\\\\“““"""”’/I//,
S ,
S %,
N N %
JE\VaC % OL' | ECN'CO
) E
= =
W AT
y

The Bayes Classifier (and KNN)

Matteo Matteucci, PhD (matteo.matteucci@polimi.it)

Artificial Intelligence and Robotics Laboratory
Politecnico di Milano

ARTIFICIAL INTELLMGENCE AMD ROBOTICS LAB



What about Statistical Learning Theory for Classification?

For a classification problem we use the error rate for valuation

Error Rate =) 1(y, # ¥;)/n
i=1

* Where I(y, #V,) is an indicator function, which will give 1if the
condition (Y, # ;) is correct, otherwise it gives a 0.

* Represents the fraction of incorrect classifications, or misclassifications

The Bayes Classifier minimizes the Average Test Error Rate
max; P(Y = J| X =X,)

The Bayes error rate refers to the lowest possible Error Rate achievable
knowing the “true” distribution of the data: 1 - E (ma}{ Pr(Y = j|X))
J
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Bayes Classifier
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FIGURE 2.13. A simulated data set consisting of 100 observations in each of
two groups, indicated in blue and in orange. The purple dashed line represents
the Bayes decision boundary. The orange background grid indicates the region
in which a test observation wunill be assigned to the orange class, and the blue

background grid indicates the region in which a test observation will be assigned
to the blue class.
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Nearest Neighbors Classifier

To decide the label for an unseen example, consider the k examples (5)
from the training data that are more similar to the unknown one
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Nearest Neighbors Classifier
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Nearest Neighbors Classifier

To decide the label for an unseen example, consider the k examples (5)
from the training data that are more similar to the unknown one




K-Nearest Neighbors (KNN)

The k Nearest Neighbors method is a non parametric model often used
to approximate the Bayes Classifier

* For any given X we find the k closest neighbors to X in the training data, and
examine their corresponding Y

T the majority of the Y's are orange we predict orange otherwise guess blue.

Some notes about such a simple classifier ...
*  The smaller the k, the more flexible the method will be

KNN has “zero” training time, some cost at runtime to find the k closest
neighbors thus requires indexing

KNN has problems in higher dimensional spaces (needs approximate methods)




Nearest Neighbors Classifier

To decide the label for an unseen example via
Neirest Neighbors classification you need:

° The training dataset

* Similarity function (or distance metric)

* The value of k, of nearest neighbors to retrieve

Classification is then:
* Compute distance to other training records
* |dentify the k nearest neighbors

* Use labels of nearest neighbors to determine the
class of unknown record (e.g., by majority vote)

OLITECNICO MILANO 1863
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K-Nearest Neighbors Classifier
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(a) 1-nearest neighbor
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(b) 2-nearest neighbor

(c) 3-nearest neighbor




KNN Example with k = 3

O
O O

O

O

FIGURE 2.14. The KNN approach, using K = 3, 1s tllustrated in a simple
situation with siz blue observations and six orange observations. Left: a test ob-
servation at which a predicted class label 1s desired is shown as a black cross. The
three closest points to the test observation are identified, and it is predicted that
the test observation belongs to the most commonly-occurring class, in this case
blue. Right: The KNN decision boundary for this example is shown in black. The
blue grid indicates the region in which a test observation will be assigned to the
blue class, and the orange grid indicates the region in which it will be assigned to
the orange class.
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Simulated Data: K = 10
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FIGURE 2.15. The black curve indicates the KNN decision boundary on the

data from Figure 2.13, using K = 10. The Bayes decision boundary 1s shown as
a purple dashed line. The KNN and Bayes decision boundaries are very simailar.
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K=1and K =100

FIGURE 2.16. A comparison of the KNN decision boundaries (solid black
curves) obtained using K = 1 and K = 100 on the data from Figure 2.13. With
K = 1, the decision boundary is overly flexible, while with K = 100 it is not
sufficiently flexible. The Bayes decision boundary is shown as a purple dashed
line.
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Training vs. Test Error Rates
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FIGURE 2.17. The KNN training error rate (blue, 200 observations) and test
error rate (orange, 5,000 observations) on the data from Figure 2.13, as the
level of flexibility (assessed using 1/K ) increases, or equivalently as the number
of neighbors K decreases. The black dashed line indicates the Bayes error rate.
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Linear Classifiers (Generative)

Matteo Matteucci, PhD (matteo.matteucci@polimi.it)
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Example: Default dataset

Overall Default
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FIGURE 4.1. The Default data set. Left: The annual incomes and monthly
credit card balances of a number of individuals. The individuals who defaulted on
their credit card payments are shown in orange, and those who did not are shoun
in blue. Center: Boxplots of balance as a function of default status. Right:
Bozxplots of income as a function of default status.
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Recall Statistical Learning Theory for Classification

For a classification problem we use the error rate for valuation

Error Rate =) 1(y, # ¥;)/n
i=1

* Where I(Yy, # V.) is an indicator function, which wil
condition (Y, # ;) is correct, otherwise it gives a 0.

* Represents the fraction of incorrect classifications, or

A 1

i

The Bayes Classifier minimizes the AVW;

max; P(Y = J| X =X;)

The best classifier possible
estimates the class
posterior probability!!

Of

NdlLc

The Bayes error rate refers to the lowest possible Error Rate achievable
knowing the “true” distribution of the data: 1 - E (ma}{ Pr(Y = j|X))
J
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Logistic Regression

|
We want to model the probabili}/

of the class given the input

p(X)=Pr(Y =1|X)
p(X) = Po+ 1 X

| know it should be written as
P(Y|X) instead of p(X) ®

but a this naive model has some serious drawbacks

LITECNICO MILANO 1863




Example: Default data & LinearRearessiar

Overall Default
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FIGURE 4.2. Classification using the Default data. Left: Estimated probabil-
ity of default using linear regression. Some estimated probabilities are negative!
The orange ticks indicate the 0/1 values coded for default(No or Yes). Right:
Predicted probabilities of default wusing logistic regression. All probabilities lie
between 0 and 1.
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Logistic Regression

We want to model the probability of the class given the input
p(X) =Pr(Y = 1|X)
p(X) = Bo+ /1 X
but a this naive model has some serious drawbacks

Logistic regression solves the negative probability (and other issues as
well) by regressing the logistic function

eBo+B1X
p(X) = 1 + ePotFr X

(.577) POLITECNICO MILANO 1863
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Example: Default data & Logistic Regression
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FIGURE 4.2. Classification using the Default data. Left: Estimated probabil-
ity of default using linear regression. Some estimated probabilities are negative!
The orange ticks indicate the 0/1 values coded for default(No or Yes). Right:
Predicted probabilities of default wusing logistic regression. All probabilities lie
between 0 and 1.
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Logistic Regression

Logistic regression solves the negative probability (and other issues as

well) by regressing the logistic function
8504-51}{
p(X) = 1 + ePothr X

Logistic Regression

from this we derive

p(X) — 6504-51}{
1l —p(X) —— |

This i1s called odds

and taking logarithms

This is called
log-odds or logit
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Coefficient interpretation

Interpreting what B, means is not very easy with logistic regression,
simply because we are predicting P(Y) and not Y.

log (1 f(;%)) = Bo+ 1 X

* It B, =0, this means that there is no relationship between Y and X

° If By >0, this means that when X gets larger so does the probability that Y =1

° If By <0, this means that when X gets larger, the probability Y = 1 gets smaller.

But how much bigger or smaller depends on where we are on the slope,

l.e. itis not linear
Eﬁn+ﬁ1x

p(&) = 1 + eBotfr X
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Training Logistic Regression (1/4)

For the basic logistic regression we need two parameters

log (1 f(;&)) = fBo + 1 X

In principle we could use (non linear) Least Squares fitting on the
observed data the corresponding model

ePoth1 X
p(X) =

1 4+ efotH1X
But a more principled approach for training in classification problems is
based on Maximum Likelihood

*  We want to find the parameters which maximize the likelihood function

((Bo.B1) = | p) T A —p(x))

1:y; =1 1 1y =0

(.577) POLITECNICO MILANO 1863
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Maximum Likelihood flash-back (1/6)

Suppose we observe some i.i.d. samples coming from a Gaussian
distribution with known variance:

x1, 29, x ~N(po?)  plafp,o’) = Nz

pX)

e e A

X

Which distribution do you prefer?
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Maximum Likelihood flash-back (2/6)

There is a simple recipe for Maximum Likelihood estimation

1. Write the likelihood L = P(Data|f) for the data

2. (Take the logarithm of likelihood £ = log P(Datal6))
3. Work out 0L /06 or 0L£/06 using high-school calculus
4. Solve the set of simultaneous equations 0L£/06; = 0
5

. Check that 8¢ is a maximum

Let's try to apply it to our example

mlvm%'”vxKNN(Mao_g) p(;z:\,u,orz): \/2— € 7
riel
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Maximum Likelihood flash-back (3/6)

Let's try to apply it to our example

L1y L2y, TK NN(/JJ:'O_Q) p(:}j‘#?gz): \/ﬂﬂ'e 7
1. Write le likelihood for the data

L(ﬂ) — p(Ith:"” :':EN‘/JJ: 0_2) — Hp(:ﬂn‘pj(_)'z)
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Maximum Likelihood flash-back (4/6)

Let's try to apply it to our example

1 z )2

2mo

T, 2o, ..., ~ N(p,0%)  plz|p,o?) =

2. (Take the logarithm of the likelihood -> log-likelihood)
N
— o S
s ] 91;[1 ——c

1 _
€
o

N
1 no 2
= Z log exp(— (0 — 1) )

— V2To 2072
1 1 &
= N{(log \/%J) iy Z(a:n — 1)*
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Maximum Likelihood flash-back (5/6)

Let's try to apply it to our example

1 z )2

2mo

T, 2o, ..., ~ N(p,0%)  plz|p,o?) =

3. Work out the derivatives using high-school calculus
N

oL % | | ;
o = o ) T a7 2 )
I R ,
= —ﬁa;(%—ﬂ) =
N
1
= 907 22—
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Maximum Likelihood flash-back (6/6)

Let's try to apply it to our example

T1,Za, ..., 2 ~ N(p,0%) p(muﬁaz):\/Q_ e o
o

4. Solve the unconstramed equations 9L£/90; =0

QGQZQT”_L = 0 12
== x,
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Training Logistic Regression (1/4)

For the basic logistic regression we need two parameters

log (1 f(;&)) = fBo + 1 X

In principle we could use (non linear) Least Squares fitting on the
observed data the corresponding model

ePoth1 X
p(X) =

1 4+ efotH1X
But a more principled approach for training in classification problems is
based on Maximum Likelihood

*  We want to find the parameters which maximize the likelihood function

((Bo.B1) = | p) T A —p(x))

1:y; =1 1 1y =0
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Training Logistic Regression (2/4)

Let’s find the parameters which maximize the likelihood function

(Bo.B1) = [ px) [ A —p))

wy;=1 v 1y, =0
kel - Taken from ESL
If we compute the log-likelihood for N observaUcV__‘ aken from ES
N
0(6)

= Z log pg, (i; 0)
i=1

where pr(xi;0) = Pr(G = k| X = x;;0)

We obtain a log-likelihood in the form of
N

£(5)

OLITECNICO MILANO 1863
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Training Logistic Regression (3/4)

Let’s find the parameters which maximize the likelihood function
((Bo.B1) = | p) T A —p(x))
1:y; =1 1 1y =0
* /-statistics has the same role of the regression t-statistics, a large value means
the parameter is not null

* Intercept does not have a particular meaning is used to adjust the probability
to class proportions

Coefficient  Std. error Z-statistic  P-value
Intercept —10.6513 0.3612 —29.5 <0.0001
balance 0.0055 0.0002 24.9  <0.0001

TABLE 4.1. For the Default data, estimated coefficients of the logistic regres-
ston model that predicts the probability of default wusing balance. A one-unit
increase in balance is associated with an increase in the log odds of default by

0.0055 wunats.
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Training Logistic Regression (4/4)

Let’s find the parameters which maximize the likelihood function
((Bo.B1) = | p) T A —p(x))
11y =1 1 1y =0

*  We can train the model using qualitative variables through the use of binary
(dummy) variables

Coefficient Std. error Z-statistic  P-value

Intercept —3.5041 0.0707 —49.55 <0.0001
student [Yes] 0.4049 0.1150 3.52 0.0004

TABLE 4.2. For the Default data, estimated coefficients of the logistic regres-
sion model that predicts the probability of default wusing student status. Student
status is encoded as a dummy variable, with a value of 1 for a student and a value
of 0 for a non-student, and represented by the variable student [Yes] in the table.
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Multiclass Logistic Regression

Logistic Regression extends naturally to multiclass problems by

computing the log-odds w.r.t. the K" class
l Pr(G=1X ==z)
PG =KX =)
l Pr(G=2\X ==x)
PG =KX =)

= Bio+ ATz

= Boo + Yz

—

~—_

1 Pr(G=K —1|X ==x)
CTP G =KX =)

[his is equivalent (@)
T
Pr(G=klX =z) = exp(Bro + B )

1+ Zﬁ;l exp(Beo + ﬁ?m)’
1

1+ Zﬁ;l e:{p(ﬁm + ﬁg@j

Pr(iG=K|X =z) =

LITECNICO MILANO 1863

= Bk —1)0 + Bic 12

Comes from ESL,
but it's worth
knowing!!!

Notation different
because it comes
from ESL




Making predictions with Logistic Regression

Once we have the model parameters we can predict the class, and it
probability, e.g., the Default probability having 1000$ balance is <1%

oBo+B1X . —10.6513+0.0055x 1,000
= (0.00576

p(X) = 1 + cBo+hiX T 1 1 ¢—10.6513+0.0055x1,000

while with a balance of 2000% this becomes 58.6%

With qualitative variables, i.e.,, dummy variables, we get that being a

students results in
6—3.5041+U.4D49x 1

Pr(default=Yes|student=Yes) = : —I— s 50110 20101 — 0-0431
e_ - .

6—3.50414—0.4049}: 0

Pr(default=Yes|student=No) = | & o 3504170404050 — 0.0292
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Multiple Logistic Regression

We can extend the approach to multiple regressors

[ p(X) )
log :,3[]—|—|,81X1 +"""5po
\1-p(X)/
Eﬁn—l—ﬁlxl—l—---—i—ﬁpxp
p(X) - 1 _|_ EJBU+181X1+"'+JBPXP
Coefficient Std. error Z-statistic  P-value
Intercept —10.8690 0.4923 —22.08 <0.0001
balance 0.0057 0.0002 24.74  <0.0001
income 0.0030 0.0082 0.37 0.7115
student [Yes] —0.6468 0.2362 —2.74 57.0062

TABLE 4.3. For the Default data, e _ thedogistic regres-
sion model that predicts the probabulit What about this? ce, income, and
student status. Student status is enco [k student [Yes],

with a value of 1 for a student and a value of 0 for a non-student. In fitting this
model, income was measured in thousands of dollars.

ITECNICO MILANO 1863
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Example: South African Heart Disease i

Taken from ESL
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FIGURE 4.12. A scatterplot matriz of the South African heart disease data.
Each plot shows a pair of risk factors, and the cases and controls are color coded
(red is a case). The variable family history of heart disease (famhist) is binary
(yes or no).
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Logistic Regression for Feature Selection

Taken from ESL

T we fit the complete model

TABLE 4.2. Resulis~from a logistic regression fit to the South African heart

disease data.
on these data we get
Coefficient  Std. Error Z Score
(Intercept) —4.130 0.964  —4.285
sbp 0.006 0.006 1.023
tobacco 0.080 0.026 3.034
1d1 0.185 0.057 3.219
famhist X
SIAELE Taken from ESL
alcoho
Wh”e |'[: We Use Ste lese TABLE 4.3. Results from stepwise logistic regression fit to South African heart

disease data.

Logistic Regression

Coefficient Std. Error Z score

(Intercept) —4.204 0.498 —8.45
tobacco 0.081 0.026 3.16

1d1 0.168 0.054 3.09

famhist 0.924 0.223 4.14

age 0.044 0.010 4.52

} POLITECNICO MILANO 1863




Logistic Regression parameters meaning

Regression parameters represent the increment on the logit of probability
given by a unitary increment of a variable

(X)) N\ _ ., ,
log (1 —p(X)) = Bo+ S1 X1+ -+ BpXyp

The increase of tobacco consumption in life of 7Kg counts for an increase
in log-odds of exp(0.081)=1.084 which means an overall increase of 8.4%

TABLE 4.3. Re{s from stepwise logistic regression fit to South African heart
disease data.

With a 95% confidence interval ‘Gvefﬁj) Taken from ESL |
(Intercept) —4
exp(0.081 £ 2 x 0.026) = (1.03,1.14) tobacco 0.081 0.026 3.16
1d1 0.168 0.054 3.00
famhist 0.924 0.223 4.14
age 0.044 0.010 4.52
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Regularized Logistic Regression

As for Linear Regression we can compute a “Lasso” version
N

p
max yi (3 —I—JBT;L'E; — log(1 + ePotB i ] — A -
a3 3 (00 + ) — b IR
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Regularized Logistic Regression

As for Linear Regression we can compute a “Lasso” version

1 2 4 5 [ T

| e
- famhist
n - l%acco

Taken from ESL

3 .,

o =P
« | alcohol
S L obesity

0.0 l]fS 1.|CI 1|.5 2|.l]
B

FIGURE 4.13. Ly reqularized logistic regression coefficients for the South
African heart disease data, plotted as a function of the Ly norm. The variables

were all standardized to have unit variance. The profiles are computed exactly at
each of the plotted points.
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Wrap-up on Logistic Regression

We model the log-odds as a linear regression model

p(X) 0L ,
log = Bo+ 51 X1+ -+ 8,X
Dg(lp(X)) Po+ P1rAL 4 1 PpAp

This means the posterior probability becomes
eBot+h1 X

p(X) = [ choiiX

Parameters represent log-odds increase per variable unit increment keeping
fixed the others

We can use it to perform feature selection using z-scores and forward stepwise
selection

The class decision boundary is linear, but points close to the boundary count

more ... this will be discussed later
Prove it!
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Beyond Logistic Regression ...

Logistic Regression models directly class posterior probability
Pr(Y = k| X = x)
Linear Discriminant Analysis uses the Bayes Theorem
i 1 (2)
Sicy mfil)
What improvements come with this model?
* Parameter learning unstable in Logistic Regression for well separated classes

Pr(Y =kl X =) =

*  With little data and normal predictor distribution LDA is more stable
* A very popular algorithm with more than 2 response classes
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Linear Discriminant Analysis (1/3)

Suppose we want to discriminate among K>2 classes, each with a prior

probability g

Given the class we model the density function of predictors as
fr(X)=Pr(X =2|Y = k)

Using the Bayes Theorem we obtain

Pr(Y = k| X = z) = —mJE(@)

2;11 T fi(x)

*  Prior probability 7« is relatively simple to learn
* Likelihood fi(X)might be more tricky and we need some assumptions

T we correctly estimate likelihood fx(X) we obtain the Bayes Classifier!!!

Coa
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Linear Discriminant Analysis (2/3)

Let assume p=1 and use a Gaussian distribution

1 1 )
T = exX £ — U
(o) = <= exp (~ g =)
Let assume all classes have the same covariance

02 =...=0%
The posteriors probability as computed by LDA becomes
(@) = —r exp (=557 (¢ — 11k)?)
D 1m1 Tl X (— gz (v — u)?)
The selected class is the one with the highest posterior which the one
with hlg 5anlyou I,Daé\ng functgﬂn #E /I Lln?:'jlrr]c(:jtllzcnrllrr?l)r(\ant

derive this? k(r)=x- 2 90 + log(mk)

Tk 2o
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Linear Discriminant Analysis (3/3)

With 2 classes having the same prior probability m = 7
we decide the class according to the inequality

22 (jun — p2) > pd = 113
The Bayes decision boundary corresponds to

N St R S
2(Ml — p2) 2
o . v, — < ke fg s
Training is as simple as /¥ Z v Ok(x) = @ - =5 — 5= + log(7y)
. . 11&—
estimating the model
parameters 5 = — f1)?
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LDA Simple Example (with p=1)

|
|
1
|
1

-4 -2 0 2 4

FIGURE 4.4. Left: Two one-dimensional normal density functions are shown.
The dashed vertical line represents the Bayes decision boundary. Right: 20 obser-
vations were drawn from each of the two classes, and are shown as histograms.
The Bayes decision boundary is again shown as a dashed vertical line. The solid
vertical line represents the LDA decision boundary estimated from the training
data.
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Linear Discriminant Analysis with p>1 (1/3)

In case p>Twe assume X = (X;.Xy,...,X,) comes from

1) = g e (3 -0 TE -

~

FIGURE 4.5. Two multivariate Gaussian density functions are shown, with
p = 2. Left: The two predictors are uncorrelated. Right: The two variables have
a correlation of 0.7.
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Linear Discriminant Analysis with p>1 (2/3)

In the case of p>1the LDA classitier assumes
*  Observations from the k-th class are drawn from N (. %)
* The covariance structure is common to all classes

The Ba\/ac Aicrri |nat|ng funcuon becomes /| Still linear in x!!!
Can you 1

derive this? || 4y (2) = 2" 271 — 5#}:2—1#;‘: + log 7

From this we can compute the boundary between each class

(considering the two classes having the same prior probability)

_ 1 _ B 1 3
'S g — 5#-52 Y = 2By — E#-?E “u

Training formulas for the LDA parameters are similar to the case of p=1 ...
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FIGURE 4.6. An example with three classes. The observations from each class
are drawn from a multivariate Gaussian distribution with p = 2, with a class-spe-
cific mean vector and a common covariance matriz. Left: Ellipses that contain
95 % of the probability for each of the three classes are shown. The dashed lines
are the Bayes decision boundaries. Right: 20 observations were generated from
each class, and the corresponding LDA decision boundaries are indicated using
solid black lines. The Bayes decision boundaries are once again shown as dashed
lines.
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Quadratic Discriminant Analysis

53

Linear Discriminant Analysis assumes all classes with common covariance

Quadratic Discriminant Analysis assumes different covariances
X ~ N(pug, k)

Under this hypothesis the Bayes discriminant function becomes

1

Su(e) = —5lr— )T
1

Can you N

derive this?

The decision LDA vs. QDA boils ©

1
(€ — pk) — 5 log k| + log 7k

1

1
= —— 'S e TS e — 5#-52;% ) log | 3| + log mg,

Quadratic function

own to bias-variance trade-off

* QDA requires Kp(p+1)/2parameters while LDA only Kp
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QDA vs LDA Example

FIGURE 4.9. Left: The Bayes (purple dashed), LDA (black dotted), and QDA
(green solid) decision boundaries for a two-class problem with 31 = Xg. The
shading indicates the QDA decision rule. Since the Bayes decision boundary is
linear, it is more accurately approrimated by LDA than by QDA. Right: Details
are as given in the left-hand panel, except that 31 # 3a. Since the Bayes decision
boundary is non-linear, it is more accurately approrimated by QDA than by LDA.
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Which classifier is better?

Let consider 2 classes and 1 predictor

° It can be seen that for LDA the log odds is given by

u(205) - () -

*  While for Logistic Regression the log odds is

lﬂg( o ) = fBo + fix
1 —py

* Both linear functions but learning procedures are different ...

Linear Discriminant Analysis is the Optimal Bayes it its hypothesis holds
otherwise Logistic Regression can outperforms it!

Quadratic Discriminant Analysis is to be preferred if the class covariances
are different and we have a non linear boundary
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Some scenarios tested ...

Linear Boundary Scenarios
1. Samples from 2 uncorrelated normal distributions
/. Samples from 2 slightly correlated normal distributions
5. Samples from t-student distributed classes

SCENARIO 1 SCENARIO 2 SCENARIO 3
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| — 1
1

-
. H
N 1
+ 1 —_
L] b 1 | 1
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FIGURE 4.10. Bozxplots of the test error rates for each of the linear scenarios
described in the main text.
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Some other scenarios tested ...

Non Linear Boundary Scenarios
2. Samples from 2 normal distribution with different correlation
5. Samples from 2 normals, predictors are quadratic functions
6. As previous but with a more complicated function

SCENARIO 4 SCENARIO 5 SCENARIO &

—_
1
1
- = I I
. . »
1 - N
1
i \ | |
! | ' | '
1 ! !
1 1 ! 1
1 1 ! 1
! 1 ' ! —
! -
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|
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025
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1
1
P
1
RE:] 0.20 0.22 0.24 0.26 0.28 0.30 0.32
1 1 1 1 1 1 1
.|.

j
j
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KMM-1 KNN-CV  LDA Logistic QDA KMM-1 KNN-CV  LDA Logistic QDA EMMN—1 KNM-CV  LDA Logistic QDA

FIGURE 4.11. Bozplots of the test error rates for each of the non-linear sce-
narios described in the main text.
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Overall conclusion on the comparison

No method is better than all the others!

* |f the decision boundary is linear then
LDA and Logistic Regression are those performing better

*  When the decision boundary is moderately non linear
QDA may give better results

* For much complex decision boundaries non parametric approaches such as
KNN perform better, but the right level of smoothness has to be chosen
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Example: LDA on the Default Dataset

LDA on the Default dataset gets 2.75% training error rate

* Having 10000 records and p=3 we do not expect much overfitting ... by the
way how many parameters we have?

Being 3.33% the defaulters a dummy classifier would get similar error rate

True default status
2592/333 = 75.7 %
252/333 =757 % l_\b\ Yes | Total

Predicted No | 9,644 ~252 | 9,896
default status  Yes 23 81 104
Total | 9,667 333 | 10,000

TABLE 4.4. A confusion matrix compares the LDA predictions to the true de-
fault statuses for the 10,000 training observations in the Default data set. Ele-
ments on the diagonal of the matrix represent individuals whose default statuses
were correctly predicted, while off-diagonal elements represent individuals that
were misclassified. LDA made incorrect predictions for 23 individuals who did
not default and for 252 individuals who did default.
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On the performance of LDA

Errors in classification are often reported as a Confusion Matrix

99.8 % True default status
v I_\ No Yes | Total

Predicted No ['9,644 252 | 9,896
default status  Yes 23 81| 104
Total | 9,667 333 ‘\1[}, 000

*  Sensitivity: percentage of true defaulters \_| 24.3%
* Specificity: percentage of non-defaulters correctly identified

The Bayes classifier optimize the overall error rate independently from
the class they belong to an it does this by thresholding

Pr(default = Yes| X =z) > 0.5 by

Can we do better?
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Example: Increasing LDA Sensitivity

We might want to improve classifier sensitivity with respect to a given
class because we consider it more “critical”

P(default = Yes|X =z) > 0.2
* Reduced "Default” error rate from 75.7% to 41.4%
* Increased overall error of 3.73% (but it is worth)

True default status
No Yes | Total
Predicted No 9,432 138 | 9,570

default status  Yes 235 195 430
Total | 9,667 333 | 10,000

TABLE 4.5. A confusion matriz compares the LDA predictions to the true de-
fault statuses for the 10,000 training observations in the Default data set, using

a modified threshold value that predicts default for any individuals whose posterior
default probability exceeds 20 %.
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Tweaking LDA sensitivity

-
_ - -
-
©w -
= -
o -~
© -
T < -
j— = . .
o The right choice comes
I from domain knowledge
§
o | T8 & % 8 & ® ® & * % % 8 8 8 * o
< I I I I I I
0.0 0.1 0.2 0.3 0.4 0.5
Threshold

FIGURE 4.7. For the Default data set, error rates are shown as a function of
the threshold value for the posterior probability that is used to perform the assign-
ment. The black solid line displays the overall error rate. The blue dashed line
represents the fraction of defaulting customers that are incorrectly classified, and
the orange dotted line indicates the fraction of errors among the non-defaulting
customers.
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ROC Curve

The ROC (Receiver Operating Characteristics) summarizes false positive
and false negative errors

Obtained by testing all possible thresholds
*  Qverall performance given by Area Under the ROC Curve

* A classifier which randomly guesses (with two classes) has
AUC = 0.5 a perfect classifier has AUC =1

ROC curve considers true positive and false positive rates
° Sensitivity is equivalent to true positive rate
* Specificity is equivalent to 1 — false positive rate
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ROC Curve for LDA on Default data

= ] ~J
. All subjects are
= defaulters
2 ° ] .
E No subject is
2 oS defaulter
=
o -
=
< | \
o

T | | | | | ROC Curve for Logistic
00 0z 04 06 08 10 Regression is ~ the same

False positive rate

FIGURE 4.8. A ROC curve for the LDA classifier on the Default data. It
traces out two types of error as we vary the threshold value for the posterior
probability of default. The actual thresholds are not shown. The true positive raie
is the sensitivity: the fraction of defaulters that are corvectly identified, using
a given threshold value. The false positive rate is 1-specificity: the fraction of
non-defaulters that we classify incorrectly as defaulters, using that same threshold
value. The ideal ROC curve hugs the top left corner, indicating a high true positive
rate and a low false positive mate. The dotted line represents the “no information”
classifier; this is what we would expect if student status and credit card balance
are not associated with probability of default.
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Clearing out terminology

When applying a classifier we can obtain

Predicted class
— or Null + or Non-null | Total
True — or Null True Neg. (TN) | False Pos. (FP) N
class  + or Non-null | False Neg. (FN) | True Pos. (TP) P
Total N* p*

TABLE 4.6. Possible results when applying a classifier or diagnostic test to a
population.

Out of this we can define the following

Name Definition Synonyms

False Pos. rate FP/N | Type I error, 1—Specificity

True Pos. rate TP/P | 1-Type II error, power, sensitivity, recall
Pos. Pred. value TP/P" | Precision, 1—false discovery proportion
Neg. Pred. value TN/N®

TABLE 4.7. Importani measures for classification and diagnostic testing,
derived from quantities in Table 4.6.
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Matthews Correlation Coefficient

https://en.wikipedia.org/wiki/Matthews_correlation_coefficient
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Discriminative vs. Generative Approaches

Generative approach: we derived the classifier from some generative
hypothesis about the way data have been generated

* Linearity of the log odds for posteriors (Logistic Regression)

* Multivariate Gaussian given the class for the likelihood (LDA)

Discriminative approach: find the prescribed boundary (e.g., a linear
separating boundary) able to reduce the classifier error

* Define a discriminating function and optimize it instea%—m’a
assumptions on the data distribution

From ESL

Example: find the separating hyperplane which separates the data points
in the best way (e.g., with the minimum error rate)

{;L‘ . 3[;- —+ ,.5’1;1,‘1 -+ ,.5’2;1,‘2 = 0}
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Perceptron

A perceptron computes the value of a weighted sum and returns its sign
(name dates back to '50s literature on neural networks)

{;LT : 3[) —+ ,5’1;,{:1 + ,5’2;1:2 — 0}

Basically a perceptron is a linear classitier for which:
*  We do not assume any particular probabilistic model generating the data

°  We learn the parameters using some optimization technigue so to minimize
an error function (e.g., the error rate)

*  We cannot infer the role of the single variables in the model from
the values of the weights

Inference in discriminative models is quite complex and usually it is not
the goal, instead, they usually well perform in prediction.
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An Example: Simulated Data

LDA Solution

FIGURE 4.14. A toy example with two classes separable by a hyperplane. The
orange line 1s the least squares solution, which maisclassifies one of the training
points. Also shown are two blue separating hyperplanes found by the perceptron
learning algorithm with different random starts.
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Hyperplanes Linear Algebra

Let consider the hyperplane (affine set) L in R?

fx) =0+ B 2=0
* Any two points x; and x, on L have AR
,D-‘T(;i:l — ;,{;2) — () f-f-“"“}
. | o i
* The vector normal to the surface L is A
B* — fj‘ / ‘ |3| | 4‘ 330 1+ 8Tz =0
* For any point x, in L we have /P
I,ST;UD = _.6[] -

* The signed distance of any point x to L is defined by

N 1
B (@ —x0) = W(J?Ti + 5o)
f(x) proportional to the distance of x
_ 1 ]6 from the plane defined by f(x)=0
Lf ()] " 7
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Perceptron Learning Algorithm (1/2)

The error function for the perceptron learning is the distance of
misclassified points from the decision boundary
.L,LTS + 3[} < 0
*  The output is coded with +1/-1
* If an output which should be +1is misclassified

* For an output with -T we have the opposite Set of points
misclassified
The goal becomes minimizing
D(B,50) = — Y _ yilw{ B+ Bo)
ieM

° non negative and proportional to the distance of the misclassified points from
8lr + 58, = 0
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Perceptron Learning Algorithm (2/2)

Minimize by stochastic gradient descend the error function

3.60) == Y _ vile{ B+ Bo)
. . 'EEM
° The gradients with respect to the model parameters are
D(3, Bo)
0——= =
03
D(3. 3
,D(B.f)

8 .-*'30
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An Example: Simulated Data

LDA Solution

Is there any
optimal plane?
|

FIGURE 4.14. A toy example with two classes separable by a hyperplane. The
orange line 1s the least squares solution, which maisclassifies one of the training
points. Also shown are two blue separating hyperplanes found by the perceptron
learning algorithm with different random starts.
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An Example: Simulated data

Maximum margin
classifier ...

FIGURE 4.16. The same data as in Figure {.14. The shaded region delineates
the marimum margin separating the two classes. There are three support points
indicated, which lie on the boundary of the margin, and the optimal separating
hyperplane (blue line) bisects the slab. Included in the figure is the boundary found
using logistic regression (red line), which is very close to the optimal separating
hyperplane (see Section 12.3.3).
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Separable Case Formulation (1)

From ESL
Maximize the margin M
max M
ﬁ?ﬁ{},”ﬁH:l
subject to y; (¢l B+ Bo) > M, i=1,...,N
2T+ o = 0

The two constraints respectively
* Select one of the possible hyper planes
k(Bo+ Bixin + Paxia + ...+ Bprip) = 0

* Each point is on the right side of the margin .
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Separable Case Formulation (2)

Remove the constraint on parameter norm changing margin constraint

1
ITy“(J’?j + o) = M

* which becomes -
yi(w; B+ Bo) = M]|3|]

T we redefine A1 = 1/||3| we obtain the equivalent problem
1

min = || 3|
ﬁ:ﬁﬂ 2 II

subject to ’li(iﬂgﬁ—F Go)=1,i=1,...,N

Which is a “simple” convex problem (quadratic with linear constraints)
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Separable Case Solution (1)

We can solve the constrained quadratic problem by Lagrange multipliers

N
1
Lp = SlI97 =3 el 5+ )~ 1
1=1
° Setting the derivatives to zero we have

N
,8 — E Vg YL,
i=1

N
0 = Zl AiYi Check ESL book
1= for derivation ...

* And by substitution the so-called Wolf dual

N N

N
Lp=Y 00— 33 owonimrt
i=1

i=1 k=1
subject to a; > 0.
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Separable Case Solution (2)

The Karush-Kuhn-Tucker conditions must hold too

o if @ >0 thenwe have wi(zl 3+ 5F) = 1
° If yi(«TB+5) > 1 this means a; =0 2T+ Bo=0 .

The final output comes from:
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Non Separable Case Formulation (1)

Maximize the margin M

max M
16:-}601”:8“:1

subject to y; (! 3+ o) > M, i=1,...,N

To account for "errors” we use extra variables .. .
yi(ai B+ 0o) = M—&,
ol M=t
yi(e; B+05o) > M(1-¢&). o ‘
% . \ margin
Vi, & 20, )iy & < constant This gives a convex

{77) POLITECNICO MILANO 1863
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Non Separable Case Formulation (2)

We can remove the constraint on the parameter norm obtaining

min || 3| subject to {

This can be rewritten as

111111
B,80 2

Used defined cost

Solved by Lagrange mu

~7) POLITECNICO MILANO 1863

i=1
gubject% \ '+ 6y)>1—¢ Vi,

yi(wl B+ Bo) > 1 — & Vi,
& >0, Y & < constant.

\ From ESL

3

+CZ:5z

Infinite corresponds to
separable case ...

tipliers as for the separable case ...




Non Separable Case Solution (1)

The primal Lagrange function S

“8“2+CZ§1 Za’m yz T3‘|_160 1 53 Z#mé@

i=1
* Setting the derivatives to zero gives
N
5= Z Qi YiLi,
=1
N
0 = Z Q3 Yi
=1
Qy = C— i s Vi

o With a4, i, & = 0V

By substitution we obtain the Lagrangian (Wolf) dual function ...
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Non Separable Case Solution (2)

For derivation check
The dual Lagrange function is the ESL book....
N 1 N N
Lp = ; @i~ 5 ; 2 0 Y Yir Ty T,

° Subjectto 0 < a; < C and Eilﬂ’iyi =0
° Having the Karush-Kuhn-Tucker conditions

ailyi(z] B+ Bo) —(1—&)] = 0.
il = 0,
yilel B+ 06)—(1-&) > 0

Solving the optimization problem we have

N
é — Z G Yili, ‘0@ .
i=1 Computed using the

support vectors only
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Non Separable Case Solution (3)

The solution of the Dual optimization problem provides

N
B=> duyiti,
1=1

Karush-Kuhn-Tucker conditions imply
ailyi(ei B+ Fo) —(1 = &) = 0,
pi& = 0,
yi(ei B+ 6o) = (1-&) = 0.
° &y is non zero only for support vectors
f & = 0 the supportis on the marginand 0 < &; < C
f & >0 wehave a; = C
Using the margin points 0 < a;, & = 0we can solve for o
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Separable Data vs Non Separable Data

T3+ By =0 .

I=_1
flf_" I

FIGURE 12.1. Support vector classifiers. The left panel shows the separable
case. The decision boundary is the solid line, while broken lines bound the shaded
mazimal margin of width 2M = 2/||3||. The right panel shows the nonseparable
(overlap) case. The points labeled £ are on the wrong side of their margin by
an amount £ = ME;; points on the correct side have £ = 0. The margin is
mazimized subject to a total budget > & < constant. Hence »_ &, is the total
distance of points on the wrong side of their margin.
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A Synthetic Example

Bayes Optimal Classifier Linear Regression of 0/1 Response

FIGURE 2.1. A classification example in two dimensions. The classes are coded
as a binary variable (BLUE = 0, ORANGE = 1), and then fit by linear regression.
The line ic the decision boundary defined by =7 3 = 0.5. The orange shaded region

denotes that part of input space classified as ORANGE, while the blue region is
classified as BLUE.
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A Synthetic Example

lr,_'

Training Error: 0.270
Test Error: IJEEH
BH}"ESETTDF. l]-21|:]ZZZ:ZZZZZZZZZZZZZ:ZZZ::ZZZ:ZZZ:

Training Error: 0.26 <°

Bayes Ermor: 0.21
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Test Emor.  0.30 '

¢ = 10000 C'=0.01

FIGURE 12.2. The linear support vector boundary for the mirture data exam-
ple with two overlapping classes, for two different values of C'. The broken lines
indicate the margins, where f(x) = +1. The support points (o, > 0) are all the
points on the wrong gide of their margin. The black solid dots are those support
points falling exactly on the margin (£, =0, «, > 0). In the upper panel 62% of
the observations are support points, while in the lower panel 85% are. The broken
purple curve in the background is the Bayes decision boundary.




Support Vector Machines (1)

Learning the classifier involves onlv the scalar product of features

Lp = Z Qg — Z Z g Qg y'zyz ).} h(;l:ir»
1=1i'=1
hm(x% m=1,....M \ Scalar product

We can compute this scalar product in a new feature space
h(wi) = (hi(w;), ho(xi), ... har(i)). i = 1,..., N,
flz) = h(x)T 3 + o
G(x) = sign(f(x))

The feature space can grow up to infinity with SVM ...
flx) = h( )T B+ 5, Scalar product

= Z{IIJI (h(x), h(x;)) + Bo

1=1
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The Kernel Trick

For learning and prediction we need the result of the scalar product only
flx) = h(@)"B+ 5

N
— Z aiyi(h(x), h(xy)) + Bo
i=1
In some cases this scalar product can be written as a Kernel
K(x,2") = (h(x), h(z"))
Popular choices are
dth-Degree polynomial: K (x,z’) = (1 + (x, ),

Radial basis: K (z,2") = exp(—~|jz — 2||?),
Neural network: K (x,z") = tanh(kq(x,z") + Ka).
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The Kernel Trick Example

Consider an Input space with 2 variables and a polynomial kernel of
degree d=2
K(X,X')=(1+(X.X"))?
= (14 X1 X] + X2 X})?
=1+ 2X, X} 4+ 2Xo X7 + (X1 X))? + (X0 X)) +2X, X[ X, XD,

't turns out the that M=6 and if we chose

ha(X) =1 ha(X) = X7
ho(X) = V2X4 hs(X) = X3
ha(X) = v2X, he(X) = vV2X1 X5

We obtain K(X,X') = (h(X),h(X"))
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A Synthetic Example (Non Linear)

SVM - Degree-4 Polynomial in Feature Space SVM - Radial Kernel in Feature Space

Training Error: 0.180 -~ - Training Error: 0.160 -
Test Error. n245 - . Test Error. n218 :::::::.':::::f]::::::: E
BB},I’ESEITGF_ o210 -~ T T D S BE}’ESEITDE ) | R S R
FIGURE 12.3. Two nonlinear SVMs for the mizture data. The upper plot uses
a 4th degree polynomial kernel, the lower a radial basis kernel (with v = 1). In

each case C' was tuned to approximately achieve the best test error performance,
and C' = 1 worked well in both cases. The radial basis kernel performs the best
(close to Bayes optimal), as might be expected given the data arise from miztures
of Gaussians. The broken purple curve in the background is the Bayes decision
boundary.
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