

Robotics

Introduction

Matteo Matteucci matteo.matteucci@polimi.it

Artificial Intelligence and Robotics Lab - Politecnico di Milano

Rossum Universal Robots (1920)

Star Wars (1977)

Short Circuit (1986)

I Robot (2001)

Ex Machina (2015)

Sometimes reality is different...

... and the winner is ...

... and check! Sometimes dreams come true (ATLAS 2016) ...

... and every year it gets better 🙂

... and better 🕲

Steps in robot history

Mechanical era (1700):

- automata
- karakuri-ningyo

Automata: the robot ancestors

Karakuri-ningyo Edo Period (1603 – 1868) *The Writer* Pierre Jaquet-Droz (1721-1790) *The Turk* Wolfgang von Kempelen (1734 – 1804)

Steps in robot history

Mechanical era (1700):

- automata
- karakuri-ningyo

Fiction era ('20s):

Rossum Universal Robot

Cybernetics era ('40s):

• Turtle and telerobot

Automation era (from the '60s):

Industrial robots

First robots

1961 - UNIMATE, the first industrial robot, began work at General Motors. Obeying step-bystep commands stored on a magnetic drum, the 4,000-pound arm sequenced and stacked hot pieces of die-cast metal.

1968 - Marvin Minsky developed the Tentacle Arm, which moved like an octopus. It had twelve joints designed to reach around obstacles. A PDP-6 computer controlled the arm, powered by hydraulic fluids. Mounted on a wall, it could lift the weight of a person.

What is a Robot?

A reprogrammable, multifunctional manipulator designed to move material, parts, tools, or specialized devices through various programmed motions for the performance of a variety of tasks.

(Robot Institute of America, 1980)

Steps in robot history

Mechanical era (1700):

- automata
- karakuri-ningyo

Fiction era ('20s):

Rossum Universal Robot

Cybernetics era ('40s):

Turtle and telerobot

Automation era (from the '60s):

Industrial robots

Information era (from the '90s):

- Intelligence
- Autonomy
- Cooperation

Shakey (1972) and the Stanford Cart (1970)

- A robot is an actuated mechanism programmable in two or more axes with a degree of autonomy, moving within its environment, to perform intended tasks. Autonomy in this context means the ability to perform intended tasks based on current state and sensing, without human intervention.
- ✓A service robot is a robot that performs useful tasks for humans or equipment excluding industrial automation application.

Industrial vs Service Robotics

ISO 8373:2012 - Robots and robotic devices

- A robot is an actuated mechanism programmable in two or more axes with a degree of autonomy, moving within its environment, to perform intended tasks. Autonomy in this context means the ability to perform intended tasks based on current state and sensing, without human intervention.
- A service robot is a robot that performs useful tasks for humans or equipment excluding industrial automation application.
- A personal service robot or a service robot for personal use is a service robot used for a noncommercial task, usually by lay persons. E.g., domestic servant robot, automated wheelchair, personal mobility assist robot, and pet exercising robot.

Autonomous service robot

ISO 8373:2012 - Robots and robotic devices

- A robot is an actuated mechanism programmable in two or more axes with a degree of autonomy, moving within its environment, to perform intended tasks. Autonomy in this context means the ability to perform intended tasks based on current state and sensing, without human intervention.
- A service robot is a robot that performs useful tasks for humans or equipment excluding industrial automation application.
- A personal service robot or a service robot for personal use is a service robot used for a noncommercial task, usually by lay persons. E.g., domestic servant robot, automated wheelchair, personal mobility assist robot, and pet exercising robot.
- A professional service robot or a service robot for professional use is a service robot used for a commercial task, usually operated by a properly trained operator. E.g., cleaning robot for public places, delivery robot in offices or hospitals, fire-fighting robot, rehabilitation robot and surgery robot in hospitals. In this context an operator is a person designated to start, monitor and stop the intended operation of a robot or a robot system.

Industrial and Service Robots Market (https://ifr.org/free-downloads)

Records, records

2017: 381,300 units, +30%

2018: 421,000 units, +10%

2021: 630,000 units, +14% on average per year

Junji Tsuda

Page 5 | 18 Oct. 2018

Continued record sales since 2013

Page 6 | 18 Oct. 2018

Junji Tsuda

Emerging region Asia

Junji Tsuda

Page 7 | 18 Oct. 2018

Page 8 | 18 Oct. 2018

Junji Tsuda

Main drivers of the growth 2017: automotive, electronics, metal

IFR International Federation of Robotics

Page 11 | 18 Oct. 2018

Steven Wyatt

Key Drivers for Automation more relevant than ever

Shift to high mix/low volume production Global competitiveness Digitalization of manufacturing – Industry 4.0 Growing consumer markets Energy efficiency-driven technology shifts Regionalized production

Page 12 | 18 Oct. 2018

Main customer: automotive industry

IFR International <u>Federation of</u> *Robotics*

Transition from Internal Combustion Engines (ICE) to electric vehicles/hybrids Increased complexity Customization – increasing mix requires more flexible production Automation of final assembly Automotive parts suppliers – more SME's will use robots

Steven Wyatt

33

Steven Wyatt

Main customer: electrical/electronics industry

Continuously increasing demand for batteries, chips and displays Short life cycles of electronic products High turnover of people with associated labor shortages Increasing degree of robot adoption Higher quality demands on manufacturing process

Page 14 | 18 Oct. 2018

IFR

International Federation of

Ropotics

Steven Wyatt

Robot sales will in increase in all other industries

Metal industries – more flexibility and cost efficiency

Rubber and plastics industry – more integrated manufacturing concepts

Food and beverage industry – shift to even shorter production runs

Pharmaceutical industry - improving productivity without sacrificing quality

IFR International Federation of Reportics

Page 15 | 18 Oct. 2018

Technological Developments expanding Robot Adoption

Today

- More intelligent components, e.g. Smart Grippers
- Greater connectivity, e.g. "Plug & Play" interfaces and Cloud Computing
- Easier to Use, e.g. "Programming by Demonstration"

Tomorrow

"Machine learning" enables robots

- to learn by trial-and-error or by video demonstration.
- to self-optimize.
- to communicate with other machines to improve entire processes.

New business models, e.g. Robotics as a Service (RaaS)

Gudrun Litzenberger

Value of sales 2017: US\$ 6.6 bn, +39% 2018: US\$ 8.7 bn, +33% 2019-2021: US\$ 37 bn, +19% (CAGR) <u>Unit sales</u>: 2017: 109,500 units, +85% 2018: 165,300 units, +32% 2019-2021: 736,600 units, +21% (CAGR)

Page 19 | 18 Oct. 2018

IFR

International

Federation of

Ropotics

Professional Service robots: Main drivers of the value growth are logistic systems

IFR

International Federation of

Robotics

POLITECNICO MILANO 1863

AGVs in factories, warehouses, logistic centers, hospitals...

69,000 units installed in 2017, 162% more than in 2016

- 6,700 units in manufacturing
- 62,200 units in warehouses, logistic centers, hospitals ...

2018:

115,000 units, 66% higher than in 20172019-2021:485,000 units, +18% on average per year

Medical robots – most valuable service robots: US\$ 1.9 billion in 2017

- 2017: 2,900 units, +75%
- 2018: 4,400 units, +49%
- 2019-2021: 22,100 units, +27% (CAGR)

Field robots – mostly milking robots

- 5,400 milking robots in 2017, slight increase
- Still low number but high increase: agricultural robots – 520 units in 2017 up from 190 units
- 2018: 7,200 field robots, +17%
- 2019-2021: 32,700, +22% (CAGR)

Logistic systems are also the drivers of the growth in units

IFR International Federation of Ropotics

Gudrun Litzenberger

Page 23 | 18 Oct. 2018

High potential for exoskeletons

Gudrun Litzenberger

Page 24 | 18 Oct. 2018

Vacuuming and floor cleaning robots are most established personal/domestic service robots / revised graph 5 Dec. 2018

IFR

International Federation of

Robotics

POLITECNICO MILANO 1863

2017: 8.5 million units, +25% - considerable increase expected

46

IFR

International

Federation of Ropotics

The Bill Gates "Prophecy" ...

rare. In fact, for all the excitement and promise, no one can say with any certainty when_or even if_this industry will achieve

Some notes about the ISO definitions

- A robot system is a system comprising robot(s), end-effector(s) and any machinery, equipment, or sensors supporting the robot performing its task.
- According to the definition, "a degree of autonomy" is required for service robots ranging from partial autonomy (including human robot interaction) to full autonomy (without active human robot intervention). In this context human robot-interaction means information and action exchanges between human and robot to perform a task by means of a user interface.

Medical robots

Some notes about the ISO definitions

- A robot system is a system comprising robot(s), end-effector(s) and any machinery, equipment, or sensors supporting the robot performing its task.
- According to the definition, "a degree of autonomy" is required for service robots ranging from partial autonomy (including human robot interaction) to full autonomy (without active human robot intervention). In this context human robot-interaction means information and action exchanges between human and robot to perform a task by means of a user interface.
- Manipulating industrial robots (which can be either fixed in place or mobile) could also be regarded as service robots, provided they are installed in non-manufacturing operations. Service robots may or may not be equipped with an arm structure as is case with some industrial robots. Often, but not always, service robots are mobile.

Space robots

Autonomous vehicles

The Race to Market

Traffic Ahead

Many carmakers are developing prototype vehicles that are capable of driving autonomously in certain situations. The technology is likely to hit the road around 2020.

	BMW	Mercedes-Benz	Nissan	Google	General Motors
VEHICLE	5 Series (modified)	S 500 Intelligent Drive Research Vehicle	Leaf EV (modified)	Prius and Lexus (modified)	Cadillac SRX (modified)
KEY TECHNOLOGIES	 Video camera tracks lane markings and reads road signs Radar sensors detect objects ahead Side laser scanners Ultrasonic sensors Differential GPS Very accurate map 	 Stereo camera sees objects ahead in 3-D Additional cameras read road signs and detect traffic lights Short- and long- range radar Infrared camera Ultrasonic sensors 	 Front and side radar Camera Front, rear, and side laser scanners Four wide-angle cameras show the driver the car's surroundings 	 LIDAR on the roof detects objects around the car in 3-D Camera helps detect objects Front and side radar Inertial measuring unit tracks position Wheel encoder 	 Several laser sensors Radar Differential GPS Cameras Very accurate map

Some notes about the ISO definitions

- A robot system is a system comprising robot(s), end-effector(s) and any machinery, equipment, or sensors supporting the robot performing its task.
- According to the definition, "a degree of autonomy" is required for service robots ranging from partial autonomy (including human robot interaction) to full autonomy (without active human robot intervention). In this context human robot-interaction means information and action exchanges between human and robot to perform a task by means of a user interface.
- Manipulating industrial robots (which can be either fixed in place or mobile) could also be regarded as service robots, provided they are installed in non-manufacturing operations. Service robots may or may not be equipped with an arm structure as is case with some industrial robots. Often, but not always, service robots are mobile.
- In some cases, service robots consist of a mobile platform on which one or several arms are attached and controlled in the same mode as the arms of industrial robot. Furthermore, contrary to their industrial counterparts, service robots do not have to be fully automatic or autonomous. In many cases these machines may even assist a human user or be teleoperated.

Teleoperated and telepresence robots

What makes an autonomous robot?

A machine gets information from a set of sensors and upon these accomplish its task autonomously by moving its body parts ...

What does it make a mobile robot?

