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Instances, Attributes, Concepts

• Instances

 The atomic elements of information from a dataset

 Also known as records, prototypes, or examples

• Attributes

 Measures aspects of an instance

 Also known as features or variables

 Each instance is composed of a certain number of 

attributes

• Concepts

 Special content inside the data

 Kind of things that can be learned
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Contact Lenses Data 3

NoneReducedYesHypermetropePre-presbyopic 
NoneNormalYesHypermetropePre-presbyopic
NoneReducedNoMyopePresbyopic
NoneNormalNoMyopePresbyopic
NoneReducedYesMyopePresbyopic
HardNormalYesMyopePresbyopic
NoneReducedNoHypermetropePresbyopic
SoftNormalNoHypermetropePresbyopic
NoneReducedYesHypermetropePresbyopic
NoneNormalYesHypermetropePresbyopic

SoftNormalNoHypermetropePre-presbyopic
NoneReducedNoHypermetropePre-presbyopic
HardNormalYesMyopePre-presbyopic
NoneReducedYesMyopePre-presbyopic
SoftNormalNoMyopePre-presbyopic
NoneReducedNoMyopePre-presbyopic
hardNormalYesHypermetropeYoung
NoneReducedYesHypermetropeYoung
SoftNormalNoHypermetropeYoung
NoneReducedNoHypermetropeYoung
HardNormalYesMyopeYoung
NoneReducedYesMyopeYoung 
SoftNormalNoMyopeYoung
NoneReducedNoMyopeYoung

Recommended 
lenses

Tear production rateAstigmatismSpectacle prescriptionAge
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CPU Performance Data 4
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Two Versions of the Weather Data 5

……………

YesFalseNormalMildRainy

YesFalseHighHot  Overcast 

NoTrueHigh Hot Sunny

NoFalseHighHotSunny

PlayWindyHumidityTemperatureOutlook

……………

YesFalse8075Rainy

YesFalse8683Overcast 

NoTrue9080Sunny

NoFalse8585Sunny

PlayWindyHumidityTemperatureOutlook
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Attribute Types
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Nominal Attributes

Nominal Attributes (a.k.a. Discrete Attributes)

• Values are distinct symbols

• Values themselves serve only as labels or names

Example

 Attribute “outlook” from weather data

 Values: “sunny”, “overcast”, and “rainy”

Characteristics

 No relation is implied among nominal values

 No ordering

 No distance measure 

 Only equality tests can be performed
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Ordinal Attributes

Ordinal Attributes

• Impose order on values

• No distance between values defined

Example

 The attribute “temperature” in weather data

 Values: “hot” > “mild” > “cool”

Characteristics

 Addition and subtraction don’t make sense

 Distinction between nominal and ordinal not always clear 

(e.g. attribute “outlook”)

 Some sort of distance could be thought
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Contact Lens Age: Nominal or Ordinal? 9

NoneReducedYesHypermetropePre-presbyopic 
NoneNormalYesHypermetropePre-presbyopic
NoneReducedNoMyopePresbyopic
NoneNormalNoMyopePresbyopic
NoneReducedYesMyopePresbyopic
HardNormalYesMyopePresbyopic
NoneReducedNoHypermetropePresbyopic
SoftNormalNoHypermetropePresbyopic
NoneReducedYesHypermetropePresbyopic
NoneNormalYesHypermetropePresbyopic

SoftNormalNoHypermetropePre-presbyopic
NoneReducedNoHypermetropePre-presbyopic
HardNormalYesMyopePre-presbyopic
NoneReducedYesMyopePre-presbyopic
SoftNormalNoMyopePre-presbyopic
NoneReducedNoMyopePre-presbyopic
hardNormalYesHypermetropeYoung
NoneReducedYesHypermetropeYoung
SoftNormalNoHypermetropeYoung
NoneReducedNoHypermetropeYoung
HardNormalYesMyopeYoung
NoneReducedYesMyopeYoung 
SoftNormalNoMyopeYoung
NoneReducedNoMyopeYoung

Recommended 
lenses

Tear production rateAstigmatismSpectacle prescriptionAge
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Nominal or Ordinal?

• Attribute “age” nominal

 If age = young and astigmatic = no

and tear production rate = normal

then recommendation = soft

• Attribute “age” ordinal

(e.g. “young” < “pre-presbyopic” < “presbyopic”)

 If age ≤ pre-presbyopic and astigmatic = no

and tear production rate = normal

then recommendation = soft
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Interval/Numerical Attributes

Interval/Numerical Attributes

• Not only ordered but measured in fixed and equal units

Examples

 Attribute “temperature” expressed in degrees

 Attribute “year”

Characteristics

 Difference of two values makes sense

 Sum or product doesn’t make sense

 Zero point is not defined
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Ratio Attributes

Ratio Attributes

• Ratio quantities are ones for which the measurement scheme 

defines a zero point

Example

 Attribute “distance”

Characteristics

 Distance between an object and itself is zero

 Ratio quantities are treated as real numbers

 All mathematical operations are allowed

 Is there an “inherently” defined zero point?

 It depends on scientific knowledge 
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What Attribute Types in Practice?

• Discrete Attribute

 Has only a finite or countably infinite set of values

 Examples: zip codes, counts, or the set of words in a 
collection of documents 

 Often represented as integer variables.   

 Note: binary attributes are a special case of discrete attributes 

• Continuous Attribute

 Has real numbers as attribute values

 Examples: temperature, height, or weight.  

 Practically, real values can only be measured and represented 
using a finite number of digits.

 Continuous attributes are typically represented as floating-
point variables.  
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Why Specifying Attribute Types?

• Check for valid values

• Express the best possible patterns into data

• Make the most adequate comparisons

Example 

 Outlook > “sunny”  does not make sense, while

 Temperature > “cool” or 

 Humidity > 70 does

Additional uses of attribute type

 Deal with missing values
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Missing Values
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Why Missing Values Exist?

• Faulty equipment, incorrect measurements, missing cells in 

manual data entry, censored/anonymous data

• Very frequent in questionnaires for medical scenarios

• Censored/anonymous data 

• In practice, a low rate of missing values may be suspicious

• Interview data provide many examples

 For whom will you cast your vote in the next election?

 What is your salary? Did you ever …?
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Missing Values

• Frequently indicated by out-of-range entries

• Missing value may have significance in itself

 E.g. missing test in a medical examination

• Most schemes assume that is not the case

 “missing” may need to be coded as additional value 

• Does absence of value have some significance?

 If it does, “missing” is a separate value

 If it does not, “missing” must be treated in a special way

 …
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What Types of Missing Values?

• Missing completely at random (MCAR): when the distribution 

of an example having a missing value for an attribute does not 

depend on either the observed data or the missing data

• Missing at random (MAR), when the distribution of an example 

having a missing value for an attribute depends on the observed 

data, but does not depend on the missing data

• Not missing at random (NMAR), when the distribution of an 

example having a missing value for an attribute depends on the 

missing values.

The handling of missing data depends on the type
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Strategies for missing values handling

• Discarding examples with missing values

 Simplest approach

 Allows the use of unmodified data mining methods

 Only practical if there are few examples with missing values. 

Otherwise, it can introduce bias

• Convert the missing values into a new value

 Use a special value for it

 Add an attribute that indicates if value is missing or not

 Greatly increases the difficulty of the data minig process

• Imputation methods

 Assign a value to the missing one, based on the dataset. 

 Use the unmodified data mining methods.

19



Matteo Matteucci –Information Retrieval and Data Mining

Imputation methods

• Extract a model from the dataset to perform the imputation

 E.g., Use most common/frequent values

 Suitable for MCAR and, to a lesser extent, for MAR

 Not suitable for NMAR type of missing data

• For NMAR we need to go back to the source of the data to 

obtain more information

• Survey of imputation methods available at

 http://sci2s.ugr.es/MVDM/index.php

 http://sci2s.ugr.es/MVDM/biblio.php
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Inaccurate Values

Data has not been collected for mining it

• Errors and omissions that don’t affect original purpose of data 

(e.g. age of customer)

• Typographical errors in nominal attributes, thus values need to 

be checked for consistency

• Typographical and measurement errors in numeric attributes, 

thus outliers need to be identified

• Errors may be deliberate (e.g., wrong zip codes or phone 

numbers)

Life is hard!
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Data Formats
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Data Format

• Most commercial tools have their own proprietary format

• Most tools import excel files and comma-separated value files

23

Year,Make,Model,Length

1997,Ford,E350,2.34

2000,Mercury,Cougar,2.38

Year;Make;Model;Length

1997;Ford;E350;2,34

2000;Mercury;Cougar;2,38
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Attribute-Relation File Format (ARFF) 24

%

% ARFF file for weather data with some numeric features

%

@relation weather

@attribute outlook {sunny, overcast, rainy}

@attribute temperature numeric

@attribute humidity numeric

@attribute windy {true, false}

@attribute play? {yes, no}

@data

sunny, 85, 85, false, no

sunny, 80, 90, true, no

overcast, 83, 86, false, yes

...

http://www.cs.waikato.ac.nz/~ml/weka/arff.html
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Additional Attribute Types

• ARFF supports string attributes:

• Similar to nominal attributes but list of values 

is not pre-specified

• ARFF also supports date attributes:

• Uses the ISO-8601 combined date 

and time format yyyy-MM-dd-THH:mm:ss

25

@attribute description string

@attribute today date
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Missing Values in ARFF 26

@relation labor

@attribute 'duration' real

@attribute 'wage-increase-first-year' real

@attribute 'wage-increase-second-year' real

@attribute 'wage-increase-third-year' real

@attribute 'cost-of-living-adjustment' {'none','tcf','tc'}

@attribute 'working-hours' real

@attribute 'pension' {'none','ret_allw','empl_contr'}

@attribute 'standby-pay' real

@attribute 'shift-differential' real

@attribute 'education-allowance' {'yes','no'}

@attribute 'statutory-holidays' real

@attribute 'vacation' {'below_average','average','generous'}

@attribute 'longterm-disability-assistance' {'yes','no'}

@attribute 'contribution-to-dental-plan' {'none','half','full'}

@attribute 'bereavement-assistance' {'yes','no'}

@attribute 'contribution-to-health-plan' {'none','half','full'}

@attribute 'class' {'bad','good'}

@data

1,5,?, ?, ?,40, ?, ?,2, ?,11,'average', ?, ?,'yes',?,'good'

2,4.5,5.8, ?, ?,35,'ret_allw', ?, ?,'yes',11,'below_average', ?,'full', ?,'full','good'

?, ?, ?, ?, ?,38,'empl_contr', ?,5, ?,11,'generous','yes','half','yes','half','good'

3,3.7,4,5,'tc', ?, ?, ?, ?,'yes', ?, ?, ?, ?,'yes', ?,'good'
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Attribute Types and Interpretation

• Interpretation of attribute types in ARFF depends on the 

mining scheme

• Numeric attributes are interpreted as 

 Ordinal scales if less-than and greater-than are used 

 Ratio scales if distance calculations are performed 

(normalization/standardization may be required)

• Instance-based schemes define distance between nominal 

values (0 if values are equal, 1 otherwise)

• Integers in some given data file: nominal, ordinal, or ratio scale?

27
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DSPL: Dataset Publishing Language

• Open format by Google available at

http://code.google.com/apis/publicdata/

• Use existing data: add an XML metadata file to existing CSV

• Read by the Google Public Data Explorer, which includes 

animated bar chart, motion chart, and map visualization

• Allow linking to concepts in other datasets

• Geo-enabled: allows adding latitude and longitude data to your 

concept definitions

28
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Predictive Model Markup Language 29

• XML-based markup language developed by the Data Mining 

Group (DMG) to provide a way for applications to define 

models related to predictive analytics and data mining

• The goal is to share models between applications

• Vendor-independent method of defining models

• Allow to exchange of models between applications.

• PMML Components: data dictionary, data transformations, 

model, mining schema, targets, output
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Data Repository
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Publicly Available Datasets

• UCI repository

 http://archive.ics.uci.edu/ml/

 Probably the most famous collection of datasets

• Kaggle

 http://www.kaggle.com/

 It is not a static repository of datasets, but a site that 

manages Data Mining competitions

 Example of the modern concept of crowdsourcing
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Publicly Available Datasets

• KDNuggets

 http://www.kdnuggets.com/datasets/

• PSPbenchmarks

 http://www.infobiotic.net/PSPbenchmarks/

 Datasets derived from Protein Structure Prediction 

problems

 Interesting benchmarks because they can be parameterized 

in a very large variety of ways

• Pascal Large Scale Learning Challenge

 http://largescale.ml.tu-berlin.de/about/
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