
Attention
mechanisms

Alberto Mario Pirovano
albertom.pirovano@gmail.com

1

Outline

- Vanilla Sequence to Sequence models
- Attention based Sequence to Sequence models
- Hierarchical Attention Networks for question answering

2

Outline

- Vanilla Sequence to Sequence models
- Attention based Sequence to Sequence models
- Hierarchical Attention Networks for question answering

3

Seq2seq models - General

Sequence-to-sequence models (Sutskever et al., 2014, Cho et al., 2014) are used in a variety of tasks such
as machine translation (NMT), speech recognition, text summarization, question/answering, document
classification, spell checking and they can be seen as bi-modular encoder-decoder architectures.

A seq2seq model first reads the source sequence and, by using an encoder, it builds an hidden
representatio(below [0.5, 0.2, -0.1, 0.3, 0.4, 1.2]); a decoder, then, processes the hidden representation to
emit the target sequence.

source sequence target sequence

4

https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://emnlp2014.org/papers/pdf/EMNLP2014179.pdf

1) Sample batch_size pairs of (source_sequence,
target_sequence).

2) Prepend <SOS> to the target_sequence to obtain
the target_input_sequence and append <EOS> to
obtain the target_output_sequence. Append <EOS>
to the source_sequence.

 3) Pad them up to the max_input_length
(max_target_length) within the batch by using the
<PAD> token.

4) Lookup them by using their vocabularies and
replace out of vocabulary (OOV) tokens with <UNK>.
Compute the length of each input and target
sequence in the batch.

Target vocabulary = {“<SOS>”: 00,
 “<EOS>”: 99,
 “<UNK>”: 01,
 “<PAD>”: 03,
 “the”: 42,
 “is”: 16,
 ...]

Seq2seq models - Preparation

5

For each training step, the model is fed with a batch object containing these elements:

1) encoder_inputs: 2D tensor [b_s, max_source_length], 3D after em,b [b_s, max_source_length, d_model]

2) encoder_lengths: 1D tensor [b_s]

3) decoder_inputs: 2D tensor [b_s, max_target_length], 3D after emb [b_s, max_source_length, d_model]

4) decoder_outputs: 2D tensor [b_s, max_target_length], 3D after emb [b_s, max_source_length, d_model]

5) decoder_lengths: 1D tensor [b_s]

The lengths are needed to allow the model to zero-out outputs when past a batch element's sequence length.
This is done in tensorflow with tf.nn.dynamic_rnn. (So it's more for correctness than performance.)

Seq2seq models - Dimensionality

6

Seq2seq models - Structure
- Usually, the seq2seq modules consist of two RNNs:

- encoder RNN: (BLUE on the left) consumes the
encoder_inputs and the encoder_lengths without
making any prediction.

- decoder RNN: (RED on the right) processes either the
decoder_inputs and the decoder_lengths (training) or
the greedly decoded tokens (inference). Its prediction is
used by the optimization module.

The RNN models, however, differ in terms of:

- directionality – unidirectional (tf.nn.dynamic_rnn) or
bidirectional (tf.nn.bidirectional_dynamic_rnn);

- depth – single or multi-layer
(tf.contrib.rnn.MultiRNNCell);

- type– often either a vanilla RNN, LSTM or GRU. 7

https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/MultiRNNCell

Outline

- Vanilla Sequence to Sequence models
- Attention based Sequence to Sequence models
- Hierarchical Attention Networks for question answering

8

Attention - General
Considering the sequential dataset:

The decoder role is to model the generative probability:

In vanilla seq2seq models, the decoder is conditioned by initializing its initial state with the last source
state of the encoder.

This works well for short and medium-length sentences; however, for long sentences, this single
fixed-size hidden state becomes an information bottleneck, resulting in a performance degradation.

Instead of discarding all of the hidden states computed by the encoder, the attention mechanism
(Bahdanau et al., 2015, Luong et al., 2015) allows the decoder to use them as a dynamic memory of the
source information, improving the performance for long sentences.

9

https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1508.04025

Attention - Computation
In general an attention function can be described as
mapping a query and a set of key-value pairs to an
output.

The output is computed as a weighted sum of the
values, where the weight assigned to each value is
computed by a compatibility function of the query with
the corresponding key.

1) Compare the current target hidden state h_t,
with all the source states h_s to derive attention
scores [source_length].

10

Attention - Computation
2) Apply the softmax function on the
attention scores and compute the
attention weights, one for each encoder
token [source_length]:

3) Compute the context vector as the
weighted average of the source states
[d_model]:

11

Attention - Computation
4) Combine the context vector with the
current target hidden state to yield the final
attention vector [d_model].

The attention vector is then projected on
the target vocabulary and, if we are in
inference greedy mode, it is then fed as an
input to the next time step (input feeding).

12

Attention - Visualization
A nice visualization of the attention mechanism is the alignment
matrix.

It plots the learned attention_weights between the source (x-axis)
and target (y-axis) sentences.

The alignments go from 0 to 1, and in the picture they are visualized
in a grey-scale.

This way we can understand, for each decoding step and so for
each generated target token, which are the source tokens that are
more present in the weighted sum that conditioned the decoding.

 We can see attention as a tool in the network’s bag that, while
decoding, allows it to pay attention on different parts of the source
sentence.

13

Attention - Visualization

14

Outline

- Vanilla Sequence to Sequence models
- Attention based Sequence to Sequence models
- Hierarchical Attention Networks for question answering

15

Response Generation - Core algorithm

Chatbots can be defined along at least two dimensions, core algorithm and context handling:

- Core algorithm:

a) Generative ones encode the question into a context vector and generate the answer
word by word using learnt conditioned probability distribution over the answer’s
vocabulary. This model can be for example an encoder-decoder model.

b) Retrieval ones rely on a knowledge base of question-answer pairs. When a new question
comes in, the inference phase encodes it in a context vector and by using a similarity
measure it retrieves the top-k neighbor knowledge base items. Using a policy they return
the answer related to one of the k retrieved question-answer pair.

16

- Context handling:

a) Single-turn models build the input vector by only considering the incoming question.
They may lose important information about the history of the conversation and generate
irrelevant responses.

b) Multi-turn models their input vector is built by considering a multi-turn conversational
context, containing also the incoming question. For example the input can be the
concatenation of the questions and the answers of the last 2 conversational turns.

Response Generation - Context

17

Generative chatbots

Considering generative chatbots, Vinyals and Le,
2015 and Shang et al., 2015 proposed to directly
apply sequence to sequence models to the
conversation between two agents.

Suppose that we observe a conversation with a
single turn: the first person utters “ABC”, and the
second person replies “WXYZ”.The idea of
generative chatbots is to use an RNN and train it
to map “ABC” to “WXYZ”.

The strength of this flat model lies in its
simplicity and generality. We can borrow it from
machine translation without major changes in the
architecture.

18

https://arxiv.org/abs/1506.05869
https://arxiv.org/abs/1506.05869
https://arxiv.org/pdf/1503.02364.pdf

Generative hierarchical chatbots

If we wanted to extend this model to consider multi-turn conversations we could do it by
concatenating multiple turns into a single long input sequence.

This would probably result in poor performances. In fact LSTM cells often fail to catch the long term
dependencies within input sequences that are longer than 100 tokens.

For this reason we should exploit a different architecture to handle the conversational context.

The solution that Xing et al., 2017 proposed to overcome this problem is to extend the attention
mechanism for single-turn response generation with an hierarchical attention mechanism for
multi-turn response generation.

19

https://arxiv.org/abs/1701.07149

Hierarchical attention networks

In general, attention can be seen as a technique to generate a dynamic hidden representation of a
sequence from its contextualized word vectors.

In conversational AI and in general In text mining, we handle text made of sentences, sentences made
of words and words made of characters.

The inner hierarchical structure that we can find into text drove the development of Hierarchical
attention networks.

There are two really promising applications of Hierarchical attention networks:

1) Response generation (Xing et al., 2017) - hierarchical conversational context (covered)
2) Document classification (Yang et al.,2017) - hierarchical document context (not covered)

20

https://arxiv.org/abs/1701.07149
http://www.cs.cmu.edu/~./hovy/papers/16HLT-hierarchical-attention-networks.pdf

Hierarchical generative multi-turn chabots

GRU

inference !

21

Hierarchical generative multi-turn chabots
- Nicely, we can visualize hierarchical attention weights. Here darker color mean more important words

or utterances.
- We can see how this model is able to understand which are the important words and important utterances

needed to answer a question.

22

Hierarchical document classification
These are results of a hierarchical attention networks used for topic classification in the Yahoo
Answer data set.

For the left document with label 1, which denotes Science and Mathematics, the model accurately
localizes the words zebra, stripes, camouflage, predator and their corresponding sentences.

For the right document with label 4, which denotes Computers and Internet, the model focuses on
web, searches, browsers and their corresponding sentences.

23

Hierarchical document classification
The model can select words carrying strong sentiment like delicious, amazing, terrible and their
corresponding sentences. Sentences containing useless words like cocktails, pasta, entree are
disregarded.

24

