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About me

Present

- 2nd year PhD student in Deep Learning
- supervised by Prof. Matteo Matteucci

Background
Machine Learning, Signal Processing

- MSc at Politecnico di Milano
- BSc at Universita degli studi di Firenze

Contacts

marco.ciccone@polimi.it
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From Cityscapes Dataset

Semantic Segmentation

Structure Prediction Task: assign to each pixel of the image a semantic class
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https://www.cityscapes-dataset.com/
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ReNet and ReSeg

4 RNNs that scans the pixels of the image in
different directions:

Top-Down + Bottom-Up
Left-Right + Right-Left

— Context from left

(£

| — Context from above

— Context from right

7] — context from below

Reference:

ReNet, Visin et Al
ReSeq, Visin, Ciccone et Al.  (M.Sc. Thesis)
Code: https://aithub.com/fvisin/reseq



https://arxiv.org/abs/1505.00393
https://arxiv.org/pdf/1511.07053.pdf
https://github.com/fvisin/reseg
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If you have questions regarding the
course/projects drop me an email with
[PHD_DL2018] in the subject

if '"[PHD_DL2018]"' in mail.subject:
read email
else:

ighore email
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Let’'s start :-)
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DL frameworks

- Theano (Python)

- Caffe(?2) (C, C++, Python, MATLAB, Command line)
- Torch (Lua, C, C++)

- MXNet (Python, R, C++, Julia)

- PyTorch (Python, C, C++)

- Tensorflow (C++, Python)

All of these frameworks have an interface (scripting) language
to prototype faster and several backend depending on the
device you use to train/deploy



Deep Learning Phd Course




Deep Learning Phd Course

Which framework should | use?

There’s no winner.

It really depends what you like and what you have to do.

ONNX: open neural network exchange format

http://onnx.ai/

Train with X and deploy with Y.


http://onnx.ai/
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CUDNN Disclaimer

Most likely for your project you will need GPU(s) and
CUDNN backend for GPU acceleration.
(optimized kernels directly provided by NVIDIA)
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Github Distribution

Stars and Repositories

100 B stars

B Repositories

75
50
25
; Il l-_l. e B
TensorFLow  Keras Caffe PyTorch Torch Theano
Libraries

Slide from “Stanford TensorFlow for DL Research course”
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Demand for TensorFlow learning materials

® tensorflow tutorial ® pytorch tutorial caffe tutorial @ torch tutorial ® mxnet tutorial
Search term Search term Search term Search term Search term
Worldwide ¥ 10/11/15-1/11/18 « All categories ¥ Web Search ¥
Interest over time ¥ <> e

Average Oct 11,2015 Jul 24,2016 May 7,2017

Slide from “Stanford TensorFlow for DL Research course”
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TF Levels

- Basic (Keras) ‘

- Intermediate (custom modules) TensorFlOW

- Advanced (Data parallelism on Multiple Devices)
- Pro (Distributed parallelism)
- Inferno (Subgraphs on different devices)
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Cool, but what is TensorFlow"?

L2

g g
L I/\A/
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“TensorFlow™ is an open source software library for
numerical computation using data flow graphs.”

It’s not specific for Deep Learning, but it’s tightly coupled
with it. In principle you can use it for any tensor operation.
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Graph Computation

TensorFlow decouples definition of computations from execution
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Graph from TensorFlow for Machine Intelligence and “Stanford TensorFlow for DL Research course”
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Graph Declaration

TF is NOT imperative (a la numpy) [not entirely true now... see Eager Mode]

1. Define a graph of operations (Code)

2. Graph is built and optimized by TF (Pray)

3. Execute operations and feed the graph with actual data through tf.session()
(Wait & Hope for results)

Pros and Cons:

+ The graph of operations allows to compute the gradient automagically without the need specify (code)
the gradient of the operation (Automatic Differentiation tool).

+ Thanks to optimization techniques the resulting graph could be really fast and memory efficient.
- Debugging is a true nightmare if you don’t have enough experience: you’ll become “the debbbaggher”.
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Graph Declaration

import numpy as np s N W, 5 —
import tensorflow as tf gradients |- train_min gmd'em; - ]_\ train_min |
L /.
Model parameters , init
= tf.variable([.3], tf.float32) sym | ﬁ:rf

#
w
b = tf.variable([-.3], tf.float32)
# Model input and output

X

= tf.placeholder(tf.float32) “~_range
linear_model = W * x + b :;:8 ’
y = tf.placeholder(tf.float32) ¥
# loss Rmk’

loss = tf.reduce_sum(tf.square(linear_model - y)) # sum of the squares
# optimizer

optimizer = tf.train.GradientDescentOptimizer(0.01) Square
train = optimizer.minimize(loss) ﬁ

# training data

x train = [1,2,.3. 4] sub
y_train = [0,-1,-2,-3]

# training loop

init = tf.global_variables_initializer()

sess = tf.Session()

sess.run(init) # reset values to wrong

for i in range(16000): v U
sess.run(train, {x:x_train, y:y_train}) (:::::::::::) binit

add y

# evaluate training accuracy

curr_W, curr_b, curr_loss = sess.run([W, b, loss], {x:x_train, y:y_train}) (::::::::::::) N train_min
print("W: %s b: %s loss: %s"%(curr_W, curr_b, curr_loss)) et

Slide from “Stanford TensorFlow for DL Research course”
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Graph Pros

Optimization

Automatic buffer reuse

Constant folding

Inter-op parallelism

Automatic trade-off between compute and memory

Deployability
- Graph is an intermediate representation for models
Rewritable

- Experiment with automatic device placement or quantization

Slide from “Stanford TensorFlow for DL Research course”
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Graph Cons

Difficult to debug

- Errors are reported long after graph construction
- Execution cannot be debugged with pdb or print statements

Un-Pythonic

- Writing a TensorFlow program is an exercise in metaprogramming
- Control flow (e.g., tf.while_loop) differs from Python
- Can't easily mix graph construction with custom data structures

Slide from “Stanford TensorFlow for DL Research course”
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Again... Why graphs”

1. Save computation. Only run subgraphs
that lead to the values you want to fetch.

2. Break computation into small, differential
pieces to facilitate auto-differentiation.

3. Facilitate distributed computation.
Spread the work across multiple CPUs,
GPUs, TPUs, or other devices

4. Many common machine learning models

o : | S
are taught and visualized as directed | —
graphs. T E.g. AlexNet 2012, winner of
3 4 ImageNet challenge 2012. The

model was split in 2 GPUs to be
Slide from “Stanford TensorFlow for DL Research course” able to train it.
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Before starting: Tensors

Tensors are just n-dimensional arrays

- 0-d tensor: scalar (number)
1-d tensor: vector

2-d tensor: matrix

And soon ...

Note that in TF you are dealing with batch of data so for instance:

- Image are 4D batch x height x width x nchannels
- Sequences are 3D batch x sequence_lenght x nfeatures
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Shapes Disclaimer

With tensors computation, 99% of your bugs are
going to be on shapes, so deal with it.
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ReNet Sublayer
ReNet Sublayer
ReNet Sublayer
ReNet Sublayer
/Users/marcus/.miniconda/envs/lasagne/1ib/python2.7/site-packages/theano/scan_module/scan.py:1019: Warning: In the strict mode, all neccessary shared variables must be passed as
o part of non_sequences
'must be passed as a part of non_sequences', Warning)
Softmox [id A] '
|Reshape{2} [id B] "'
|Reshape{4} [id C] '*
| IDimShuffle{0,1,4,2,5,3} [id D] '*
IReshape{6} [id E] *'
|Elemwise{odd,no_inplace} [id F] '*'
|Rebroadcast{1} [id G] ''
| IReshope{4} [id H]
dot [idI] '*
IReshape{2} [id J] "'
I0imShuffle{0,1,2,3} [id K] ''
10imShuffle{0,2,1,3} [id L] '’
Reshape{4} [id M] '"'
Join [id N] '
| ITensorConstant{2} [id 0]
IDimShuffle{1,0,2} [id P] **'
| |Subtensor{int64::} [id Q] "'
| for{cpu,scan_fn} [id R] ''
| ISubtensor{inté4} [id S] "'
IShape [id T] *'
| |Subtensor{int64::} [id U] *'
I |Elemwise{add,no_inplace} [id V] ''
| | IRebroadcast{?,1} [id W] *'
| Reshape{3} [id X] '’
Idot [id Y] '*
IReshape{2} [id Z] "'
| IDimShuffle{®,1,2} [id BA] *'
| IDimShuffle{1,0,2} [id B8] **
IReshope{3} [id BC] '*
|DimShuffle{0,2,1,3} [id 80] *'
| IReshape{4} [id BE] '’
1Join [id BF] '*
| ITensorConstant{2} [id 0]
10imShuffle{1,0,2} [id BG] '*
ISubtensor{int64::} [id BH] "'
| for{cpu,scan_fn} [id BI] "'
| |Subtensor{int64} [id B1] '*
| 1Shape [id BK] *'
| ISubtensor{inté4::} [id 8L] **
| IElemwise{add,no_inplace} [id BM] '
| | IRebroadcost{?,1} [id BN] "'
| | | |Reshape{3} [id 80] "'
| | ldot [id 8P) '
1| | IReshape{2} [id BQ] '*

|
|
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“Desperation on terminal”, Ciccone November 2015
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Hello World TF

import tensorflow as tf
a = tf.add(3, 5)
print(a)

>> Tensor("Add:0", shape=(), dtype=int32)
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How to get the value of "a™”

- Create a session,

- assign it to variable sess so we can call it later

- Within the session, evaluate the graph to fetch th
value of a

import tensorflow as tf
a = tf.add(3, 5)
with tf.Session() as sess:

print(sess.run(a))
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tf.Session()

- A Session object encapsulates the environment in which Operation objects are
executed, and Tensor objects are evaluated.

- Session will also allocate memory to store the current values of variables.

27
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tf.Graph()

to add operators to a graph, set it as default:

g = tf.Graph()
with g.as_default():
x = tf.add(3, 5)
with tf.Session(graph=g) as sess:

sess.run(x)

to handle the default graph:

g = tf.get _default_graph()

Warnings!

DO NOT mess with graphs!
DO NOT use more than one graph per
session!
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TF Operations

Category

Examples

Element-wise mathematical operations
Array operations

Matrix operations

Stateful operations

Neural network building blocks
Checkpointing operations

Queue and synchronization operations
Control flow operations

Slide from “Stanford TensorFlow for DL Research course”

Add, Sub, Mul, Div, Exp, Log, Greater, Less, Equal, ...
Concat, Slice, Split, Constant, Rank, Shape, Shuffle, ...
MatMul, MatrixInverse, MatrixDeterminant, ...
Variable, Assign, AssignAdd, ...

SoftMax, Sigmoid, ReLU, Convolution2D, MaxPool, ...
Save, Restore

Enqueue, Dequeue, MutexAcquire, MutexRelease, ...
Merge, Switch, Enter, Leave, Nextlteration
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tf.constant

node {
name: "my_const"
. : "Const"
import tensorflow as tf §&m{°“
key: "dtype"

my_const = tf.constant([1.0, 2.0], name="my_const") value {
type: DT_FLOAT

print(tf.get_default_graph().as_graph_def()) }}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
_> tensor_shape {
dim {
size: 2
}
}

tensor_content:
"\000\000\200?\000\000\0000"
}
¥
}
}

versions {
producer: 24

}
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tf.Variable

x = tf.Variable(...) WARNING!

X.initializer # init

x.value() # read op - this old way is discouraged
x.assign(...) # write op - TensorFlow recommends that we use the
X.assign_add(...) wrapper tf.get_variable, which allows

# and more for easy variable sharing

s = tf.Variable(2, name="scalar")

m = tf.Variable([[0, 1], [2, 3]], name="matrix")

W = tf.Variable(tf.zeros([784,10]))
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tf.get_variable

tf.get_variable( With tf.get_variable, we can provide
e, - variable’s internal name,
shape=None,
dtype=None, - Shape,

initializer=None, - ’[ype
regularizer=None, - initializer to give the variable its initial value.
trainable=True,

collections=None,

caching_device=None, Note that when we use tf.constant as an initializer, we don’t
partitioner=None, need to provide shape.

validate_shape=True,
use_resource=None,
custom_getter=None,
constraint=None

s = tf.get_variable("scalar", initializer=tf.constant(2))
m = tf.get variable("matrix", initializer=tf.constant([[©, 1], [2, 3]]))
W = tf.get variable("big matrix", shape=(784, 10),

initializer=tf.zeros_initializer())
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Variable initialization

You have to initialize a variable before using it, otherwise it will be raised:
>> FailedPreconditionError: Attempting to use uninitialized value.
To get a list of uninitialized variables, you can just print them out:

print(session.run(tf.report _uninitialized variables()))

The easiest way is initialize all variables at once:

with tf.Session() as sess:
sess.run(tf.global variables_initializer())



Deep Learning Phd Course

tf.assign

We can assign a value to a variable using tf.Variable.assign()

W = tf.variable(10)

W.assign(100)

with tf.Session() as sess:
sess.run(W.initializer)
print(W.eval()) # >> 10

Why 10 and not 1007 W.assign(100) doesn't assign the value 100 to W, but instead
create an assign op to do that. For this op to take effect, we have to run this op in
session.

assign_op = W.assign(100)

with tf.Session() as sess:
sess.run(assign_op)
print(W.eval()) # >> 100
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tf.constant vs tf.Variable

Differences between a constant and a variable;

1. Atf.constant is an op. A tf.Variable is a class with multiple ops.
2. A constant's value is stored in the graph and replicated wherever the graph
is loaded. A variable is stored separately, and may live on a parameter server.

In other words:
- Constants are stored in the graph definition.
- When constants are memory expensive, such as a weight matrix with millions of
entries, it will be slow each time you have to load the graph.
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Control Dependencies

Sometimes, we have two or more independent ops and we'd like to specify which

ops should be run first.
In this case, we use tf.Graph.control dependencies([control inputs])

# your graph g have 5 ops: a, b, c, d, e
with g.control dependencies([a, b, c]):
# "d and e will only run after "a’, b, and "¢ have executed.
d = ...
e
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Example: Batch Normalization (BN)

- BN requires to update running statistics (mean, variance) after each training step.
- Unfortunately, the update_moving_averages operation is not a parent of train op (train_step) inthe

computational graph.
- Only the subgraph components relevant to train_step will be executed, so we will never update

the moving averages!

To get around this, we have to explicitly tell the graph:

Update ops = tf.get collection(tf.GraphKeys.UPDATE_OPS)

with tf.control dependencies(update_ops):

# Ensures that we execute the update_ops before performing the train_step

train_step = tf.train.GradientDescentOptimizer(0.01).minimize(loss)
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Data Feeding (OLD)

Remember working with TF has 2 phases:

Phase 1: assemble a graph
Phase 2: use a session to execute operations and evaluate variables in the graph

We can assemble the graphs first without knowing the values needed for computation. This is equivalent to defining the function of x, y
without knowing the values of x, y. For example: f(x, y) = 2x + .

x, y are placeholders for the actual values.

With the graph assembled, we, or our clients, can later supply their own data when they need to execute the computation. To define a
placeholder, we use:

tf.placeholder(tf.float32, shape=[3]) # a is placeholder for a vector of 3 elements
= tf.constant([5, 5, 5], tf.float32)

= a + b # use the placeholder as you would any tensor

_value = [0,1,2] # this is numeric value, while “a° is symbolic

with tf.Session() as sess:

print(sess.run(c), feed_dict={a: a_value})

QO N O o
I
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Data Feeding

After few versions finally, TF has a usable dataset API interface.
The tf.data API enables you to build complex input pipelines from simple, reusable pieces.
It allows to create dataset iterators to:

- Load from binary datasets
- Load from numpy
- Load from TFRecords (TF data format)

Take a look at the documentation, we’ll see examples.

https://www.tensorflow.org/programmers _guide/datasets


https://www.tensorflow.org/api_docs/python/tf/data

Deep Learning Phd Course

Tensorboard

Tool that allows to log scalar and histogram quantities.

Helpful to track weights, gradients, losses of several experiments at the same time.

TenSOI'Boa rd EVENTS IMAGES GRAPH HISTOGRAMS

input new regex ® - xentropy ™

Split On Underscores: .

xentropy_mean
X Type: 2.20
.80
STEP RELATIVE WALL !
1.40
Selected Runs: 1.00
data 0.600
0.200

0.000 400.0 800.0 1.200k 1.600k
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Tensorboard

# Create model

def multilayer_perceptron(x, weights, biases):
# Hidden Layer with RELU activation
layer_1 = tf.add(tf.matmul(x, weights['wl']), biases['bl'])
layer 1 = tf.nn.relu(layer_1)
# Create a summary to visualize the first layer RelLU activation
tf.summary.histogram("relul”, layer_1)
# Hidden layer with RELU activation
layer_2 = tf.add(tf.matmul(layer_1, weights['w2']), biases['b2'])
layer_2 = tf.nn.relu(layer_2)
# Create another summary to visualize the second lLayer RelU activation
tf.summary.histogram(“relu2"”, layer_2)
# Output Layer
out_layer = tf.add(tf.matmul(layer 2, weights['w3']), biases['b3'])
return out_layer
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Tensorboard

def variable summaries(var):

Attach a lot of summaries to a Tensor (for TensorBoard visualization).
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.summary.scalar( 'mean’, mean)
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce _mean(tf.square(var - mean)))
tf.summary.scalar('stddev’', stddev)
tf.summary.scalar( 'max', tf.reduce_max(var))
tf.summary.scalar( 'min', tf.reduce_min(var))

tf.summary.histogram('histogram', var)
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Tensorboard

# Collect summaries

merged_summaries = tf.summary.merge_all()

train_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/train', sess.graph)

(...)

for i in range(FLAGS.max_iters):

if 1 % 10 == ©0: # Train and Record summaries

summary, _ = sess.run([merged_summaries, train_op], feed_dict=val_dict)
test_writer.add_summary(summary, i)

else: # Just train

_ = sess.run([train_op], feed_dict=val_dict)
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Let’s start with TF!
Open Jupyter!

https://codeshare.io/ayQy0o
https://goo.gl/Kki8vT



https://codeshare.io/ayQy0o
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Project
Recommendations
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Don’t be stupid

Deep Learning could be a real PITA.
Finding bugs in a model is not always easy.
Code should be decoupled (but don’t over-engineered it):

- Data loading
- Training algorithm
- Model
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Don’t be stupid |l

- Don’t even think to use Windows.
- Use Git to version your code.

- Learn how to use VIM.

- Learn how to use ssh.

- [Respect python PEPS]
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Logging and Experiments

- Use Tensorboard to inspect:
- Losses
- Gradients
- Weights norm and distributions

- Use FLAGS to parametrize your scripts
- Track all the hyperparameters for each experiment (+ Loss and metrics)



Dee
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“Optimization is easy when other people
have found the hyper-parameter
combination that works”
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