KS Life Cycle Knowledge Engineering Course

Andrea Bonarini

Department of Electronics - Politecnico di Milano http://www.dei.polimi.it/people/bonarini

Academic Year 2010-2011

Life Cycle

What is a KBS?

• A KBS is a software system,

- A KBS is a software system,
- where knowledge is represented

- A KBS is a software system,
- where knowledge is represented
- and used to solve problems

- A KBS is a software system,
- where knowledge is represented
- and used to solve problems

- A KBS is a software system,
- where knowledge is represented
- and used to solve problems

The life cycle is similar to that of traditional SW systems, with some peculiarities

The KBS team

The KBS team

In the development of a KBS, people with different roles:

• The **knowledge engineer** is responsible for the project, manages the project team, collects, analyzes and formalizes the needed knowledge, produces the conceptual model

The KBS team

- The **knowledge engineer** is responsible for the project, manages the project team, collects, analyzes and formalizes the needed knowledge, produces the conceptual model
- The expert provides the needed knowledge

Introduction O

Life Cycle

The KBS team

- The **knowledge engineer** is responsible for the project, manages the project team, collects, analyzes and formalizes the needed knowledge, produces the conceptual model
- The expert provides the needed knowledge
- The **customer** (either the management or a client) provides the resources needed for the project and evaluates the achievement of the goals stated at the beginning

Introduction O

Life Cycle

The KBS team

- The **knowledge engineer** is responsible for the project, manages the project team, collects, analyzes and formalizes the needed knowledge, produces the conceptual model
- The expert provides the needed knowledge
- The **customer** (either the management or a client) provides the resources needed for the project and evaluates the achievement of the goals stated at the beginning
- The **user** will use the system, provides specifications about the use of the system, and participates to the knowledge acquisition process and the tests

Introduction O

Life Cycle

The KBS team

- The **knowledge engineer** is responsible for the project, manages the project team, collects, analyzes and formalizes the needed knowledge, produces the conceptual model
- The expert provides the needed knowledge
- The **customer** (either the management or a client) provides the resources needed for the project and evaluates the achievement of the goals stated at the beginning
- The **user** will use the system, provides specifications about the use of the system, and participates to the knowledge acquisition process and the tests
- The **knowledge programmer** implements the system, starting from the conceptual model

Introduction

Life cycle for a KBS

The typical life cycle consists of 5 phases:

• Plausibility evaluation

- Plausibility evaluation
- Demonstrative prototype

- Plausibility evaluation
- Demonstrative prototype
- Final prototype

- Plausibility evaluation
- Demonstrative prototype
- Final prototype
- Implementation and installation of the final system

- Plausibility evaluation
- Demonstrative prototype
- Final prototype
- Implementation and installation of the final system
- Maintenance and extension

Life Cycle

Plausibility evaluation

Goals:

• Application area analysis, identification of an appropriate domain, selection of the problem to be faced

- Application area analysis, identification of an appropriate domain, selection of the problem to be faced
- Identification of the main technical and functional specifications and check of the plausibility of the application

- Application area analysis, identification of an appropriate domain, selection of the problem to be faced
- Identification of the main technical and functional specifications and check of the plausibility of the application
- First technical decisions, first project schema. first approximate planning

Goals:

- Application area analysis, identification of an appropriate domain, selection of the problem to be faced
- Identification of the main technical and functional specifications and check of the plausibility of the application
- First technical decisions, first project schema. first approximate planning

Output: feasibility report

4

Goals:

• Identification of the problem in its complexity, and check of the choices done at step 1

- Identification of the problem in its complexity, and check of the choices done at step 1
- Collection of reactions, criticisms, suggestions from the final users, to refine the specifications

- Identification of the problem in its complexity, and check of the choices done at step 1
- Collection of reactions, criticisms, suggestions from the final users, to refine the specifications
- Involvement and commitment of the customer, experts and users

Goals:

- Identification of the problem in its complexity, and check of the choices done at step 1
- Collection of reactions, criticisms, suggestions from the final users, to refine the specifications
- Involvement and commitment of the customer, experts and users

Output: demonstrative prototype

Goals:

• Implementation of the complete prototype, running, satisfying the specifications, possibly in a partial way since:

- Implementation of the complete prototype, running, satisfying the specifications, possibly in a partial way since:
 - it is installed in a laboratory environment, not in the final one

- Implementation of the complete prototype, running, satisfying the specifications, possibly in a partial way since:
 - it is installed in a laboratory environment, not in the final one
 - it has been tested only with realistic examples, defined ad hoc

- Implementation of the complete prototype, running, satisfying the specifications, possibly in a partial way since:
 - it is installed in a laboratory environment, not in the final one
 - it has been tested only with realistic examples, defined ad hoc
 - it requires further engineering, and may be still included in the development environment

Goals:

- Implementation of the complete prototype, running, satisfying the specifications, possibly in a partial way since:
 - it is installed in a laboratory environment, not in the final one
 - it has been tested only with realistic examples, defined ad hoc
 - it requires further engineering, and may be still included in the development environment

Output: complete prototype, new version of the plausibility report, including validation and evaluation criteria, project planning, and technical specifications

Life Cycle

Implementation and installation of the final system

Life Cycle

Implementation and installation of the final system

Goals:

• Implementation of the final system, with the defined functionalities, running in the final environment

Life Cycle ○○○○●○

Implementation and installation of the final system

- Implementation of the final system, with the defined functionalities, running in the final environment
- Detailed analysis of the final environment

Implementation and installation of the final system

Goals:

- Implementation of the final system, with the defined functionalities, running in the final environment
- Detailed analysis of the final environment
- Further development of the prototype, or delivery system, or new implementation

Life Cycle

Implementation and installation of the final system

Goals:

- Implementation of the final system, with the defined functionalities, running in the final environment
- Detailed analysis of the final environment
- Further development of the prototype, or delivery system, or new implementation

Output: final system, including all kind of documentation

Life Cycle

Goals:

• Support the use of the KBS

- Support the use of the KBS
- Fix errors and missing elements that may be detected

- Support the use of the KBS
- Fix errors and missing elements that may be detected
- Monitor the use of the KBS, collect suggestions, critiques, needs, to keep the KBS answering the user needs that may change with time

Goals:

- Support the use of the KBS
- Fix errors and missing elements that may be detected
- Monitor the use of the KBS, collect suggestions, critiques, needs, to keep the KBS answering the user needs that may change with time

Output: revisions, refinements, extensions