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Regardless of what function we are learning, a single layer can do it …

• … but it doesn’t mean we can find the necessary weights!

• … but an exponential number of hidden units may be required

• … but it might be useless in practice if it does not generalize!

Neural Networks are Universal Approximators

“A single hidden layer feedforward neural network 
with S shaped activation functions can approximate 
any measurable function to any desired degree of 

accuracy on a compact set ”

Universal approximation theorem (Kurt Hornik, 1991)

“Entia non sunt multiplicanda praeter necessitatem”

William of Ockham (c 1285 – 1349)
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Model Complexity

Inductive Hypothesis: A solution approximating the target function over a sufficiently large set of 

training examples will also approximate it over unobserved examples

Too complex models 
Overfit the data and do 

not Generalize

Too simple models 
Underfit the data ...
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How to Measure Generalization?

Training error/loss is not a good indicator of performance on future data:

• The classifier has been learned from the very same training data, 

any estimate based on that data will be optimistic

• New data will probably not be exactly the same as training data

• You can find patterns even in random data

We need to test on an independent new test set

• Someone provides you a new dataset

• Split the data and hide some of them for later evaluation

• Perform random subsampling (with replacement) of the dataset 

In classification you should preserve class distribution, i.e., stratified sampling!

Done for training on 
small datasets
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Cross-validation Variations

Cross-validation uses training data itselves to estimate the error on new data

• When enough data available use an hold out set and perform validation
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• When enough data available use an hold out set and perform validation

• When not too many data available use leave-one-out cross-validation (LOOCV)
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Cross-validation Variations

Cross-validation uses training data itselves to estimate the error on new data

• When enough data available use an hold out set and perform validation

• When not too many data available use leave-one-out cross-validation (LOOCV)

• Use k-fold cross-validation for a good trade-off (sometime better than LOOCV)
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Note on Ensemble Methods
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Early Stopping: Limiting Overfitting by Cross-validation

Overfitting networks show a monotone training error trend (on average with SGD) as the 

number of gradient descent iterations 𝑘, but they lose generalization at some point ...

• Hold out some data

• Train on the training set

• Perform cross-validation

on the hold out set

• Stop the train when 

validation error increases

𝑘

𝐸(𝑥|𝑤)

Training set error

Validation set error

𝑘𝐸𝑆

𝐸𝐸𝑆(𝑥|𝑤)

Online estimate of the 
generalization error
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Cross-validation and Hyperparameters Tuninig 

Model selection and evaluation happens at different levels:

• Parameters level, i.e, when we learn the weights 𝑤 for a neural network

• Hyperparameters level, i.e., when we chose the number of layers 𝐿 or

the number of hidden neurons 𝐽(𝑙) or a give layer

• Meta-learning, i.e., when we learn from data a model to chose hyperparameters

𝑘

𝐸(𝑥|𝑤)

Training set error

Validation set error

𝑘𝐸𝑆

𝐸𝐸𝑆
𝐽(1)

(𝑥|𝑤)

Generalization error 
with J neurons in 1 layer

𝐸(𝑥|𝑤)

𝐽(1)1

𝐸𝐸𝑆
1 (𝑥|𝑤)

2

𝐸𝐸𝑆
2 (𝑥|𝑤)

... 5

𝐸𝐸𝑆
5 (𝑥|𝑤)

9...

Chose model with 
best validation error
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Weight Decay: Limiting Overfitting by Weights Regularization

Regularization is about constraining the model «freedom», based on a-priori 

assumption on the model, to reduce overfitting. 

So far we have maximized the data likelihood:

We can reduce model «freedom» by using a Bayesian approach:

Small weights have been observed to improve generalization of neural networks: 

Make  assumption
on parameters

(a-priori) distribution

𝑤𝑀𝐿𝐸 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑤 𝑃(𝐷|𝑤)

𝑤𝑀𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑤 𝑃 𝑤 𝐷

= 𝑎𝑟𝑔𝑚𝑎𝑥𝑤 𝑃 𝐷 𝑤 ⋅ 𝑃(𝑤)
Maximum 

A-Posteriori

Maximum 
Likelihood

𝑃 𝑤 ∼ 𝑁 0, 𝜎𝑤
2
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Weight Decay: Limiting Overfitting by Weights Regularization

 𝑤 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑤 𝑃 𝑤|𝐷 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑤 𝑃 𝐷 𝑤 𝑃 𝑤
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𝑒
−
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2

2𝜎𝑤
2
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𝑁
𝑡𝑛 − 𝑔 𝑥𝑛|𝑤

2
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𝑄
𝑤𝑞

2

2𝜎𝑤
2

= 𝑎𝑟𝑔𝑚𝑖𝑛𝑤  

𝑛=1

𝑁

𝑡𝑛 − 𝑔 𝑥𝑛|𝑤
2

+ 𝛾  

𝑞=1

𝑄

𝑤𝑞
2

Fitting Regularization

Here it comes 
another loss 
function!!!
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Recall Cross-validation and Hyperparameters Tuninig 

You can use cross-validaton to select the proper 𝛾:

• Split data in training and validation sets

• Minimize for different values of 𝛾

• Evaluate the model

• Chose the 𝛾∗ with the best validation error

• Put back all data together and minimize

𝐸(𝑥|𝑤)

𝛾0.1

𝐸0.1
𝑉𝐴𝐿

1

𝐸1
𝑉𝐴𝐿

... 5

𝐸5
𝑉𝐴𝐿

100...

Chose 𝛾∗ = 5 with 
best validation error
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𝑇𝑅𝐴𝐼𝑁 =  

𝑛=1
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𝑡𝑛 − 𝑔 𝑥𝑛|𝑤
2

+ 𝛾  

𝑞=1

𝑄

𝑤𝑞
2

𝐸𝛾∗ =  

𝑛=1

𝑁

𝑡𝑛 − 𝑔 𝑥𝑛|𝑤
2

+ 𝛾∗  

𝑞=1

𝑄

𝑤𝑞
2

𝐸𝛾
𝑉𝐴𝐿 =  

𝑛=1

𝑁𝑉𝐴𝐿

𝑡𝑛 − 𝑔 𝑥𝑛|𝑤
2
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Dropout: Limiting Overfitting by Stochastic Regularization

By turning off randomly some neurons we force them to learn an independent feature 

preventing hidden units to rely on other units (co-adaptation):

• Each hidden unit is set to zero with 𝑝𝑗
(𝑙)

probability, e.g., 𝑝𝑗
(𝑙)

= 0.3 

x
1

xI

xi

… 

… 

1

𝑔1 𝑥 w
𝑤𝑗𝑖

𝑤11

𝑤𝐽𝐼

𝑤10

… … … 

… 

1 1

𝑔𝐾 𝑥 w

1 𝑚(𝑙) = [𝑚1
(𝑙)

, …𝑚
𝐽(𝑙)
(𝑙)

]

𝑚𝑗
(𝑙)

∼ 𝐵𝑒 𝑝𝑗
(𝑙)

ℎ(𝑙)(𝑊 𝑙 ℎ(𝑙−1)⨀ 𝑚 𝑙 )
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Dropout: Limiting Overfitting by Stochastic Regularization

In Dropout we train a number of weaker classifiers, on the different mini- batch and then 

at test time we use them by averaging the responses of all ensemble members.

x
1

xI

xi

… 
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1

𝑔1 𝑥 w
𝑤𝑗𝑖
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𝑤10

… … … 
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1 1

𝑔𝐾 𝑥 w

1 Behaves as an 
ensemble method
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Dropout: Limiting Overfitting by Stochastic Regularization

In Dropout we train a number of weaker classifiers, on the different mini- batch and then 

at test time we use them by averaging the responses of all ensemble members.

At testing time we remove the masks and we average the output (by weight scaling)
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Better Activation Functions

Activation functions such as Sigmoid or Tanh saturate

• Gradient is close to zero

• Backprop. requires gradient multiplications

• Gradient faraway from the output vanishes

• Learning in deep networks does not happen

This is a well known problem in Recurrent Neural Networks, but it affects also deep 

networks, and it has hindered neural network training since ever ...

Saturation

Zero Gradient

𝜕𝐸(𝑤𝑗𝑖
(1)

))

𝜕𝑤𝑗𝑖
(1)

= −2  

𝑛

𝑁

𝑡𝑛 − 𝑔1 𝑥𝑛, 𝑤 ⋅ 𝑔1
′ 𝑥𝑛, 𝑤 ⋅ 𝑤1𝑗

2
⋅ ℎ𝑗

′  

𝑗=0

𝐽

𝑤𝑗𝑖
(1)

⋅ 𝑥𝑖,𝑛 ⋅ 𝑥𝑖
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The ReLU activation function has been introduced

It has several advantages:

• Faster SGD Convergence (6x w.r.t sigmoid/tanh)

• Sparse activation (only part of hidden units are activated)

• Efficient gradient propagation (no vanishing or exploding gradient problems), 

and Efficient computation (just thresholding at zero)

• Scale-invariant:

Rectified Linear Unit

22

𝑔 𝑎 = 𝑅𝑒𝐿𝑢 𝑎 = max 0, 𝑎

𝑔′ 𝑎 = 1𝑎>0

max 0, 𝑎𝑥 = 𝑎 max 0, 𝑥
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The ReLU activation function has been introduced

It has potential sisadvantages:

• Non-differentiable at zero: however it is differentiable anywhere else

• Non-zero centered output

• Unbounded: Could potentially blow up

• Dying Neurons: ReLU neurons can sometimes be pushed into states in which 

they become inactive for essentially all inputs. No gradients flow backward 

through the neuron, and so the neuron becomes stuck and "dies".

Rectified Linear Unit

𝑔 𝑎 = 𝑅𝑒𝐿𝑢 𝑎 = max 0, 𝑎

𝑔′ 𝑎 = 1𝑎>0

Decreased model 
capacity, it happens with 

high learning rates
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Rectified Linear Unit (Variants)

Leaky ReLU: fix for the “dying ReLU” problem

ELU: try to make the mean activations closer to zero

which speeds up learning. Alpha is tuned by handby hand
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Weights Initialization

The final result of gradient descent is highly affected by weight initialization:

• Zeros: it does not work! All gradient would be zero, no learning will happen

• Big Numbers: bad idea, if unlucky might take very long to converge

• 𝑤 ∼ 𝑁 0, 𝜎2 = 0.01 : good for small networks, but it might be a problem for 

deeper neural networks

In deep netowrks:

• If weights start too small, then gradient shrinks as it passes through each layer

• If the weights in a network start too large, then gradient grows as it passes 

through each layer until it’s too massive to be useful

Some proposal to solve this Xavier initialization or He initialization …
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Xavier Initialization

Suppose we have an input 𝑥 with 𝐼 components and a linear neuron with random 

weights 𝑤. Its output is

We can derive that 𝑤𝑗𝑖𝑥𝑖 is going to have variance

Now if our inputs and weights both have mean 0, that simplifies to

If we assume all 𝑤𝑖 and 𝑥𝑖 are i.i.d. we obtain

The variance of the output is the variance of the input, but scaled by 𝑛𝑉𝑎𝑟(𝑤𝑖).

ℎ𝑗 = 𝑤𝑗1𝑥1 + ⋯+𝑤𝑗𝑖𝑥𝐼 + ⋯+ 𝑤𝑗𝐼 𝑥𝐼

𝑉𝑎𝑟(𝑤𝑗𝑖𝑥𝑖) = 𝐸 𝑥𝑖
2𝑉𝑎𝑟(𝑤𝑗𝑖) + 𝐸 𝑤𝑗𝑖

2
𝑉𝑎𝑟(𝑥𝑖) + 𝑉𝑎𝑟(𝑤𝑗𝑖)𝑉𝑎𝑟(𝑥𝑖)

𝑉𝑎𝑟(𝑤𝑗𝑖𝑥𝑖) = 𝑉𝑎𝑟(𝑤𝑗𝑖)𝑉𝑎𝑟(𝑥𝑖)

𝑉𝑎𝑟 ℎ𝑗 = 𝑉𝑎𝑟 𝑤𝑗1𝑥1 + ⋯ +𝑤𝑗𝑖𝑥𝐼 + ⋯ + 𝑤𝑗𝐼 𝑥𝐼 = 𝑛𝑉𝑎𝑟 𝑤𝑖 𝑉𝑎𝑟 𝑥𝑖
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Xavier Initialization

If we want the variance of the input and the out to be the same

For this reason Xavier proposes to initialize 𝑤 ∼ 𝑁 0,
1

𝑛𝑖𝑛

Performing similar reasoning for the gradient Glorot & Bengio found

To accommodate for this and for the Xavier constraint they propose 𝑤 ∼ 𝑁 0,
2

𝑛𝑖𝑛+𝑛𝑜𝑢𝑡

More recently He proposed, for rectified linear units, 𝑤 ∼ 𝑁 0,
2

𝑛𝑖𝑛

𝑛𝑉𝑎𝑟 𝑤𝑗 = 1

𝑛𝑜𝑢𝑡𝑉𝑎𝑟 𝑤𝑗 = 1

Linear assumption 
seem too much, but 
in practice it works!
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𝑤

𝐸(𝑤)

Recall about Backpropagation

Finding the weighs of a Neural Network is a non linear minimization process

We iterate from a initial configuration

To avoid local minima can use momentum

𝑎𝑟𝑔𝑚𝑖𝑛𝑤 𝐸 𝑤 =  

𝑛=1

𝑁

𝑡𝑛 − 𝑔(𝑥𝑛, 𝑤) 2

𝑤0 𝑤1 𝑤2𝑤3𝑤4

𝑤𝑘+1 = 𝑤𝑘 − 𝜂  
𝜕𝐸 𝑤

𝜕𝑤
𝑤𝑘

𝑤𝑘+1 = 𝑤𝑘 − 𝜂  
𝜕𝐸 𝑤

𝜕𝑤
𝑤𝑘

− 𝛼  
𝜕𝐸 𝑤

𝜕𝑤
𝑤𝑘−1

Several variations 
exists beside these two 

…
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More about Gradient Descent

Nesterov Accelerated gradient: first make a jump as the momentum, then adjust

𝑤𝑘+1 = 𝑤𝑘 − 𝜂  
𝜕𝐸 𝑤

𝜕𝑤
𝑤

𝑘+
1
2

𝑤𝑘+
1
2 = 𝑤𝑘 − 𝛼  

𝜕𝐸 𝑤

𝜕𝑤
𝑤𝑘−1
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Adaptive Learning Rates

Neurons in each layer learn differently

• Gradient magnitudes vary across layers

• Early layers get “vanishing gradients”

• Should ideally use separate adaptive learning rates

Several algoritm proposed:

• Resilient Propagation (Rprop – Riedmiller and Braun 1993)

• Adaptive Gradient (AdaGrad – Duchi et al. 2010)

• RMSprop (SGD + Rprop – Teileman and Hinton 2012)

• AdaDelta (Zeiler et at. 2012)

• Adam (Kingma and Ba, 2012)

• …



31

Learning Rate Matters
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