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Feature Projection 

•  Goal: Reduce the number of features D to improve classification accuracy 
•  Use a linear combination of original features 

•  Projects data into different space in which classes might be best separated 

•  Resulting features could lose their meaning 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Signal Classification vs Signal Representation 

•  Signal Representation (PCA) 
–  Information associated with the data distribution (i.e. mean and variance) 
–  No relationship with the classification problem 
–  Data should have similar variances 

•  Signal Classification (LDA) 
–  Information associated to discrimination capabilities (inter‐class distance)  
–  Tendency to over‐fit the training data with poor generalization abilities. 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Principal Component Analysis (PCA) 

•  Hp: Data follows a multi‐dimensional Gaussian distribution 

•  Goal: Find the principal component of the distribution that account for the 
maximum variance of data 

•  Covariance matrix 

•  Decomposition of 

–  Eigen vectors       are principal components of distribution 

–  Eigen values        are the variance of data along principal components 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PCA and vectors 

•  Samples represented in a 2‐D vector format 

      are axis vectors 

•  Samples in a D‐dimensional space 

•  Suppose we want to represent the data in M‐dimensional (M<D) space 
–  Replace the features with a constant value 

•  We have an error 

•  Mean squared error 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ϕ1, ϕ2

ϕ1

ϕ2

x̂(M) =
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PCA and mean squared error 

•  Find           that minimize 

•  Adding the orthonormality constraint 

•  Find           that minimize  

bi ε2(M)

ε2(M) =
∑D

i=M+1 ϕT Σxϕ +
∑D

i=M+1 λi(1− ϕT
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D∑

i=M+1
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PCA Step by step 

1.  Given the dataset 

2.  Compute the covariance matrix 

3.  Solve the characteristic equation 

4.  Chose the first M eigenvectors corresponding to the largest eigenvalues   

5.  Project the data   

x

Σx

Σxϕ− λϕ = 0

H = [ϕi|ϕ2| . . . |ϕM ] x̄ = [ϕi|ϕ2| . . . |ϕM ]x
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PCA Example 

•  Dataset 
•  Covariance matrix 

•  Decomposition of covariance matrix 

x = {(1, 2), (3, 3), (3, 5), (5, 4), (5, 6), (6, 5), (8, 7), (9, 8)}

Σx =
[

7.1429 4.8571
4.8571 4.0000

]

µ = (5, 5)

Σxϕ− λϕ = 0
∣∣∣∣

7.1429− λ1 4.8571
4.8571 4.0000− λ2

∣∣∣∣ = 0

H = [ϕ1|ϕ2] =
[
−0.8086 −0.5883
−0.5883 0.8086

]

λ1 = 10.6764, λ2 = 0.4664
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PCA Example (2) 

•  Projection into principal components 

•  Ration of component variance and total variance 
λiPD

i=1 λi

λ1PD
i=1 λi

= 0.9581 λ2PD
i=1 λi

= 0.0419
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PCA Notes 

•  PCA aims to decompose the covariance matrix 

•         is estimated under the assumption of a Gaussian Distributions 

–  If data are not normally distributed, PCA de‐correlates features 

•  PCA does not use class labels to project data 

•  Projection depends only on the data structure 

•  By stretching one of the principal component, the distribution of data does not 
change 

•  There is no guarantee that principal components best separate classes   

Σx
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Fisher’s Linear Discriminant Analysis (LDA) 

•  LDA is a linear projection 

•  the projections maximizes intra‐class separability (among different classes) and  
minimizes inter‐class separability (in the same class). 

•  The projection is find by solving an optimization problem   

–  Which measure should be minimized? 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Fisher’s Linear Discriminant Analysis (LDA) 

•  A possible measure of separability:  sample mean 
–  Sample mean for class 

–  Projected mean 

–  Measure of separation 

•  the distance between the projected means is not enough: it does not take in 
account the standard deviation  

µi = 1
Ni

∑
x∈ωi

x

ωi

µ̃i = 1
Ni

∑
x∈ωi

WT x = WT µi

J(W ) = |µ̃1 − µ̃2|
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Fisher’s Linear Discriminant Analysis (LDA) 

•  Within‐class scatter matrix 

•  Between‐class scatter matrix 

•  Measure of separation 

–  Projected means are well separated 
–  Projected variance are small 

Sω =
∑

ωi∈Y

∑
x∈ωi

(x− µi)(x− µi)T

Sb =
∑

ωi∈Y Ni(µ− µi)(µ− µi)T

s̃2
i =

∑
x∈ωi

(WT x−XT µi) =
∑

x∈ωi
WT (x− µi)(x− µi)T W = WT SωiW

J(W ) = |µ̃1−µ̃2|2
s̃2
1+s̃2

2

s̃2
1 + s̃2

2 = WT SωW

J(W ) = W T SbW
W T SwW

(µ̃1 − µ̃2)2 = (WT µ1 −WT µ2)2 = WT (µ1 − µ2)(µ1 − µ2)W = WT SbW
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Fisher’s Linear Discriminant Analysis (LDA) 

•  Find W that maximizes J(W) 

–  Dividing by 

–  Solving the generalized eigenvector problem we obtain W that maximize J 

∂
∂W J(W ) = ∂

∂W

[
W T SbW
W T SwW

]
= 0

(WT SwW ) ∂
∂W (WT SbW )− (WT SbW ) ∂

∂W (WT SwW ) = 04

(WT SwW )

(WT SwW )2SbW − (WT SbW )2SwW = 0

W T SwW
W T SwW SbW − W T SbW

W T SwW SwW = 0

SbW − JSwW = 0

S−1
w SbW − JW = 0
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LDA step by step 

1.  Given the dataset 

2.  Computes the class statistic 

3.  Compute the within‐class scatter matrix 

4.  Compute the between‐class scatter matrix 

5.  Solve the generalized eigenvalue problem 

x

Sωi =
∑

x∈ωi
(x− µi)(x− µi)T

Sω =
∑

i=1..|Y | Sωi

Sb =
∑

ωi∈Y Ni(µ− µi)(µ− µi)T

S−1
w SbW − JW = 0
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LDA  example 

1.  Dataset 

2.  Compute class statistic 

–  Class 1 

–  Class 2 

3.  Compute the within‐class scatter matrix 

x={(4,1), (2,4), (2,3), (3,6), (4,4) , (9,10), (6,8), (9,5), (8,7), (10,8)}
y = {1, 1, 1, 1, 1, 2, 2, 2, 2, 2}

Sωi =
∑

x∈ωi
(x− µi)(x− µi)T

µ1 = [3, 3.6] Sω1 =
[

4 −2
−2 13.2

]

µ2 = [8.4, 7.6] Sω2 =
[

9.2 −0.2
−0.2 13.2

]
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Sω =
[

13.2 −0.2
−0.2 26.4

]



LDA  example (2) 

4.  Compute the between‐class scatter matrix 

5.  Solve the generalized eigen value problem 

Sb =
∑

ωi∈Y Ni(µ− µi)(µ− µi)T

Sb =
[

72.9 54
54 40

]

S−1
w SbW − JW = 0

|S−1
ω Sb − λI| = 0

∣∣∣∣
5.9462− λ1 4.4046

2.5410 1.8822− λ2

∣∣∣∣ = 0

W =
[

0.9196 −0.5952
0.3930 0.8036

]
λ1 = 7.8284 λ2 = 0
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Note on LDA 

•  Produces only C‐1 projections 
•  Hp of  unimodal distribution of data within each class. 

–  If data are highly non linear the resulting projection is sub optimal   
•  Non‐parametric Linear Discriminant Analysis remove the unimodal assumpion 

–        is computed with local information trough a K‐NN 
–        result in a full rank matrix and projection is made over more than c‐1 

classes   
•  LDA fails when the information is contained in the variance rather than the mean 

–  Encode the variance as a new feature! 

Sb

Sb
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Other dimensionality reduction techniques 

•  Kernel PCA 
•  Indipendent Component Analysis (ICA) 
•  Multilayer Perceptron  
•  Self organizing maps (SOMs)  
•  Sammon's map  
•  Support vectors machine (SVM) 

–  Margin maximization 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