
- Seq2seq and Word Embedding-

Matteo Matteucci, PhD (matteo.matteucci@polimi.it)

Artificial Intelligence and Robotics Laboratory

Politecnico di Milano

Artificial Neural Networks and Deep Learning

Credits for images and examples to Elena Voita’s

https://lena-voita.github.io/nlp_course.html

https://lena-voita.github.io/nlp_course.html

2

The Unreasonable Effectiveness of Recurrent Neural Networks: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Sequential data problems

Fixed-sized

input

to fixed-sized

output

(e.g. image

classification)

Sequence output

(e.g. image captioning

takes an image and

outputs a sentence of

words).

Sequence input (e.g.

sentiment analysis

where a given sentence

is classified as

expressing positive or

negative sentiment).

Sequence input and
sequence output (e.g.
Machine Translation: an
RNN reads a sentence in
English and then outputs
a sentence in French)

Synced sequence input
and output (e.g. video
classification where we
wish to label each frame
of the video)

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

3

Sequence to Sequence Learning Examples (1/3)

Image Captioning: input a single image and get a series or sequence of

words as output which describe it. The image has a fixed size, but the

output has varying length.

4

Sequence to Sequence Learning Examples (2/3)

Sentiment Classification/Analysis: input a sequence of characters or

words, e.g., a tweet, and classify the sequence into positive or negative

sentiment. Input has varying lengths; output is of a fixed type and size.

5

Sequence to Sequence Learning Examples (3/3)

Language Translation: having some text in a particular language, e.g.,

English, we wish to translate it in another, e.g., French. Each language has

its own semantics and it has varying lengths for the same sentence.

How can we model

language translation?

6

Conditional Language Models

Language model represents the probability of a sentence (sequence)

Conditional language model conditions on a source sentence (sequence)

In image captioning 𝑥1𝑥2, … , 𝑥𝑚 can be replaced by an image 𝑥

𝑃 𝑦1, 𝑦2, … , 𝑦𝑛 = ෑ

𝑡=1

𝑛

𝑝(𝑦𝑡|𝑦<𝑡)

𝑃 𝑦1, 𝑦2, … , 𝑦𝑛|𝑥1, 𝑥2, … , 𝑥𝑚 = ෑ

𝑡=1

𝑛

𝑝(𝑦𝑡|𝑦<𝑡, 𝑥1, 𝑥2, … , 𝑥𝑚)

7

Sequence to Sequence Basics

Given an input sequence

and a target output sequence

we aim the sequence which maximizes the conditional probability P(y|x)

in sequence-to-sequence modeling, we learn from data a model

P(y|x, 𝜃) and our prediction now becomes

𝑥1, 𝑥2, … , 𝑥𝑚

𝑦1, 𝑦2, … , 𝑦𝑛

𝑦∗ = argmax
𝑦

𝑃(𝑦1, 𝑦2, … , 𝑦𝑛|𝑥1, 𝑥2, … , 𝑥𝑚)

𝑦′ = argmax
𝑦

𝑃(𝑦1, 𝑦2, … , 𝑦𝑛|𝑥1, 𝑥2, … , 𝑥𝑚, 𝜃)

8

Machine Translation Humans vs Machines

9

Machine Translation Humans vs Machines

We will just mention

about these!

10

The Encoder-Decoder Framework

Sequence-to-sequence models as encoder-decoder architectures

True for most of deep

learning models …

11

The Encoder-Decoder Framework

Sequence-to-sequence models as encoder-decoder architectures

Recall the Conditional

Language Model …

12

The Encoder-Decoder Framework

Sequence-to-sequence models as encoder-decoder architectures

Recall the Conditional

Language Model …

13

Encoding/Decoding with Recurrent Neural Networks (LSTM)

14

Greedy Decoding vs Beam Search

Once we have trained the mode, i.e., learned 𝜃, we predict a sequence

𝑦 = 𝑦1, 𝑦2, … , 𝑦_𝑛 given 𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑚 by selecting 𝑦′ as

To compute the argmax over all possible sequences we can use:

• Greedy Decoding: at each step, pick the most probable token

but this does not guarantee to reach the best sequence and it does not allow

to backtrack from errors in early stages of classification.

𝑦′ = argmax
𝑦

ෑ

𝑡=1

𝑛

𝑃(𝑦𝑡|𝑦<𝑡, 𝑥1, 𝑥2, … , 𝑥𝑚, 𝜃)

𝑦′ = argmax
𝑦

ෑ

𝑡=1

𝑛

𝑃(𝑦𝑡|𝑦<𝑡, 𝑥1, 𝑥2, … , 𝑥𝑚, 𝜃) ≈ ෑ

𝑡=1

𝑛

argmax
𝑦𝑡

𝑃(𝑦𝑡|𝑦<𝑡 , 𝑥1, 𝑥2, … , 𝑥𝑚, 𝜃)

15

Greedy Decoding vs Beam Search

Once we have trained the mode, i.e., learned 𝜃, we predict a sequence

𝑦 = 𝑦1, 𝑦2, … , 𝑦_𝑛 given 𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑚 by selecting 𝑦′ as

To compute the argmax over all possible sequences we can use:

• Beam Search: Keep track of several most probably hypotheses

𝑦′ = argmax
𝑦

ෑ

𝑡=1

𝑛

𝑃(𝑦𝑡|𝑦<𝑡, 𝑥1, 𝑥2, … , 𝑥𝑚, 𝜃)

16

Given a training sample < 𝑥, 𝑦 > with input sequence 𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑚

and target sequence 𝑦 = 𝑦1, 𝑦2, … , 𝑦𝑛,

time t our model predicts

Using a one-hot vector for 𝑦𝑡 we can use the cross-entropy as loss

Training Sequence to Sequence Models

𝑝𝑡 = 𝑝(⋅ |𝑦1, 𝑦2, … , 𝑦𝑡−1, 𝑥1, 𝑥2, … , 𝑥𝑚)

𝑙𝑜𝑠𝑠𝑡 𝑝𝑡, 𝑦𝑡 = −

𝑖=1

𝑉

𝑦𝑡
𝑖

log 𝑝𝑡
𝑖

= −𝑦𝑡
𝑇log(𝑝𝑡)

17

Training Sequence to Sequence Models

Over the entire sequence cross-entropy becomes − σ𝑡=0
𝑛 𝑦𝑡

𝑇log(𝑝𝑡)

19

Training Sequence to Sequence Models

Seq2Seq model follows a classical encoder decoder architecture

• At trainng time the decoder does not feed the output of each time step to the

next; the input to the decoder time steps are the target from the training

• At inference time the decoder feeds the output of each time step as an input

to the next one

Sequence to sequence learning with Neural networks: https://arxiv.org/pdf/1409.3215.pdf

https://arxiv.org/pdf/1409.3215.pdf

20

Special Characters

<PAD>: During training, examples are fed to the network in batches. The inputs in these batches need

to be the same width. This is used to pad shorter inputs to the same width of the batch

<EOS>: Needed for batching on the decoder side. It tells the decoder where a sentence ends, and it

allows the decoder to indicate the same thing in its outputs as well.

<UNK>: On real data, it can vastly improve the resource efficiency to ignore words that do not show

up often enough in your vocabulary by replace those with this character.

<SOS>/<GO>: This is the input to the first time step of the decoder to let the decoder know when to

start generating output.

Special characters

may vary in name ...

Sequence to sequence learning with Neural networks: https://arxiv.org/pdf/1409.3215.pdf

https://arxiv.org/pdf/1409.3215.pdf

21

Dataset Batch Preparation

1. Sample batch_size pairs of

(source_sequence, target_sequence).

2. Append <EOS> to the source_sequence

3. Prepend <SOS> to the target_sequence

to obtain the target_input_sequence and

append <EOS> to obtain target_output_sequence.

4. Pad up to the max_input_length (max_target_length)

within the batch using the <PAD> token.

5. Encode tokens based of vocabulary (or embedding)

6. Replace out of vocabulary (OOV) tokens with <UNK>.

Compute the length of each input and target sequence in the batch.

Vocabulary = {“<SOS>”: 00,
 “<EOS>”: 99,

 “<UNK>”: 01,
 “<PAD>”: 03,
 “the”: 42,
 “is”: 16,
 ... }

Where do these

numbers come from?

22

Word Embedding Motivation

Natural language processing treats words as discrete atomic symbols

• 'cat' is encoded as Id537

• 'dog' is encoded as Id143

• …

Items in a

dictionary …

A document becomes

a Bag of Words

Sparse and high

dimensional -> Curse

of Dimensionality!

23

Encoding Text is a Serious Thing

Performance of real-world applications (e.g., chatbot, document

classifiers, information retrieval systems) depends on input encoding:

Local representations

• N-grams

• Bag-of-words

• 1-of-N coding

Continuous representations

• Latent Semantic Analysis

• Latent Dirichlet Allocation

• Distributed Representations

Determine 𝑃 𝑠 = 𝑤1, … , 𝑤𝑘 in some domain of interest

𝑃 𝑠𝑘 = ෑ

𝑖

𝑘

𝑃 𝑤𝑖| 𝑤1, … , 𝑤𝑖−1

In traditional n-gram language models “the probability of a word
depends only on the context of n−1 previous words”

𝑃 𝑠𝑘 = ෑ

𝑖

𝑘

𝑃 𝑤𝑖| 𝑤𝑖−𝑛+1 , … , 𝑤𝑖−1

Typical ML-smoothing learning process (e.g., Katz 1987):

• compute 𝑃 𝑤𝑖| 𝑤𝑖−𝑛+1 , … , 𝑤𝑖−1 =
#𝑤𝑖−𝑛+1 ,…,𝑤𝑖−1 ,𝑤𝑖

#𝑤𝑖−𝑛+1 ,…,𝑤𝑖−1

• smooth to avoid zero probabilities

Language Model

24

N-gram Language Model: Curse of Dimensionality

Let’s assume a 10-gram LM on a corpus of 100.000 unique words

• The model lives in a 10D hypercube where each dimension has 100.000 slots

• Model training ↔ assigning a probability to each of the 100.00010 slots

• Probability mass vanishes → more data is needed to fill the huge space

• The more data, the more unique words! → Is not going to work …

In practice:

• Corpuses can have 106 unique words

• Contexts are typically limited to size 2 (trigram model),

e.g., famous Katz (1987) smoothed trigram model

• With short context length a lot of information is not captured

25

N-gram Language Model: Word Similarity Ignorance

Let assume we observe the following similar sentences

• Obama speaks to the media in Illinois

• The President addresses the press in Chicago

With classic one-hot vector space representations

• speaks = [0 0 1 0 … 0 0 0 0]

• addresses = [0 0 0 0 … 0 0 1 0]

• obama = [0 0 0 0 … 0 1 0 0]

• president = [0 0 0 1 … 0 0 0 0]

• illinois = [1 0 0 0 … 0 0 0 0]

• chicago = [0 1 0 0 … 0 0 0 0]

Word pairs share no similarity, and we need word similarity to generalize

speaks ꓕ addresses

obama ꓕ president

illinois ꓕ chicago

26

Embedding

Any technique mapping a word (or phrase)

from it's original high‐dimensional input

space (the body of all words) to a

lower‐dimensional numerical vector space ‐

so one embeds the word in a different space

Closer points are closer in

meaning and they form

clusters …

27

Neural Autoencoder Recall

Network trained to output the input (i.e., to learn the identity function)

• Limited number of units in hidden layers (compressed representation)

• Constrain the representation to be sparse (sparse representation)

𝐸 = 𝑔𝑖 𝑥𝑖|𝑤 − 𝑥𝑖
2 + 𝜆

𝑗

ℎ𝑗

𝑖

𝑤𝑗𝑖
(1)

𝑥𝑖

𝑔𝑖 𝑥𝑖 w ∼ 𝑥𝑖

Reconstruction error
Sparsity term

ℎ𝑗 𝑥𝑖 w ∼ 0

x
1

x

I

x

i

…

…

1

𝑤𝑗𝑖

𝑤11

𝑤𝐽𝐼

𝑤10

…

…

1

𝑔𝐼 𝑥 w

𝑔𝑖 𝑥 w

𝑔1 𝑥 w

ℎ𝑗 𝑥 w

Encoding Deconding

𝑥 ∈ ℜ𝐼
𝑒𝑛𝑐

ℎ ∈ ℜ𝐽
𝑑𝑒𝑐

𝑔 ∈ ℜ𝐼

𝐽 ≪ 𝐼

28

Word Embedding: Distributed Representation

Each unique word 𝑤 in a vocabulary V (typically 𝑉 > 106) is mapped

to a continuous m-dimensional space (typically 100 < 𝑚 < 500)

Fighting the curse of dimensionality with:

• Compression (dimensionality reduction)

• Smoothing (discrete to continuous)

• Densification (sparse to dense)

𝑤 ∈ 𝑉
𝑚𝑎𝑝𝑝𝑖𝑛𝑔 𝐶

ℜ𝑚

Similar words should end

up to be close to each

other in the feature space …

obama = [0 0 ... 0 1 0 ... 0 0]

«one-hot» encoding

𝑤1 𝑤𝑉obama

obama = [0.12 ... -0.25]

𝑓1 𝑓𝑚

feature vector

29

Neural Net Language Model (Bengio et al. 2003)

Projection layer
contains the word
vectors in 𝐶|𝑉|,𝑚

30

Neural Net Language Model (Bengio et al. 2003)

Projection layer contains

the word vectors in 𝐶|𝑉|,𝑚

An example with a

two words context ...

31

Neural Net Language Model (Bengio et al. 2003)

Softmax is used to output a multinomial distribution

𝑃 𝑤𝑖 = 𝑤𝑡| 𝑤𝑡−𝑛+1 , … , 𝑤𝑡−1 =
𝑒𝑦𝑤𝑖

σ
𝑖′
|𝑉|

𝑒𝑦𝑤𝑖′

• 𝑦 = 𝑏 + 𝑈 ⋅ tanh 𝑑 + 𝐻 ⋅ 𝑥
• 𝑥 is the concatenation 𝐶 𝑤 of the context weight vectors
• 𝑑 and 𝑏 are biases (respectively ℎ and |𝑉| elements)
• 𝑈 is the |𝑉| × ℎ matrix with hidden-to-output weights
• H is the ℎ × 𝑛 − 1 ⋅ 𝑚 projection-to-hidden

weights matrix

Training by stochastic gradient

descent has complexity

𝑛 × 𝑚 + 𝑛 × 𝑚 × ℎ + 𝒉 × |𝑽|

32

Neural Net Language Model (Bengio et al. 2003)

Tested on Brown (1.2M words, V≅ 16K,
200K test set) and AP News (14M
words, V≅ 150K reduced to 18K, 1M
test set)

• Brown: h=100, n=5, m=30
AP News: h=60, n=6, m=100

• 3 week training using 40 cores
• 24% (Brown) and 8% (AP News)

relative improvement wrt traditional
smoothed n-gram in terms of test set
perplexity

Due to complexity, NNLM can’t be
applied to large data sets and it shows
poor performance on rare words

Bengio et al. (2003) thought their

main contribution was LM

accuracy and they let the word

vectors as future work …

Mikolov et al. (2013),

instead, focused on the

word vectors

33

Google’s word2vec (Mikolov et al. 2013a)

Idea: achieve better performance allowing a simpler (shallower) model

to be trained on much larger amounts of data

• No hidden layer (leads to 1000X speed up)

• Projection layer is shared (not just the weight matrix)

• Context contain words both from history and future

«You shall know a word

by the company it keeps»

John R. Firth, 1957:11.

34

Google word2vec Flavors

Skip-gram architecture Continuous Bag-of-Words architecture

35

Word2vec’s Continuous Bag-of-Words (CBOW)

36

Word2vec’s Continuous Bag-of-Words (CBOW)

For each <context, target>

pair only the context words

are updated.

If 𝑃 𝑤𝑖 = 𝑤𝑡|𝑐𝑜𝑛𝑡𝑒𝑥𝑡 is

overestimated some portion of

𝐶′ 𝑤𝑖 is subtracted from the

contex word vectors in 𝐶|𝑉|,𝑚

If 𝑃 𝑤𝑖 = 𝑤𝑡|𝑐𝑜𝑛𝑡𝑒𝑥𝑡 is

underestimated some portion

of 𝐶′ 𝑤𝑖 is added from the

contex word vectors in 𝐶|𝑉|,𝑚

37

Word2vec facts

Word2vec shows significant improvements w.r.t. the NNML

• Complexity is 𝑛 × 𝑚 + 𝑚 × 𝑙𝑜𝑔|𝑉| (Mikolov et al. 2013a)

• On Google news 6B words training corpus, with |𝑉| ∼ 106

• CBOW with m=1000 took 2 days to train on 140 cores

• Skip-gram with m=1000 took 2.5 days on 125 cores

• NNLM (Bengio et al. 2003) took 14 days on 180 cores, for m=100 only!

• word2vec training speed ≅ 100K-5M words/s

• Best NNLM: 12.3% overall accuracy vs. Word2vec (with Skip-gram): 53.3%

38

Regularities in word2vec Embedding Space

Constant country-capital
difference vector.

Picture taken from:
https://www.scribd.com/document/285890694/NIPS-DeepLearningWorkshop-NNforText

https://www.scribd.com/document/285890694/NIPS-DeepLearningWorkshop-NNforText

39

Regularities in word2vec Embedding Space

Picture taken from:
https://www.scribd.com/document/285890694/NIPS-DeepLearningWorkshop-NNforText

Constant female-male
difference vector.

https://www.scribd.com/document/285890694/NIPS-DeepLearningWorkshop-NNforText

40

Regularities in word2vec Embedding Space

Vector operations are supported make «intuitive sense»:

• 𝑤𝑘𝑖𝑛𝑔 − 𝑤𝑚𝑎𝑛 + 𝑤𝑤𝑜𝑚𝑎𝑛 ≅ 𝑤𝑞𝑢𝑒𝑒𝑛

• 𝑤𝑝𝑎𝑟𝑖𝑠 − 𝑤𝑓𝑟𝑎𝑛𝑐𝑒 + 𝑤𝑖𝑡𝑎𝑙𝑦 ≅ 𝑤𝑟𝑜𝑚𝑒

• 𝑤𝑤𝑖𝑛𝑑𝑜𝑤𝑠 − 𝑤𝑚𝑖𝑐𝑟𝑜𝑠𝑜𝑓𝑡 + 𝑤𝑔𝑜𝑜𝑔𝑙𝑒 ≅ 𝑤𝑎𝑛𝑑𝑟𝑜𝑖𝑑

• 𝑤𝑒𝑖𝑛𝑠𝑡𝑒𝑖𝑛 − 𝑤𝑠𝑐𝑖𝑒𝑛𝑡𝑖𝑠𝑡 + 𝑤𝑝𝑎𝑖𝑛𝑡𝑒𝑟 ≅ 𝑤𝑝𝑖𝑐𝑎𝑠𝑠𝑜

• 𝑤ℎ𝑖𝑠 − 𝑤ℎ𝑒 + 𝑤𝑠ℎ𝑒 ≅ 𝑤ℎ𝑒𝑟

• 𝑤𝑐𝑢 − 𝑤𝑐𝑜𝑝𝑝𝑒𝑟 + 𝑤𝑔𝑜𝑙𝑑 ≅ 𝑤𝑎𝑢

• ...

Picture taken from:
https://www.scribd.com/document/285890694/NIPS-DeepLearningWorkshop-NNforText

«You shall know a word by
the company it keeps»
John R. Firth, 1957:11.

https://www.scribd.com/document/285890694/NIPS-DeepLearningWorkshop-NNforText

41

Applications of word2vec in Information Retrieval

Query: “restaurants in mountain view that are not very good”

Phrases: “restaurants in (mountain view) that are (not very good)”

Vectors: “restaurants+in+(mountain view)+that+are+(not very good)”

(Simple and efficient, but will not work for long sentences or documents)

42

Applications of word2vec in Document Classification/Similarity

Word embeddings allow to
capture the «semantics» of

the document ...

With BoW 𝐷1and 𝐷2are
equally similar to 𝐷0.

43

Applications of word2vec in Sentiment Analysis

No need for classifiers, just use cosine distances …

Remind, is all about the
contex ...

«You shall know a word by
the company it keeps»
John R. Firth, 1957:11.

	Slide 1: - Seq2seq and Word Embedding- Matteo Matteucci, PhD (matteo.matteucci@polimi.it) Artificial Intelligence and Robotics Laboratory Politecnico di Milano
	Slide 2: Sequential data problems
	Slide 3: Sequence to Sequence Learning Examples (1/3)
	Slide 4: Sequence to Sequence Learning Examples (2/3)
	Slide 5: Sequence to Sequence Learning Examples (3/3)
	Slide 6: Conditional Language Models
	Slide 7: Sequence to Sequence Basics
	Slide 8: Machine Translation Humans vs Machines
	Slide 9: Machine Translation Humans vs Machines
	Slide 10: The Encoder-Decoder Framework
	Slide 11: The Encoder-Decoder Framework
	Slide 12: The Encoder-Decoder Framework
	Slide 13: Encoding/Decoding with Recurrent Neural Networks (LSTM)
	Slide 14: Greedy Decoding vs Beam Search
	Slide 15: Greedy Decoding vs Beam Search
	Slide 16: Training Sequence to Sequence Models
	Slide 17: Training Sequence to Sequence Models
	Slide 19: Training Sequence to Sequence Models
	Slide 20: Special Characters
	Slide 21: Dataset Batch Preparation
	Slide 22: Word Embedding Motivation
	Slide 23: Encoding Text is a Serious Thing
	Slide 24: N-gram Language Model: Curse of Dimensionality
	Slide 25: N-gram Language Model: Word Similarity Ignorance
	Slide 26: Embedding
	Slide 27: Neural Autoencoder Recall
	Slide 28: Word Embedding: Distributed Representation
	Slide 29: Neural Net Language Model (Bengio et al. 2003)
	Slide 30: Neural Net Language Model (Bengio et al. 2003)
	Slide 31: Neural Net Language Model (Bengio et al. 2003)
	Slide 32: Neural Net Language Model (Bengio et al. 2003)
	Slide 33: Google’s word2vec (Mikolov et al. 2013a)
	Slide 34: Google word2vec Flavors
	Slide 35: Word2vec’s Continuous Bag-of-Words (CBOW)
	Slide 36: Word2vec’s Continuous Bag-of-Words (CBOW)
	Slide 37: Word2vec facts
	Slide 38: Regularities in word2vec Embedding Space
	Slide 39: Regularities in word2vec Embedding Space
	Slide 40: Regularities in word2vec Embedding Space
	Slide 41: Applications of word2vec in Information Retrieval
	Slide 42: Applications of word2vec in Document Classification/Similarity
	Slide 43: Applications of word2vec in Sentiment Analysis

