Andrea Bonarini

Department of Electronics - Politecnico di Milano
http://www.dei.polimi.it/people/bonarini

Academic Year 2010-2011

Semantic Networks Frames Demons Objects Logic Rules
0 00000 [e]e]e} 00000000 [e]e] 00000

Declarations or procedures...

@ Declarative description
Set of clauses describing properties.
E.g.: A circle of radius r is the place of the points of a plane having
distance r from a point called center

@ Procedural description
Set of procedures to describe how to use knowledge or how to
increment knowledge
E.g., To obtain a circle of radius r you can take a glass of radius r
and go around it with a pencil

Knowledge Representation Techniques Andrea Bonarini

Semantic Networks Frames Demons Objects Logic

oe 00000 [e]e]e} 00000000 (o]

What is better?

In the 70's and 80’s there have been discussions about this topic

@ A declaration can be used in principle in different ways, but
needs something else to be used (e.g. an inferential
mechanism, or programs that operate on it)

@ Procedural knowledge cannot usually be re-used, nor it is

usually possible to reason on it, but it is ready to be used for
what it has been designed

We will see some knowledge representation techniques belonging
to the two categories and eventual hybridizations

Knowledge Representation Techniques

Rules
00000

Andrea Bonarini

Semantic Networks Frames Demons Objects
[e]e] 00000 [e]e]e} 00000000

Semantic Networks

Nodes represent atomic concepts
Links are named and represent relationships

Logic Rules
[e]e] 00000

Knowledge Representation Techniques

Andrea Bonarini

Semantic Networks Frames Demons Objects Logic
[e]e] 0@000 [e]e]e} 00000000 [e]e]

Problems with Semantic Networks

@ No representation of semantics of links
@ No classification of nodes

@ No procedural description

Knowledge Representation Techniques

Rules
00000

Andrea Bonarini

Semantic Networks Frames Demons Objects Logic Rules
[e]e] 00000 00 00000000 [e]e] 00000

Frames

A way to frame knowledge in terms of properties related to entities.

< frame > ::= < frame_name > (< is_a >< slot >*)

< is_a > = (is_aframe_name >*)

< slot > ::= (< slot_name >< slot_value >)

< slot_value > ::= < frame_name > | < string > | < number >
Eg.,

(#dog (is-a #mammal)
(number_of _legs 4)
(eats “"meat”))

Knowledge Representation Techniques Andrea Bonarini

Semantic Networks Frames Demons Objects Logic Rules
[e]e] 00000 (o] e} 00000000 [e]e] 00000

Characteristics and problems with frames

What can we represent with frames?

@ Properties of entities

@ A generic is_a hierarchy

Problems with frames

@ No procedural description

@ The is_a hierarchy is used both for specialization and instances

Knowledge Representation Techniques Andrea Bonarini

Semantic Networks Frames Demons Objects Logic Rules
[e]e] 00000 ooe 00000000 [e]e] 00000

How to represent frames?

A definition CLIPS-like:

(defframe < frame_name >
(is-a < frame_name >*)
(< slot_name >< slot_value >)*

)

Eg.,

(defframe #Pippo (is_a #dog +#cartoon)
(number_of _legs 4)

(color "yellow™)

(owned _by # Mickey)

(eats "meat*)

)

Knowledge Representation Techniques Andrea Bonarini

Semantic Networks Frames Demons Objects Logic Rules
[e]e] 00000 [e]e]e} 00000000 [e]e] 00000

Test #1: frames

Let's represent with frames the knowledge contained in this text
@ An engineer is a person
@ Aristides is an engineer
@ Engineers have a master degree
9 Avristides got its degree on July, 25 2009
@ Aristides likes dancing
°

Engineers like computers and do not like dancing

Knowledge Representation Techniques Andrea Bonarini

Semantic Networks Frames Demons Objects Logic Rules
[e]e] 00000 [e]e]e} 00000000 [e]e] 00000

Test #2: frames

Let's represent with frames the knowledge contained in this text.

@ Pump P342 output is linked to pipe C32.

@ Pipe C32 is linked to tank S321.

@ Tank S321 is empty.

@ The flow of pipe C32 is 2 m3/h.

@ The output flow from pump P342 is 1 m3/h
°

Pump P342 is not working properly

Knowledge Representation Techniques Andrea Bonarini

Semantic Networks Frames Demons Objects Logic
[e]e] 00000 [e]e]e} 00000000 [e]e]

Demons

Procedures associated to data.
Data-driven programming

Three types of demons:
o IfNeeded is triggered when the datum is read
@ IfAdded is triggered when the datum is changed

@ Notifier is triggered if the datum takes a value

Knowledge Representation Techniques

Rules
00000

Andrea Bonarini

Semantic Networks Frames Demons Objects Logic
(e} 00000 [e]e]e} 0@000000 (o]

Demon definition

For instance, as procedures associated to frames:

(defframe < frame_name >
(is-a < frame_name >*)
(< slot_name >< slot_value >
((< demon — type >< demon — ref >< arguments >)*))*

)

Eg.,

(defframe +#login_env (is_a #security_env)
(owner #user)
(last_login #date
((IfAdded #InformSysManager (last_login owner))))
)

Knowledge Representation Techniques

Rules
00000

Andrea Bonarini

Semantic Networks Frames Demons Objects Logic
(e} 00000 [e]e]e} 00@00000 (o]

Characteristics and problems of demons

What can we represent with demons?

@ Procedures associated with data

Problems with demons
@ They need data to be attached to

@ It is difficult to control the execution flow

Knowledge Representation Techniques

Rules
00000

Andrea Bonarini

Semantic Networks Frames Demons Objects Logic
[e]e] 00000 [e]e]e} 00000000 0

What is an Object?

Data structure able to exchange messages with others and to
produce an action to answer a message

@ Classes and instances
@ Generalization and instance-class inheritance
@ Procedures as methods to answer messages

@ Typization of properties

Knowledge Representation Techniques

Rules
00000

Andrea Bonarini

Semantic Networks Frames Demons Objects Logic Rules
[e]e] 00000 [e]e]e} 00000000 oe 00000

Class definition

(defclass < class_name >
(is-a < nome_frame >*)
(slot < slot_name >< facet >*)*

)

Eg.,

(defclass #CAR
(is_.a #USER)
(slot max_speed (access read — only) (default 200))
(slot (speed (default 0))

)

Knowledge Representation Techniques Andrea Bonarini

(make — instance < instance_name > of < class_name >
(< slot_name > < slot_value >)*

)

Eg.,

(make — instance MyCar of CAR
(speed 100)

)

Semantic Networks Frames Demons Objects Logic Rules
[e]e] 00000 [e]e]e} 00000000 [e]e] 00000

Method definition (1)

(defmessage — handler < class_name > < method_name >
((< var_name > < var_type >)*)
< body >)

Eg.,

(defmessage — handler CAR accellerate

((?percentual — speed ZERO — ONE))
ind fself : speed (+ fself : spee
(bind ?self : speed (+ ?self : speed
(x ?self : speed ?percentual — speed)))

Knowledge Representation Techniques Andrea Bonarini

Semantic Networks Frames Demons Objects Logic Rules
[e]e] 00000 [e]e]e} 00000000 [e]e] 00000

Method example (1)

CLIPS > (make-instance my-car of CAR
(speed 100))
[mycar]

CLIPS > (send [mycar] accellerate 0.1)
110

CLIPS > (send [mycar] print)
[mycar] of CAR
(max-speed 200)
(speed 110)

Knowledge Representation Techniques Andrea Bonarini

Semantic Networks Frames Demons Objects Logic Rules
[e]e] 00000 [e]e]e} 00000000 [e]e] 00000

Method definition (11)

(defmethod < method_name > ((< var_name > < var_type >)*)
< body >)

Eg.,

(defmethod sum ((?7a INTEGER) (?b INTEGER))
(+ ?a 7b))

(defmethod sum ((?a STRING) (?b STRING))
(str — cat ?a 7b))

CLIPS > (sum 2 3)
5

CLIPS > (sum "Man" "drake")
Mandrake

Knowledge Representation Techniques Andrea Bonarini

Semantic Networks Frames Demons Objects Logic Rules
[e]e] 00000 [e]e]e} 00000000 [e]e] 00000

Assignment and reading of slot values

Methods defined by default at class definition to provide access to
slots.

(send < instance_name > put— < slot_name > < new_value >)
(send < instance_name > get— < slot_name >)

CLIPS > (send [mycar| put-speed 180)
180

CLIPS > (send [mycar] get-speed)
180

Knowledge Representation Techniques Andrea Bonarini

Semantic Networks Frames Demons Objects Logic Rules
[e]e] 00000 [e]e]e} 00000000 [e]e] 00000

Test #3: objects

Let's represent with objects the knowledge contained in this text.

Pump P342 output is linked to pipe C32.
Pipe C32 is linked to tank S321.

Tank S321 is empty.

The flow of pipe C32 is 2 m3/h.

The output flow from pump P342 is 1 m3/h
Pump P342 is not working properly

When a tank is empty an alarm is risen

Indicator PIRCA321 provides the pressure in tank 5231 on
demand

@ Indicator LEV321 provides level in tank S321 at any time

e ¢ ¢ ¢ ¢ ¢ ¢ ¢

Knowledge Representation Techniques Andrea Bonarini

Semantic Networks Frames Demons Objects Logic

(e}

00000 [e]e]e} 00000000 (o]

Logic

Knowledge Representation Techniques

Logic is the formal systematic study of the principles of valid
inference and correct reasoning.

It has been established as a discipline by Aristotle in the western world
and used since thousands of years to represent formally knowledge and its
use.

Logic is often divided into two parts, inductive reasoning and deductive
reasoning. The first draws general conclusions from specific examples,
the second draws logical conclusions from definitions and axioms.

Among the main elements we have in logic: axioms (what it is assumed
to be true), theorems (to define relationships), operators to combine truth

won

values, quantifiers (it exists...", "for all...") to operate on variables.

Rules
©0000C

Andrea Bonarini

Semantic Networks Frames Demons Objects Logic Rules
[e]e] 00000 [e]e]e} 00000000 [e]e] 0@000C

Potential problems with logic

@ The procedural aspects can only be represented by inferential
mechanisms

@ Once triggered, an inferential mechanism will generate all all
it can draw, which is the same as making explicit all the

knowledge coded in a compact way in theorems, and may lead
to memory problems

@ First order logic is often not enough, and more powerful logics
are needed

Knowledge Representation Techniques Andrea Bonarini

Semantic Networks Frames Demons Objects Logic Rules
[e]e] 00000 [e]e]e} 00000000 [e]e] 00000

Rules

Rules are used to represent inferential mechanisms.
Their general form is:

< rule > ::= If(< composite_clause >)
Then(< composite_clause >)

< clause > ::= < fact > | < pattern >

< composite_clause > ::= < clause > | NOT < composite_clause >
| < composite_clause > AND < composite_clause >
| < composite_clause > OR < composite_clause >

< fact > 1= < string >

< pattern > ::= " A sequence of variables and strings"

< variable > ::= 7 < string >

Knowledge Representation Techniques Andrea Bonarini

Semantic Networks Frames Demons Objects Logic Rules
[e]e] 00000 [e]e]e} 00000000 [e]e] 00000

Forward and backward rules

Rules can be used to represent either induction or deduction.

In the two cases they are used in different ways: forward chaining to
deduce consequences, or backward chaining to induce possible causes.

E.g., in the case of a car:

@ IF ("headlight circuit open")

THEN (" headlights cannot produce any light*)
9 IF ("headlight fuse burnt®)

THEN (" headlight circuit open*)
@ |F ("short circuit on headlight circuit")

THEN (" headlight fuse burnt")

We might use these rules either backward, to diagnose the fact that the
headlights are not working, or forward, to deduce the consequences of a

short circuit.

Knowledge Representation Techniques Andrea Bonarini

Semantic Networks Frames Demons Objects Logic Rules
[e]e] 00000 [e]e]e} 00000000 [e]e] 00000

Pattern matching

A pattern is a sequence of strings and variables, such as those in this rule:

IF (?a ($Color #Red)) AND (7a ($InstanceOf #Apple))
THEN (?a ($ReadyP True))

Pattern-matching compares a pattern with a sequence of strings (e.g., a
fact), assigning to the variables the corresponding values.

E.g., if we have the rule above, and the facts:

(#Applel ($Color #Red))
(#Applel ($InstanceOf #Apple))

we can match 7a with #Applel and keep this unification for this rule:
(?a #Applel)

By triggering the rule, we might infer (#Applel (ReadyP True))

Knowledge Representation Techniques Andrea Bonarini

Semantic Networks Frames Demons Objects Logic Rules
[e]e] 00000 [e]e]e} 00000000 [e]e] 00000

Conflict set

At any time we have facts describing the state of the world, listed
in the so-called fact base.

We can match the set of rules (rule base) with the fact base, and
obtain a list of rules that might be triggered to increment the fact
base.

This list is called conflict set, since, in most systems, only one
rule at a time can be triggered before repeating the pattern
matching process on the updated fact base.

Knowledge Representation Techniques Andrea Bonarini

Semantic Networks Frames Demons Objects Logic
[e]e] 00000 [e]e]e} 00000000 [e]e]

Conflict resolution

More than one rule can be found in the conflict set. Different
policies can be adopted to resolve this conflict and select the rule
to be triggered:

@ the first rule entering in the conflict set (lexicographic order):

the designer gives the priority of the rules by ordering them in
the rule base

@ the rule using the fact entered most recently, among the ones
matching rules, in the fact base: this helps to follow a
reasoning line

@ the rule using more facts, to exploit at best the available
knowledge

Knowledge Representation Techniques

Rules
00000

Andrea Bonarini

Semantic Networks Frames Demons Objects Logic Rules
[e]e] 00000 [e]e]e} 00000000 [e]e] 00000

Using rules

Rules are used to represent heuristic knowledge about the use of
knowledge.
Possible problems:

@ the inferential mechanism is usually pre-defined for a rule base

@ they do not represent naturally declarative knowledge, they
use it

Knowledge Representation Techniques Andrea Bonarini

Semantic Networks Frames Demons Objects Logic Rules
[e]e] 00000 [e]e]e} 00000000 [e]e] 00000

Test #5: KR Techniques

Let's represent with objects and rules the knowledge needed to
produce the set of actions that CAT, the robot, has to take to go
from one place to another.

@ CAT can:

@ move forward and backward

@ turn left and right by 30°

@ perceive obstacles and doors (with different sensors) at a close
distance forward, backward, on the left and on the right.

@ CAT is in Andrew’s office

@ Andrew's office is North of the Corridor

@ CAT should come to the Secretary’ office

@ the Secretary’s office is on the South side of the corridor

@ the Secretary’s office is the second door left to the door in
front of Andrew’s office

Knowledge Representation Techniques Andrea Bonarini

	Semantic Networks
	
	

	Frames
	
	
	
	
	

	Demons
	
	
	

	Objects
	
	
	
	
	
	
	
	

	Logic
	
	

	Rules
	
	
	
	
	
	
	

