split into a training set (shown in blue, containing
observations 7, 22, and 13, among others) and a validation set (shown in beige,
and containing observation 91, among others). The statistical learning method is
fit on the training set, and its performance is evaluated on the validation set.

72213 91

Cross-validation Variations 6

Cross-validation uses training data itselves to estimate the error on new data
* When enough data available use an hold out set and perform validation
* When not too many data available use leave-one-out cross-validation (LOOCV)

123

n

123
123

123

123 n

FIGURE 5.3. A schematic display of LOOCYV. A set of n data points is repeat-
edly split into a training set (shown in blue) containing all but one observation,
and a validation set that contains only that observation (shown in beige). The test
error is then estimated by averaging the n resulting MSE’s. The first training set

contains all but observation 1, the second training set contains all but observation
2, and so forth.

7} POLITECNICO MILANO 1863

Cross-validation Variations 7

Cross-validation uses training data itselves to estimate the error on new data
* When enough data available use an hold out set and perform validation
* When not too many data available use leave-one-out cross-validation (LOOCV)
* Use k-fold cross-validation for a good trade-off (sometime better than LOOCYV)

123 n

. 1 E(|) 11765 47
e, = — X w

k N Z Nk 11765 47

nreN

kle 11765 47

E:E &, 11765 47

T 11765 47

FIGURE 5.5. A schematic display of 5-fold CV. A set of n, gbservatio

randomly split into five non-overlapping groups. Each of these ﬁ oot .
validation set (shown in beige), and the remainder as a traini What do | do with all
blue). The test error is estimated by averaging the five resulting W these models?

) POLITECNICO MILANO 1863

Note on Ensemble Methods

POLITECNICO MILANO 1863

Early Stopping: Limiting Overfitting by Cross-validation

Overfitting networks show a monotone training error trend (on average with SGD) as the
number of gradient descent iterations k, but they lose generalization at some point ...

E(x|w)
* Hold out some data

° Train on the training set

* Perform cross-validation
on the hold out set Online estimate of the

° Stop the train when generalization error
validation error increases

Egs(x|w)

Training set error

OLITECNICO MILANO 1863

Cross-validation and Hyperparameters Tuninig

Model selection and evaluation happens at different levels:
* Parameters level, i.e, when we learn the weights w for a neural network

* Hyperparameters level, i.e., when we chose the number of layers L or
the number of hidden neurons J® or a give layer

° Meta-learning, i.e., when we learn from data a model to chose hyperparameters

E(x|w) E(x|Xv)
. L
Generalization error Eps(xw) _? Chose model with
with J neurons in 1 layer , i best validation error
Validation set error ~ CES(XIW) T
_____________ Efs(xlw) [t
Training set error i i
kgs k 1 2 JO

POLITECNICO MILANO 1863

Weight Decay: Limiting Overfitting by Weights Regularization
Regularization is about constraining the model «freedom», based on a-priori

assumption on the model, to reduce overfitting.
o o Maximum
So far we have maximized the data likelihood: Likelihood

wyg = argmax,, P(D|w)

_ _ , Make assumption
We can reduce model «freedom» by using a Bayesian ap on parameters

(a-priori) distribution

g o Wyap = argmax,, P(w|D) o
A-Posteriori = argmax,, P(D|w) - P(w)

Small weights have been observed to improve generalization of neural networks:

P(w) ~ N(0,a;3)

OLITECNICO MILANO 1863

Weight Decay: Limiting Overfitting by Weights Regularization

w = argmax,, P(w|D) = argmax,, P(D|w) P(w)

2
N 1 _(tn_g(xn|W))2 ¢ 1 _(;ng
= argmax 1_[e 207 e “%w
Wn=1\/27w _1v2may,
N 2 Q 2
_ (tn — g(xnlw)) + (Wq)
= argmin,, 202 202 Here it comes
n=1 q=1 W another loss
N Q function!!!
. 2 2.0
= argmin,,) (t, —glxa|w)) +vy (Wq)
oot . 27 . J
Fitting Regularization

OLITECNICO MILANO 1863

Recall Cross-validation and Hyperparameters Tuninig

You can use cross-validaton to select the proper y:
* Split data in training and validation sets

Co : E(x|w
° Minimize for different values of y (lA) __
NTRAIN , Q , EY4L -_-'.‘ -?
EPFAN = 3 (ty — gCralw))’ +7) (we) "
n=1 g=1 EVAL ,____i____";’ i
* Evaluate the model A §
5 EVAL | gy :
EYA =) (ta = gCalw) T | |
L i N
* Chose the y* with the best validation error 01 1 5 100 vy

° Put back all data together and minimize

N Q
2 " 2 * .
By =) (ta = gCeulw)* + 7) (wy) Chose y* = 5 with
n=1 q=1 best validation error

POLITECNICO MILANO 1863

Dropout: Limiting Overfitting by Stochastic Regularization

By turning off randomly some neurons we force them to learn an independent feature
preventing hidden units to rely on other units (co-adaptation):

* Each hidden unit is set to zero with p](-l) probability, e.q., p](.l) = 0.3

l l

i~ e 1)

g1(x|w) J

AO W Dp=D e m)

gx (x[w)

Dropout: Limiting Overfitting by Stochastic Regularization

By turning off randomly some neurons we force them to learn an independent feature
preventing hidden units to rely on other units (co-adaptation):

* Each hidden unit is set to zero with p](-l) probability, e.q., p](.l) = 0.3

l l

? ~ e (o)

g1(x|w) J

AO W Dp=D e m)

gx (x[w)

5 ‘;:;i POLITECNICO MILANO 1863

Dropout: Limiting Overfitting by Stochastic Regularization

By turning off randomly some neurons we force them to learn an independent feature
preventing hidden units to rely on other units (co-adaptation):

* Each hidden unit is set to zero with p](-l) probability, e.q., p](.l) = 0.3

l l
D (D
m; -~ ~ Be (pj)

91 (x|w)
AO W Dp=D e m)

gx (x[w)

5 ‘;:;i POLITECNICO MILANO 1863

Dropout: Limiting Overfitting by Stochastic Regularization

By turning off randomly some neurons we force them to learn an independent feature
preventing hidden units to rely on other units (co-adaptation):

* Each hidden unit is set to zero with p](-l) probability, e.q., p](.l) = 0.3

l l

? ~ e (o)

g1(x|w) J

AO W Dp=D e m)

gx (x[w)

5 ‘;:;i POLITECNICO MILANO 1863

Dropout: Limiting Overfitting by Stochastic Regularization

In Dropout we train a number of weaker classifiers, on the different mini- batch and then
at test time we use them by averaging the responses of all ensemble members.

Behaves as an
ensemble method

" POLITECNICO MILANO 1863

Dropout: Limiting Overfitting by Stochastic Regularization

In Dropout we train a number of weaker classifiers, on the different mini- batch and then
at test time we use them by averaging the responses of all ensemble members.

At testing time we remove the masks and we average the output (by weight scaling)

Behaves as an
ensemble method

R
\\\\\\\\ /I[//I///
N 2,

% S A
%, o
iy W
W

Deep Learning: Theory, Techniques & Applications
- Neural Network Training: Tips & Tricks-

Prof. Matteo Matteucci — matteo.matteucci@ polimi.it

Department of Electronics, Information and Bioengineering
Artificial Intelligence and Robotics Lab - Politecnico di Milano

Better Activation Functions

Activation functions such as Sigmoid or Tanh saturate 1

Saturation
°* Gradient is close to zero Zero Gradient

. . L . \
° Backprop. requires gradient multiplications -10
* Gradient faraway from the output vanishes
° Learning in deep networks does not happen

10

~

JACHR
a(<1>))__ZZ(— g1 (W) - g1 (W) - Wi+ B (Z @. >

This is a well known problem in Recurrent Neural Networks, but it affects also deep
networks, and it has hindered neural network training since ever ...

7\ POLITECNICO MILANO 1863

Rectified Linear Unit

10

The ReLU activation function has been introduced

g(a) = ReLu(a) = max(0,a)
g'(a)

= 1450

It has several advantages: —10 10

* Faster SGD Convergence (6x w.r.t sigmoid/tanh)
° Sparse activation (only part of hidden units are activated)

° Efficient gradient propagation (no vanishing or exploding gradient problems),
and Efficient computation (just thresholding at zero)

* Scale-invariant:
max(0, ax) = amax(0, x)

77 POLITECNICO MILANO 1863

Rectified Linear Unit

10

The ReLU activation function has been introduced

g(a) = ReLu(a) = max(0,a)

gr(a) = 1a>0
It has potential sisadvantages: -10 10
* Non-differentiable at zero: however it is differentiable anywhere else
° Non-zero centered output Decreased model

capacity, it happens with

° Unbounded: Could potentially blow up high learning rates

° Dying Neurons: ReLU neurons can sometimes bggtsh
they become inactive for essentially all inputs. No gradients flow backward
through the neuron, and so the neuron becomes stuck and "dies".

OLITECNICO MILANO 1863

Rectified Linear Unit (Variants)

Leaky ReLU: fix for the “dying ReLU” problem

(

T if x>0

\0.013: otherwise

f(z) = <

ELU: try to make the mean activations closer to zero
which speeds up learning. Alpha is tuned by handby hand

T if x>0

ae® —1) otherwise

: POLITECNICO MILANO 1863

Weights Initialization

The final result of gradient descent is highly affected by weight initialization:
* Zeros: it does not work! All gradient would be zero, no learning will happen
° Big Numbers: bad idea, if unlucky might take very long to converge

° w~ N(0,0% = 0.01): good for small networks, but it might be a problem for
deeper neural networks

In deep netowrks:
* If weights start too small, then gradient shrinks as it passes through each layer

* If the weights in a network start too large, then gradient grows as it passes
through each layer until it's too massive to be useful

Some proposal to solve this Xavier initialization or He initialization ...

5 ‘;:;i POLITECNICO MILANO 1863

Xavier Initialization

Suppose we have an input x with I components and a linear neuron with random
weights w. Its output is

hi = wjixq + - +wjxg + -+ wjp X
We can derive that wj;x; Is going to have variance
Var(wjix;) = E[xi]zVar(Wji) + E[Wji]zVar(xi) + Var(w;;)Var(x;)
Now if our inputs and weights both have mean 0, that simplifies to
Var(wjix;) = Var(wj)Var(x;)
If we assume all w; and x; are i.i.d. we obtain
Var(hj) = Var(wjlxl + o Fwiixg o+ wyy x,) = nVar(w;)Var(x;)

The variance of the output is the variance of the input, but scaled by nVar(w;).

o Ty

\ POLITECNICO MILANO 1863

Xavier Initialization

If we want the variance of the input and the out to be the same

Linear assumption

nVar(w;) =1 seem too much, but
in practice it works!

For this reason Xavier proposes to initialize w ~ N (0, i) ®

Nin

Performing similar reasoning for the gradient Glorot & Bengio found

noutVar(wj) =1

To accommodate for this and for the Xavier constraint they propose w ~ N (O,n +2n)
in out

More recently He proposed, for rectified linear units, w ~ N (O, i)

Nin

POLITECNICO MILANO 1863

Recall about Backpropagation

Finding the weighs of a Neural Network is a non linear minimization process

N
argmin,, E(w) = z (tn — g(xn, w))? E(w)

n=1

We iterate from a initial configuration

0E (w)

k+1 _ ok _ N7
L ow

w =

wk

%

A

To avoid local minima can use momentum

Several variations
exists beside these two

More about Gradient Descent

Nesterov Accelerated gradient: first make a jump as the momentum, then adjust

1 0E (w
dw wk-1
whtl = ik _p OE(w)
ow K+
w 2

brown vector = jump, red vector = correction, green vector = accumulated gradient

blue vectors = standard momentum

OLITECNICO MILANO 1863

Adaptive Learning Rates

Neurons in each layer learn differently
* Gradient magnitudes vary across layers
* Early layers get “vanishing gradients”
* Should ideally use separate adaptive learning rates

Several algoritm proposed.
* Resilient Propagation (Rprop — Riedmiller and Braun 1993)
* Adaptive Gradient (AdaGrad — Duchi et al. 2010)
°* RMSprop (SGD + Rprop — Teileman and Hinton 2012)
° AdaDelta (Zeiler et at. 2012)
* Adam (Kingma and Ba, 2012)

Learning Rate Matters

SGD - — SGD
Momentum [- Momentum
—— NAG : — NAG
— Adagrad | — Adagrad
~ Adadelta ~ Adadelta
Rmsprop - Rmsprop

e

R
\\\\\\\\ /I[//I///
N 2,

% S A
%, o
iy W
W

Deep Learning: Theory, Techniques & Applications
- Neural Network Training: Overfitting -

Prof. Matteo Matteucci — matteo.matteucci@ polimi.it

Department of Electronics, Information and Bioengineering
Artificial Intelligence and Robotics Lab - Politecnico di Milano

