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Localization with Knowm Map

Motion Model

(Kinematics)

Sensor Model
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Disclaimer …

Slides from now on have been heavily “inspired” by the teaching material kindly 

provided with: S. Thrun, D. Fox, W. Burgard. “Probabilistic Robotics”. MIT Press, 2005

http://robots.stanford.edu/probabilistic-robotics/

You can refer to the original source for deeper analysis and references on the topic …

http://robots.stanford.edu/probabilistic-robotics/
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Range Sensors Models

The sensor model describes P(z|x), i.e., the probability of a measurement z given that 

the robot is at position x.
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Range Sensors

The sensor model describes P(z|x), i.e., the probability of a measurement z given that 

the robot is at position x.

In particular a scan z consists of K measurements.

Individual measurements are independent given robot 

position and surrounding map.
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Typical Measurement Errors of an Range Measurements

The sensor model describes P(z|x), i.e., the probability of a measurement z given that 

the robot is at position x.

Masurements can come from:

1.Beams reflected by obstacles

2.Beams reflected by persons or
caused by crosstalk

3.Random measurements

4.Max range measurements
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Distance perception: Laser Range Finder

Lasers are definitely more accurate sensors

• 180 ranges over 180° (up to 360 °)

• 1 to 64 planes scanned, 10-75 scans/s

• <1cm range resolution

• Max range up to 50-80 m

• Issues with mirrors, glass, and matte black.

> 80.000 €
~ 40.000 €~ 6000 €

< 1000 €
~ 10.000 €
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Beam Sensor Model (I)

The laser range finder model describes each single measurement using

Measurement noise
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Unexpected obstacles
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Beam Sensor Model (II)

The laser range finder model describes each single measurement using

Random measurement Max range
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Beam Sensor Model (III)

The laser range finder model describes each single measurement using
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Acquire some data from the sensor, e.g., when the target is at 300 cm and 400 cm

Then estimate the model parameters via maximum likelihood:

Sensor Model Calibration (Sonar)

Sonar

)|( expzzP

300 cm 400 cm
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Laser

Acquire some data from the sensor, e.g., when the target is at 300 cm and 400 cm

Then estimate the model parameters via maximum likelihood:

Sensor Model Calibration (Laser)

)|( expzzP

300 cm 400 cm
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Discete Model for Range Sensor

Instead of densities, consider discrete steps along the sensor beam

Sonar

Laser
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Sensor Model Likelihood

z

P(z|x,m)
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Scan Sensor Model

The Beam sensor model assumes independence between beams and between 

physical causes of measurements and has some issues:

• Overconfident because of independency assumptions

• Need to learn parameters from data

• A different model should be learned for different angles w.r.t. obstacles

• Inefficient because it uses ray tracing

The Scan sensor model simplifies with:

• Gaussian distribution with mean at distance to closest obstacle,

• Uniform distribution for random measurements, and 

• Small uniform distribution for max range measurements
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Scan Sensor Model Example

P(z|x,m)Map m Likelihood field
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San Jose Tech Museum

Occupancy grid map Likelihood field
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Scan Matching via Likelihood Field

Extract likelihood field from scan and use it to match different scan:
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Scan Matching via Likelihood Field

Extract likelihood field from scan and use it to match different scan:

• Highly efficient, uses 2D tables only.

• Smooth with respect to small changes 

in robot position

• Allows gradient descent pose optimization

• Ignores physical properties of beams.

In this video we are doing

more than simple scan

matching …

However it does not 

work with sonars …
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Landmarks

Landmark sensors provides

• Distance (or)

• Bearing (or)

• Distance and bearing

Can be obtained via

• Active beacons (e.g., radio, GPS)

• Passive (e.g., visual, retro-reflective)

Standard approach is triangulation
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Landmark Models with Uncertainty

Explicitly modeling uncertainty in sensing is key to robustness:

• Determine parametric model for

noise free measurement

• Analyze sources of noise (e.g., distance and angle) 

• Add adequate noise to parameters 

(eventually mix in densities for noise)

• Learn (and verify) parameters by fitting model to data

The likelihood of measurement is given by “probabilistically comparing” 

actual measurements against the expected ones.
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Landmark Detection Model

For landmak 𝑖 in map 𝑚, i.e., 𝑚 𝑖 , the measurement 𝑧 = (𝑖, 𝑑, 𝛼) for a robot at

position (𝑥, 𝑦, 𝜃) is given by

Detection probability might depend on the distance/bearing

Then we have to take into account false positives too 

22 ))(())((ˆ yimximd yx −+−=
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RoboCup Example

𝑃(𝑧1, 𝑧2, 𝑧3|𝑥,𝑚)

𝑃(𝑧1|𝑥,𝑚) 𝑃(𝑧2|𝑥, 𝑚) 𝑃(𝑧3|𝑥, 𝑚)
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Localization with Knowm Map

Motion Model

(Kinematics)

Sensor Model

Bayesian Filtering
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Dynamic Bayesian Networks and Localization
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Bayesian Filtering Framework

We want to compute an estimate of the posterios  probabibility of robot state 𝑥𝑡

from the stream of information about movement and sensors

In particular we assume known:

• The prior probability of the system state 𝑃(𝑥0)

• The motion model 𝑃(𝑥′|𝑥, 𝑢)

• The sensor model 𝑃(𝑧|𝑥,𝑚)

𝐵𝑒𝑙(𝑥𝑡) = 𝑃(𝑥𝑡|𝑢1, 𝑧1 … , 𝑢𝑡 , 𝑧𝑡 ,𝑚)

},,,{ 11 ttt zuzud =
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Markov Assumptions

Underlining assumption behind Bayes filtering:

• Perfect model, no approximation errors

• Static and stationary world

• Independent noise

),|(),,|( 1:1:11:1 ttttttt uxxpuzxxp −− =

𝑝(𝑧𝑡+1|𝑥0:𝑡+1, 𝑧1:𝑡, 𝑢1:𝑡+1) = 𝑝(𝑧𝑡+1|𝑥𝑡+1)

Map is know as well, these

are simplified here …
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111 )(),|(),|( −−−= ttttttt dxxBelxuxPmxzP

Bayes Filters
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z = observation
u = action
x = state
m = map
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Total prob.

Markov
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Bayes Filter Algorithm
𝐵𝑒𝑙(𝑥𝑡|𝑚) = 𝜂 𝑃(𝑧𝑡|𝑥𝑡, 𝑚) න𝑃 𝑥𝑡 𝑢𝑡, 𝑥𝑡−1,𝑚 𝐵𝑒𝑙(𝑥𝑡−1|𝑚) 𝑑𝑥𝑡−1

Algorithm Bayes_filter( Bel(x), d ):

if d is a perceptual data item z then

For all x do

Normalize Bel’(x)

else if d is an action data item u then

For all x do

return Bel’(x)

)()|()(' xBelxzPxBel =

')'()',|()(' dxxBelxuxPxBel =

How to represent 

such belief?

Based on such representation:

• Discrete filters

• Kalman filters

• Sigma-point filters

• Particle filters

• ...
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Piecewise Constant Approximation

)|( xzP

)( 0xBel

)()|()(' 00 xBelxzPxBel =
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Piecewise Constant Approximation

)( 0xBel

)|( xzP

)()|()(' 00 xBelxzPxBel =

),|()( 1011 uxxPxBel =

)()|()(' 111 xBelxzPxBel =
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Discrete Bayesian Filter Algorithm

Algorithm Discrete_Bayes_filter( Bel(x),d ):

h=0

If d is a perceptual data item z then

For all x do

For all x do

Else if d is an action data item u then

For all x do

Return Bel’(x)

)()|()(' xBelxzPxBel =
)(' xBel+=

)(')(' 1 xBelxBel −=

=
'

)'()',|()('
x

xBelxuxPxBel
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Tips and Tricks

Belief update upon sensory input and normalization iterates over all cells

• When the belief is peaked (e.g., during position tracking), avoid

updating irrelevant parts.

• Do not update entire sub-spaces of the state space and monitor

whether the robot is de-localized or not by considering likelihood

of observations given the active components

To update the belief upon robot motions, assumes a bounded Gaussian model to 

reduce the update from O(n2) to O(n)

• Update by shifting the data in the grid according to measured motion

• Then convolve the grid using a Gaussian Kernel.
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Grid Based Localization
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Algorithm Bayes_filter( Bel(x), d ):

if d is a perceptual data item z then

For all x do

Normalize Bel’(x)

else if d is an action data item u then

For all x do

return Bel’(x)

Bayes Filter Algorithm

)()|()(' xBelxzPxBel =

')'()',|()(' dxxBelxuxPxBel =

How to represent 

such belief?

Based on such representation:

• Discrete filters

• Kalman filters

• Sigma-point filters

• Particle filters

• ...

𝐵𝑒𝑙(𝑥𝑡|𝑚) = 𝜂 𝑃(𝑧𝑡|𝑥𝑡, 𝑚) න𝑃 𝑥𝑡 𝑢𝑡, 𝑥𝑡−1,𝑚 𝐵𝑒𝑙(𝑥𝑡−1|𝑚) 𝑑𝑥𝑡−1
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Bayes Filter Reminder

Prediction:

Correction/Update:

𝐵𝑒𝑙(𝑥𝑡|𝑚) = න𝑝 𝑥𝑡 𝑢𝑡 , 𝑥𝑡−1, 𝑚 𝐵𝑒𝑙(𝑥𝑡−1|𝑚) 𝑑𝑥𝑡−1

𝐵𝑒𝑙(𝑥𝑡|𝑚) = 𝜂𝑝(𝑧𝑡|𝑥𝑡 . , 𝑚)𝐵𝑒𝑙(𝑥𝑡|𝑚)

𝐵𝑒𝑙(𝑥𝑡|𝑚) = 𝜂 𝑃(𝑧𝑡|𝑥𝑡, 𝑚) න𝑃 𝑥𝑡 𝑢𝑡, 𝑥𝑡−1,𝑚 𝐵𝑒𝑙(𝑥𝑡−1|𝑚) 𝑑𝑥𝑡−1
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Localization with Knowm Map

Update

Prediction

Update

Prediction



39

Bayes Filter Reminder

Prediction:

Correction/Update:

Can we compute the integrals (η is an integral too) in closed form

for continuos distributions?

Is there any continuous distribution for which this is possible?

𝐵𝑒𝑙(𝑥𝑡|𝑚) = න𝑝 𝑥𝑡 𝑢𝑡 , 𝑥𝑡−1, 𝑚 𝐵𝑒𝑙(𝑥𝑡−1|𝑚) 𝑑𝑥𝑡−1

𝐵𝑒𝑙(𝑥𝑡|𝑚) = 𝜂𝑝(𝑧𝑡|𝑥𝑡 ,𝑚)𝐵𝑒𝑙(𝑥𝑡|𝑚)

NO!

YES!

𝐵𝑒𝑙(𝑥𝑡|𝑚) = 𝜂 𝑃(𝑧𝑡|𝑥𝑡, 𝑚) න𝑃 𝑥𝑡 𝑢𝑡, 𝑥𝑡−1,𝑚 𝐵𝑒𝑙(𝑥𝑡−1|𝑚) 𝑑𝑥𝑡−1
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Gaussian Distribution
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Properties of Gaussian Distribution
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Multivariate

Properties of Gaussian Distribution
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Discrete Time Kalman Filter

• (n x n) describes how state evolves from t-1 to t w/o controls or noise

• (n x l) describes how control ut changes the state from t-1 to t

• (k x n) describes how to map the state xt to an observation zt

• random variables representing process and measurement noise assumed 

independent and normally distributed with covariance Rt and Qt respectively.

tttttt uBxAx ++= −1

𝑧𝑡+1 = 𝐶𝑡+1𝑥𝑡+1 + 𝛿𝑡+1

t

tA

tB

tC

t
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Linear Gaussian Systems

Initial belief is normally distributed:

Dynamics are linear function of state and control plus additive noise:

Observations are linear function of state plus additive noise:

𝐵𝑒𝑙(𝑥0) = 𝑁 𝜇0, Σ0

tttttt uBxAx ++= −1 ( )ttttttttt RuBxAxNxuxp ,;),|( 11 += −−

tttt xCz += ( )tttttt QxCzNxzp ,;)|( =

tttttt uBxAx ++= −1

𝑧𝑡+1 = 𝐶𝑡+1𝑥𝑡+1 + 𝛿𝑡+1



45

Linear Gaussian System: Prediction

Prediction: 
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Closed form 
prediction step
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Linear Gaussian System: Observation

Update:
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Closed form 
update step
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Kalman Filter Algorithm

Algorithm Kalman_filter( µt-1, Σt-1, ut, zt):

Prediction:

Correction:

Return µt, Σt

ttttt uBA += −1

t

T

tttt RAA += −1

1)( −+= t

T

ttt

T

ttt QCCCK

)( tttttt CzK  −+=

tttt CKI −= )(
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Kalman Filter Algorithm

Algorithm Kalman_filter( µt-1, Σt-1, ut, zt):

Prediction:

Correction:

Return µt, Σt

ttttt uBA += −1

t

T

tttt RAA += −1

1)( −+= t

T

ttt

T

ttt QCCCK

)( tttttt CzK  −+=

tttt CKI −= )(

• Polynomial in measurement

dimensionality k and state 

dimensionality n: O(k2.376 + n2) 

• Optimal for linear Gaussian systems ☺

• Most robotics systems are nonlinear 

• It represents unimodal distributions 
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How to Deal with Non Linear Dynamic Systems?

Gaussian noise in linear systems

tttt xCz +=
tttttt uBxAx ++= −1
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How to Deal with Non Linear Dynamic Systems?

Gaussian noise in non-linear systems

),( 1−= ttt xugx

)( tt xhz =
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Extended Kalman Filter (First order Taylor approximation)

Gaussian noise in non-linear systems

Prediction:

Correction

),( 1−= ttt xugx

)( tt xhz =
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Extended Kalman Filter (First order Taylor approximation)

Gaussian noise in non-linear systems

Prediction:

Correction

),( 1−= ttt xugx

)( tt xhz =
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Extended Kalman Filter (First order Taylor approximation)

Gaussian noise in non-linear systems

Prediction:

Correction

),( 1−= ttt xugx

)( tt xhz =
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Extended Kalman Filter (First order Taylor approximation)

Gaussian noise in non-linear systems

Prediction:

Correction

),( 1−= ttt xugx

)( tt xhz =
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Extended Kalman Filter (First order Taylor approximation)

Gaussian noise in non-linear systems

Prediction:

Correction

),( 1−= ttt xugx

)( tt xhz =
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EKF Algorithm 

Extended_Kalman_filter(µt-1,Σt-1, ut, zt):

Prediction:

Correction:

Return µt, Σt

),( 1−= ttt ug 
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Linear form
equations

Extended Kalman
Filter Equations
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EKF and Friends

Extended Kalman Filter:

• Polynomial in measurement k and state n dimensionality: O(k2.376 + n2) 

• Not optimal and can diverge if nonlinearities are large!

• Works surprisingly well even when all assumptions are violated!

• There are possible alternative like the Unscented Kalman Transform ...

EKF UKF
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Algorithm Bayes_filter( Bel(x), d ):

if d is a perceptual data item z then

For all x do

Normalize Bel’(x)

else if d is an action data item u then

For all x do

return Bel’(x)

Bayes Filter Algorithm

)()|()(' xBelxzPxBel =

')'()',|()(' dxxBelxuxPxBel =

How to represent 

such belief?

Based on such representation:

• Discrete filters

• Kalman filters

• Sigma-point filters

• Particle filters

• ...

𝐵𝑒𝑙(𝑥𝑡|𝑚) = 𝜂 𝑃(𝑧𝑡|𝑥𝑡, 𝑚) න𝑃 𝑥𝑡 𝑢𝑡, 𝑥𝑡−1,𝑚 𝐵𝑒𝑙(𝑥𝑡−1|𝑚) 𝑑𝑥𝑡−1
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Particle Filters

Represent belief by random samples

Estimation of non-Gaussian, nonlinear processes

• Monte Carlo filter

• Survival of the fittest 

• Condensation

• Bootstrap filter

• Particle filter

Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96]

Computer vision: [Isard and Blake 96, 98]

Dynamic Bayesian Networks: [Kanazawa et al., 95]
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Importance Resampling
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Importance Resampling

w = f/g
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Importance Resampling (with smoothing)
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draw xi
t−1 from Bel(xt−1)

draw xi
t from p(xt | x

i
t−1,ut−1)

Importance factor for xi
t:
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Particle Filter Algorithm
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Algorithm particle_filter(St-1, ut-1, zt):

For Generate new samples

Sample index j(i) from the discrete distribution given by wt-1

Sample     from                         using          and

Compute importance weight

Update normalization factor

Insert

For

Normalize weights

0, == tS

ni 1=

},{ = i

t

i

ttt wxSS

i

tw+=

i

tx ),|( 11 −− ttt uxxp )(

1

ij

tx − 1−tu

)|( i

tt

i

t xzpw =

ni 1=

/i

t

i

t ww =

Particle Filter Algorithm



65

Sensor Information: Importance Sampling
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Sensor Information: Importance Sampling
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Sensor Information: Importance Sampling
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Sensor Information: Importance Sampling

− 'd)'()'|()( , xxBelxuxpxBel
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Start

Monte Carlo Localization with Laser

Stochastic motion model

Range sensor model

Laser sensor Sonar sensor
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Sample-based Localization (sonar)
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RoboCup Example

𝑃(𝑧1|𝑥,𝑚) 𝑃(𝑧2|𝑥, 𝑚) 𝑃(𝑧3|𝑥, 𝑚)

Weighted samplesAfter resampling
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Localization for AIBO robots
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Project Minerva 



92

Using Ceiling Maps for Localization
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Vision-based Localization

P(z|x)

h(x)

z
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Under a Light

Measurement z: P(z|x):
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Next to a Light

Measurement z: P(z|x):
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Next to a Light

Measurement z: P(z|x):
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Elsewhere

Measurement z: P(z|x):
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Global Localization Using Vision


