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What about Statistical Learning Theory for Classification?

For a classification problem we use the error rate for valuation

• Where                   is an indicator function, which will give 1 if the

condition               is correct, otherwise it gives a 0.

• Represents the fraction of incorrect classifications, or misclassifications 

The Bayes Classifier minimizes the Average Test Error Rate

The Bayes error rate refers to the lowest possible Error Rate achievable 

knowing the “true” distribution of the data:
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Bayes Decision 

Boundary

Bayes Error 

Rate = 0.1304

Bayes Classifier
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Nearest Neighbors Classifier

To decide the label for an unseen example, consider the k examples (5) 

from the training data that are more similar to the unknown one

?
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Nearest Neighbors Classifier
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Classify the unknown example using the most frequent class
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Nearest Neighbors Classifier

To decide the label for an unseen example, consider the k examples (5) 

from the training data that are more similar to the unknown one

Classify the unknown example using the most frequent class
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K-Nearest Neighbors (KNN)

The k Nearest Neighbors method is a non parametric model often used 

to approximate the Bayes Classifier

• For any given X we find the k closest neighbors to X in the training data, and 

examine their corresponding Y

• If the majority of the Y’s are orange we predict orange otherwise guess blue.

Some notes about such a simple classifier …

• The smaller the k, the more flexible the method will be

• KNN has “zero” training time, some cost at runtime to find the k closest 

neighbors thus requires indexing

• KNN has problems in higher dimensional spaces (needs approximate methods)
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Nearest Neighbors Classifier

To decide the label for an unseen example via

Neirest Neighbors classification you need:

• The training dataset

• Similarity function (or distance metric)

• The value of k, of nearest neighbors to retrieve

Classification is then:

• Compute distance to other training records

• Identify the k nearest neighbors 

• Use labels of nearest neighbors to determine the

class of unknown record (e.g., by majority vote)

Unknown record
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K-Nearest Neighbors Classifier

X X X

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor
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KNN Example with k = 3
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Simulated Data: K = 10

Bayes Error 

Rate = 0.1304

KNN Error 

Rate = 0.1363
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K = 1 and K = 100
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Training vs. Test Error Rates
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Example: Default dataset
Overall Default  

Rate 3%
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Recall Statistical Learning Theory for Classification

For a classification problem we use the error rate for valuation

• Where                   is an indicator function, which will give 1 if the

condition               is correct, otherwise it gives a 0.

• Represents the fraction of incorrect classifications, or misclassifications 

The Bayes Classifier minimizes the Average Test Error Rate

The Bayes error rate refers to the lowest possible Error Rate achievable 

knowing the “true” distribution of the data:
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The best classifier possible 

estimates the class 

posterior probability!!
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Logistic Regression

We want to model the probability of the class given the input 

but a this naïve model has some serious drawbacks

I know it should be written as 

P(Y|X) instead of p(X) 
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Example: Default data & Linear Regression

Negative 

probability?

Overall Default  

Rate 3%
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Logistic Regression

We want to model the probability of the class given the input 

but a this naïve model has some serious drawbacks

Logistic regression solves the negative probability (and other issues as 

well) by regressing the logistic function
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Example: Default data & Logistic Regression
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Logistic Regression

Logistic regression solves the negative probability (and other issues as 

well) by regressing the logistic function

from this we derive

and taking logarithms

This is called odds

This is called 

log-odds or logit

Logistic Regression



22

Coefficient interpretation

Interpreting what 1 means is not very easy with logistic regression, 

simply because we are predicting P(Y) and not Y.

• If 1 =0, this means that there is no relationship between Y and X

• If 1 >0, this means that when X gets larger so does the probability that Y = 1

• If 1 <0, this means that when X gets larger, the probability Y = 1 gets smaller.

But how much bigger or smaller depends on where we are on the slope, 

i.e., it is not linear
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For the basic logistic regression we need two parameters

In principle we could use (non linear) Least Squares fitting on the 

observed data the corresponding model

But a more principled approach for training in classification problems is 

based on Maximum Likelihood

• We want to find the parameters which maximize the likelihood function

Training Logistic Regression (1/4)



24

Suppose we observe some i.i.d. samples coming from a Gaussian 

distribution with known variance:

Which distribution do you prefer?

Maximum Likelihood flash-back (1/6)
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Maximum Likelihood flash-back (2/6)

There is a simple recipe for Maximum Likelihood estimation

Let’s try to apply it to our example
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Let’s try to apply it to our example

1. Write le likelihood for the data

Maximum Likelihood flash-back (3/6)
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Let’s try to apply it to our example

2. (Take the logarithm of the likelihood -> log-likelihood)

Maximum Likelihood flash-back (4/6)
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Let’s try to apply it to our example

3. Work out the derivatives using high-school calculus

Maximum Likelihood flash-back (5/6)
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Maximum Likelihood flash-back (6/6)

Let’s try to apply it to our example

4. Solve the unconstrained equations

𝜇𝑀𝐿𝐸 =
1

𝑁
෍𝑥𝑛
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For the basic logistic regression we need two parameters

In principle we could use (non linear) Least Squares fitting on the 

observed data the corresponding model

But a more principled approach for training in classification problems is 

based on Maximum Likelihood

• We want to find the parameters which maximize the likelihood function

Training Logistic Regression (1/4)
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Training Logistic Regression (2/4)

Let’s find the parameters which maximize the likelihood function

If we compute the log-likelihood for N observations

where 

We obtain a log-likelihood in the form of

Taken from ESL

Can you derive it?



32

Training Logistic Regression (3/4)

Let’s find the parameters which maximize the likelihood function

• Z-statistics has the same role of the regression t-statistics, a large value means 

the parameter is not null

• Intercept does not have a particular meaning is used to adjust the probability 

to class proportions
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Training Logistic Regression (4/4)

Let’s find the parameters which maximize the likelihood function

• We can train the model using qualitative variables through the use of binary 

(dummy) variables
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Multiclass Logistic Regression

Logistic Regression extends naturally to multiclass problems by 

computing the log-odds w.r.t. the Kth class

This is equivalent to 

Comes from ESL, 

but it’s worth 

knowing!!!

Notation different 

because it comes 

from ESL
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Making predictions with Logistic Regression

Once we have the model parameters we can predict the class, and it 

probability, e.g., the Default probability having 1000$ balance is <1%

while with a balance of 2000$ this becomes 58.6%

With qualitative variables, i.e., dummy variables, we get that being a 

students results in 
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Multiple Logistic Regression

We can extend the approach to multiple regressors

What about this?
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Example: South African Heart Disease 

Taken from ESL
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Logistic Regression for Feature Selection

If we fit the complete model

on these data we get

While if we use stepwise

Logistic Regression

Taken from ESL

Taken from ESL
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Logistic Regression parameters meaning

Regression parameters represent the increment on the logit of probability 

given by a unitary increment of a variable

The increase of tobacco consumption in life of 1Kg counts for an increase 

in log-odds of exp(0.081)=1.084 which means an overall increase of 8.4%

With a 95% confidence interval Taken from ESL
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Regularized Logistic Regression

As for Linear Regression we can compute a “Lasso” version
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Regularized Logistic Regression

As for Linear Regression we can compute a “Lasso” version

Taken from ESL
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Wrap-up on Logistic Regression

We model the log-odds as a linear regression model

This means the posterior probability becomes

Parameters represent log-odds increase per variable unit increment keeping 
fixed the others

We can use it to perform feature selection using z-scores and forward stepwise 
selection

The class decision boundary is linear, but points close to the boundary count 
more … this will be discussed later

Prove it!
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Beyond Logistic Regression …

Logistic Regression models directly class posterior probability

Linear Discriminant Analysis uses the Bayes Theorem

What improvements come with this model?

• Parameter learning unstable in Logistic Regression for well separated classes

• With little data and normal predictor distribution LDA is more stable

• A very popular algorithm with more than 2 response classes
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Suppose we want to discriminate among K>2 classes, each with a prior 

probability

Given the class we model the density function of predictors as

Using the Bayes Theorem we obtain

• Prior probability     is relatively simple to learn

• Likelihood          might be more tricky and we need some assumptions

If we correctly estimate likelihood          we obtain the Bayes Classifier!!! 

Linear Discriminant Analysis (1/3)
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Linear Discriminant Analysis (2/3)

Let assume p=1 and use a Gaussian distribution 

Let assume all classes have the same covariance

The posteriors probability as computed by LDA becomes 

The selected class is the one with the highest posterior which the one 

with highest discriminating function Linear discriminant 

function in xCan you 

derive this?



48

Linear Discriminant Analysis (3/3)

With 2 classes having the same prior probability

we decide the class according to the inequality

The Bayes decision boundary corresponds to

Training is as simple as

estimating the model 

parameters
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LDA Simple Example (with p=1)
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Linear Discriminant Analysis with p>1 (1/3)

In case p>1 we assume                                  comes from 
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Linear Discriminant Analysis with p>1 (2/3)

In the case of p>1 the LDA classifier assumes 

• Observations from the k-th class are drawn from

• The covariance structure is common to all classes 

The Bayes discriminating function becomes

From this we can compute the boundary between each class 

(considering the two classes having the same prior probability)

Training formulas for the LDA parameters are similar to the case of p=1 …

Still linear in x!!!

Can you 

derive this?
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Linear Discriminant Analysis Example
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Quadratic Discriminant Analysis

Linear Discriminant Analysis assumes all classes with common covariance

Quadratic Discriminant Analysis assumes different covariances

Under this hypothesis the Bayes discriminant function becomes

The decision LDA vs. QDA boils down to bias-variance trade-off 

• QDA requires                   parameters while LDA only 

53

Can you 

derive this? Quadratic function
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QDA vs LDA Example
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Which classifier is better?

Let consider 2 classes and 1 predictor

• It can be seen that for LDA the log odds is given by

• While for Logistic Regression the log odds is

• Both linear functions but learning procedures are different …

Linear Discriminant Analysis is the Optimal Bayes if its hypothesis holds 

otherwise Logistic Regression can outperforms it!

Quadratic Discriminant Analysis is to be preferred if the class covariances

are different and we have a non linear boundary
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Some scenarios tested …

Linear Boundary Scenarios

1. Samples from 2 uncorrelated normal distributions

2. Samples from 2 slightly correlated normal distributions

3. Samples from t-student distributed classes
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Some other scenarios tested …

Non Linear Boundary Scenarios

4. Samples from 2 normal distribution with different correlation

5. Samples from 2 normals, predictors are quadratic functions

6. As previous but with a more complicated function



58

Overall conclusion on the comparison 

No method is better than all the others!

• If the decision boundary is linear then

LDA and Logistic Regression are those performing better

• When the decision boundary is moderately non linear

QDA may give better results

• For much complex decision boundaries non parametric approaches such as 

KNN perform better, but the right level of smoothness has to be chosen
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Example: LDA on the Default Dataset

LDA on the Default dataset gets 2.75% training error rate

• Having 10000 records and p=3 we do not expect much overfitting … by the 

way how many parameters we have?

• Being 3.33% the defaulters a dummy classifier would get similar error rate 
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On the performance of LDA

Errors in classification are often reported as a Confusion Matrix

• Sensitivity: percentage of true defaulters

• Specificity: percentage of non-defaulters correctly identified

The Bayes classifier optimize the overall error rate independently from 

the class they belong to an it does this by thresholding

Can we do better?
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Example: Increasing LDA Sensitivity

We might want to improve classifier sensitivity with respect to a given 

class because we consider it more “critical”

• Reduced “Default” error rate from 75.7% to 41.4%

• Increased overall error of 3.73% (but it is worth)
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Tweaking LDA sensitivity

The right choice comes 

from domain knowledge
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ROC Curve

The ROC (Receiver Operating Characteristics) summarizes false positive 

and false negative errors

Obtained by testing all possible thresholds 

• Overall performance given by Area Under the ROC Curve 

• A classifier which randomly guesses (with two classes) has 

AUC = 0.5 a perfect classifier has AUC = 1

ROC curve considers true positive and false positive rates

• Sensitivity is equivalent to true positive rate

• Specificity is equivalent to 1 – false positive rate
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ROC Curve for LDA on Default data

ROC Curve for Logistic 

Regression is ~ the same

All subjects are 

defaulters

No subject is 

defaulter
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Clearing out terminology

When applying a classifier we can obtain 

Out of this we can define the following
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Matthews Correlation Coefficient

https://en.wikipedia.org/wiki/Matthews_correlation_coefficient
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Discriminative vs. Generative Approaches

Generative approach: we derived the classifier from some generative 

hypothesis about the way data have been generated

• Linearity of the log odds for posteriors (Logistic Regression)

• Multivariate Gaussian given the class for the likelihood (LDA)

Discriminative approach: find the prescribed boundary (e.g., a linear 

separating boundary) able to reduce the classifier error

• Define a discriminating function and optimize it instead of making 

assumptions on the data distribution

Example: find the separating hyperplane which separates the data points 

in the best way (e.g., with the minimum error rate)

From ESL
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Perceptron

A perceptron computes the value of a weighted sum and returns its sign 

(name dates back to ’50s literature on neural networks) 

Basically a perceptron is a linear classifier for which:

• We do not assume any particular probabilistic model generating the data

• We learn the parameters using some optimization technique so to minimize 

an error function (e.g., the error rate)

• We cannot infer the role of the single variables in the model from 

the values of the weights

Inference in discriminative models is quite complex and usually it is not 

the goal, instead, they usually well perform in prediction.
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An Example: Simulated Data

LDA Solution

Perceptrons
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Hyperplanes Linear Algebra

Let consider the hyperplane (affine set) L in ℝ2

• Any two points x1 and x2 on L have

• The vector normal to the surface L is

• For any point x0 in L we have

• The signed distance of any point x to L is defined by

f(x) proportional to the distance of x 

from the plane defined by f(x)=0
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Perceptron Learning Algorithm (1/2)

The error function for the perceptron learning is the distance of 

misclassified points from the decision boundary

• The output is coded with +1/-1

• If an output which should be +1 is misclassified

• For an output with -1 we have the opposite

The goal becomes minimizing

• non negative and proportional to the distance of the misclassified points from 

Set of points 

misclassified
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Minimize by stochastic gradient descend the error function

• The gradients with respect to the model parameters are

• Stochastic gradient descent applies for each misclassified point

If data are linearly separable, it converges to a separating hyperplane

Perceptron Learning Algorithm (2/2)

Learning rate
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An Example: Simulated Data

LDA Solution

Perceptrons

Is there any 

optimal plane?
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An Example: Simulated data

Maximum margin 

classifier …
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Separable Case Formulation (1)

Maximize the margin M

The two constraints respectively

• Select one of the possible hyper planes

• Each point is on the right side of the margin

From ESL
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Separable Case Formulation (2)

Remove the constraint on parameter norm changing margin constraint

• which becomes

If we redefine                  we obtain the equivalent problem

Which is a “simple” convex problem (quadratic with linear constraints)
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We can solve the constrained quadratic problem by Lagrange multipliers

• Setting the derivatives to zero we have

• And by substitution the so-called Wolf dual

Separable Case Solution (1)

Check ESL book

for derivation …
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Separable Case Solution (2)

The Karush-Kuhn-Tucker conditions must hold too

• if                then we have

• If                             this means 

The final output comes from: 
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Non Separable Case Formulation (1)

Maximize the margin M

To account for “errors” we use extra variables …

This gives a convex 

optimization problem
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Non Separable Case Formulation (2)

We can remove the constraint on the parameter norm obtaining

This can be rewritten as

Solved by Lagrange multipliers as for the separable case …

From ESL

Used defined cost
Infinite corresponds to 

separable case …
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The primal Lagrange function is

• Setting the derivatives to zero gives

• With

By substitution we obtain the Lagrangian (Wolf) dual function …

Non Separable Case Solution (1)
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The dual Lagrange function is

• Subject to                      and

• Having the Karush-Kuhn-Tucker conditions

Solving the optimization problem we have

Non Separable Case Solution (2)

For derivation check 

the ESL book …

Computed using the 

support vectors only
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Non Separable Case Solution (3)

The solution of the Dual optimization problem provides

Karush-Kuhn-Tucker conditions imply

• is non zero only for support vectors

• If              the support is on the margin and

• If              we have

• Using the margin points                         we can solve for  
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Separable Data vs Non Separable Data
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A Synthetic Example
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A Synthetic Example

The smaller the C the 

bigger the margin
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Support Vector Machines (1)

Learning the classifier involves only the scalar product of features

We can compute this scalar product in a new feature space

The feature space can grow up to infinity with SVM …

Scalar product

Scalar product
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The Kernel Trick

For learning and prediction we need the result of the scalar product only

In some cases this scalar product can be written as a Kernel 

Popular choices are
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The Kernel Trick Example

Consider an Input space with 2 variables and a polynomial kernel of 

degree d=2

It turns out the that M=6 and if we chose

We obtain



93

A Synthetic Example (Non Linear)


