
Genetic Algorithms and

Evolutionary Computation
Matteo Matteucci and Andrea Bonarini

{matteucci,bonarini}@elet.polimi.it

Department of Electronics and Information

Politecnico di Milano

Genetic Algorithms and Evolutionary Computation – p. 1/33

Genetic Algorithms
– Introduction –

Genetic Algorithms and Evolutionary Computation – p. 2/33

Terminology (From Biology)

Evolution is a long time scale process that changes a population of
organisms by generating better offsprings trough reproduction

• Chromosome: DNA-coded information characterizing an organism
• Gene: Elementary DNA block of information (e.g., eyes color)
• Allele: One of the possible values for a gene (e.g., brown, blue, . . .)
• Trait: The physical characteristic encoded by a gene
• Genotype: A particular set of genes
• Phenotype: The physical realization of a genotype (e.g., a person)
• Fitness: A measure of success in life for an organism

• Crossover: Chromosomes from the parents exchange genetic
materials to generate a new offspring

• Mutation: Error occurring during DNA replication from parents

Genetic Algorithms and Evolutionary Computation – p. 3/33

From Biology to Genetic Algorithms

We can borrow some terms (and ideas) from biology . . .
• Chromosome: The coding of a possible solution for a given problem,

usually represented with an array of bits or characters
• Gene: A single bit or a set of bits coding part of the solution
• Allele: One of the elements used to code the genes
• Fitness: Evaluation of the actual solution

. . . to model a learning process as evolution:
• Crossover: Generate new solution by “mixing” two existing solutions
• Mutation: Random change in the solution

Genetic Algorithms and Evolutionary Computation – p. 4/33

Genetic Algorithms: A Powerful Idea from Nature

Genetic Algorithms are a part of evolutionary computing, and they are
inspired by Darwin’s theory of evolution:

Problems are solved by an evolutionary process that mimics natural
evolution in looking for a best (fittest) solution (survivor)

We can trace a brief history of evolutionary computation:

1. 1960: Ingo Rechenberg introduces the idea of evolutionary computing
in his work "Evolution strategies"

2. 1975: John Holland invents Genetic Algorithms and publish his book
"Adaption in Natural and Artificial Systems"

3. 1992: John Koza uses genetic algorithm to evolve programs to
perform certain tasks. He called his method Genetic Programming

4. 1995: Stewart Wilson re-invents learning classifier systems with XCS:
GA to learn rules

5. . . .
Genetic Algorithms and Evolutionary Computation – p. 5/33

Genetic Algorithm Applications

They have been used for many applications:
• Optimization (e.g., circuits layout, job shop scheduling, . . .)
• Prediction (e.g., weather forecast, protein folding, . . .)
• Classification (e.g., fraud detection, quality assessment, . . .)
• Economy (e.g., bidding strategies, market evaluation, . . .)
• Ecology (e.g., biological arm races, host-parasite coevolution, . . .)
• Automatic programming
• . . .

In general they are best suited for
• Big search space, non unimodal, non smooth
• Noisy fitness function, usually not analytic
• We do not want to spend years looking for the global optimum, but we

just want a good sub-optimum in a reasonable time

Genetic Algorithms and Evolutionary Computation – p. 6/33

Outline of the Basic Genetic Algorithm

1. [Start] Generate random population of n chromosomes (suitable solutions)

2. [Fitness] Evaluate the fitness f(x) of each chromosome x in the population

3. [New population] Create a new population by repeating the following steps until the new

population is complete

(a) [Selection] Select two parent chromosomes from a population according to their

fitness (the better fitness, the bigger chance to be selected)

(b) [Crossover] With a crossover probability cross over the parents to form new

offspring. If no crossover was performed, offspring is the exact copy of parents.

(c) [Mutation] With a mutation probability mutate new offsprings at each locus

(d) [Accepting] Place new offsprings in the new population

4. [Replace] Use new generated population for a further run of the algorithm

5. [Test] If the end condition is satisfied, return the best solution in current population

6. [Loop] Go to step 2

Genetic Algorithms and Evolutionary Computation – p. 7/33

Two Comments to the Basic Genetic Algorithm

There are many parameters and settings that can be implemented
differently in various problems:

• How to create chromosomes and what type of encoding choose
• How to select parents for crossover in the hope that the better parents

will produce better offspring
• How to define crossover and mutation, the two basic operators of GA

It seems there is some “black magic” behind genetic algorithms . . . Why do
genetic algorithms work?

• It can be partially explained by the Schema Theorem
• They have been modeled using Monte Carlo Markov Chains

But first of all we’ll have a look to a simple example . . .

Genetic Algorithms and Evolutionary Computation – p. 8/33

Example: Minimum of a Function

In this simple example we are looking for the extreme of a function defined
over a search space.

1. Search Space: An interval of the real line

2. Fitness Function: The value of the function we are “exploring”

Why should we use genetic algorithms for this?

Functions can get quite nasty ;)

Genetic Algorithms and Evolutionary Computation – p. 9/33

Minimization Example: Chromosome Encoding

The first step in developing a genetic algorithm is defining a solution
encoding:

• A chromosome should in some way contain information about the
solution that it represents

• The encoding depends mainly on the solved problem (e.g., integer or
real numbers, permutations, parsing trees, . . .)

• The most used way of encoding is a binary string; each bit in the
string can represent some characteristics of the solution

Our chromosome then could look like this:

101111 0000 1111 00

101111 000 1111 001

Cromosome 1

Cromosome 2

Each chromosome is represented by the binary code of a real number

Genetic Algorithms and Evolutionary Computation – p. 10/33

Minimization Example: Crossover Operator

Crossover operates on selected genes from parent chromosomes and
creates new offspring, the simplest way to do that is:

1. Choose randomly some crossover point in the chromosome

2. Copy everything before this point from the first parent and then copy
everything after the crossover point from the other parent

101111 0000 1111 00

101111 000 1111 001

10

1111

000

0

1111 00

10

1111

00

0

1111 001

Parents

Offspring

Crossover
Point

Cromosome 1

Cromosome 2

Cromosome 1

Cromosome 2

Note: Crossover depends mainly on the encoding of chromosomes.
Specific crossover for a specific problem can improve performance.

Genetic Algorithms and Evolutionary Computation – p. 11/33

Minimization Example: Mutation Operator

After a crossover is performed, mutation takes place:
• Switch a few randomly chosen bits from 1 to 0 or from 0 to 1

10111 0000 1111 00

101111 00 111 001

10111 0000 1111 00

101111 00 111 001

0

0

01

1

1

Parents

Offspring

Mutation

Point

Few notes on mutation:
• Mutation is intended to prevent falling of all solutions in the population

into a local optimum
• Also mutation depends on the encoding of chromosomes (e.g., when

we are encoding permutations, mutation could be performed as an
exchange of two genes)

Genetic Algorithms and Evolutionary Computation – p. 12/33

Minimization Example: Demo

Stolen from:
http://www.obitko.com/tutorials/genetic-algorithms/example-function-minimum.php

Genetic Algorithms and Evolutionary Computation – p. 13/33

Genetic Algorithms
– Into the groove –

Genetic Algorithms and Evolutionary Computation – p. 14/33

http://www.obitko.com/tutorials/genetic-algorithms/example-function-minimum.php

Genetic Algorithms Explained: Selection

According to Darwin’s theory of evolution the best chromosome survive to
create new offspring. There are many methods to select the best
chromosomes:

• Roulette wheel selection,
• Rank selection
• Tournament selection
• Boltzmann selection
• . . .

Genetic Algorithms and Evolutionary Computation – p. 15/33

Roulette Wheel Selection

Roulette Wheel Selection: Parents are selected proportionally to their fitness.
The better they are, the more chances to be selected they have.

1. Imagine a roulette wheel where all the chromosomes in the
population are placed

2. The size of the section in the roulette wheel is proportional to the
value of the fitness function of every chromosome - the bigger the
value is, the larger the section is

3. A marble is thrown in the roulette wheel and the chromosome where it
stops is selected

Possible problems if there is a large difference of fitness from the best to
the worst, which could hardly be selected.

Genetic Algorithms and Evolutionary Computation – p. 16/33

Rank Selection

Rank Selection: Parents are ranked and the selection probability is
proportional to the rank.

Roulette before ranking

Roulette after ranking

Possible problems: slow convergence, due to small difference between
best and worst parents.

Genetic Algorithms and Evolutionary Computation – p. 17/33

Tournament Selection

Tournament Selection: Parents are pooled and a tournament is held within
the pool(s).

Pseudocode:
• choose k (the tournament size) individuals from the population at

random
• choose the best individual from pool/tournament with probability p

• choose the second best individual with probability p ∗ (1− p)

• choose the third best individual with probability p ∗ ((1− p)2)

• and so on...

Efficient implementation, easy to adjust.

Genetic Algorithms and Evolutionary Computation – p. 18/33

Boltzmann Selection

Boltzmann Selection: Parents are selected with a probability that favors
exploration at the beginning of learning and tends to stabilize and
select the best solutions as generations proceed.

P = e−fMax−f(Xi)/T

T = T0(1− α)k, with α ∈ [0, 1], and T0 ∈ [5, 100]

k = 1 + 100 ∗ g/G,

where g is the generation number and G the maximum number of
generations

Genetic Algorithms and Evolutionary Computation – p. 19/33

Genetic Algorithms Explained: Elitism

When creating a new population by crossover and mutation, we have a big
chance that we will lose the best chromosome.
Elitism is the name of the method that first copies the best chromosome (or
few best chromosomes) to the new population. It can rapidly increase the
performance, because it prevents a loss of the so–far best found solution.

Genetic Algorithms and Evolutionary Computation – p. 20/33

Genetic Algorithms Explained: Encoding (I)

Binary encoding is the most common one, mainly because, when all
configurations are used, it guarantees the maximum exploitation of the
information representation.

• In binary encoding, every chromosome is a string of bits (0 or 1)
• Simple Implementation of the genetic operators
• Not natural for many problems

101111 0000 1111 00

101111 000 1111 001

Cromosome 1

Cromosome 2

Example of Problem: Knapsack problem
• There are things with given value and size. The knapsack has given

capacity. Select things to maximize the value of things in knapsack,
but do not extend knapsack capacity.

• Each bit says whether the corresponding thing is in the knapsack.
Genetic Algorithms and Evolutionary Computation – p. 21/33

Genetic Algorithms Explained: Crossover/Mutation (I)

For binary encoding we have many operators:
• Single point crossover: one crossover point is selected, binary string

from the beginning of the chromosome to the crossover point is
copied from the first parent, the rest is copied from the other parent

• Two point crossover: two crossover points are selected, binary string
from the beginning of the chromosome to the first crossover point is
copied from the first parent, the part from the first to the second
crossover point is copied from the other parent and the rest is copied
from the first parent again

• Uniform crossover: bits are randomly copied from the first or from the
second parent

• Arithmetic crossover: some arithmetic operation is performed to make
a new offspring (e.g., logic AND)

• Mutation: inversion of bits selected with a given probability

Genetic Algorithms and Evolutionary Computation – p. 22/33

Genetic Algorithms Explained: Encoding (II)

Permutation encoding can be used in ordering problems
• Every chromosome is a string of numbers that represent a position in

a sequence
• Crossover and mutation must be designed to leave the chromosome

consistent (i.e., have real sequence in it)

11253715 1610138 641411 92Cromosome 1

Cromosome 2 9 6 42 14 1 121611 10135 38 715

Example of Problem:Traveling salesman problem (TSP)
• There are cities and given distances between them. Traveling

salesman has to visit all of them, but he does not want to travel more
than necessary. Find a sequence of cities with a minimal traveled
distance.

• Chromosome describes the order of cities

Genetic Algorithms and Evolutionary Computation – p. 23/33

Genetic Algorithms Explained: Crossover/Mutation (II)

For permutation encoding we have to preserve consistency:
• Single point crossover: one crossover point is selected, the

permutation is copied from the first parent till the crossover point, then
the other parent is scanned looking the other numbers

(1 2 3 4 5 6 7 8 9) + (4 5 3 6 8 9 7 2 1) = (1 2 3 4 5 6 8 9 7)

• Order changing mutation: two numbers are selected and exchanged

(1 2 3 4 5 6 8 9 7) ⇒ (1 8 3 4 5 6 2 9 7)

Genetic Algorithms and Evolutionary Computation – p. 24/33

Genetic Algorithms Explained: Encoding (III)

Direct value encoding can be used in problems where some more
complicated values are required

• Every chromosome is a sequence of some values connected to the
problem, such as (real) numbers, chars or any objects

• Good choice for some special problems, but necessary to develop
some specific crossover and mutation

D SCromosome

Cromosome 2.5678 1.4361 3.3426 7.8761

Cromosome closeopen walk back

A B H Y VV

Example of Problem: Finding weights for a neural network

• A neural network is given with defined architecture. Find weights
between neurons to get the desired output from the network

• Real values in chromosomes represent weights in the neural network

Genetic Algorithms and Evolutionary Computation – p. 25/33

Genetic Algorithms Explained: Crossover/Mutation (III)

For real value encoding we can reuse crossover from binary encoding:
• Mutation: a small number is added (or subtracted) to selected values

(1.29 5.68 2.86 4.11 5.55) ⇒ (1.29 5.68 2.73 4.22 5.55)

Genetic Algorithms and Evolutionary Computation – p. 26/33

Genetic Algorithms Explained: Encoding (IV)

Tree encoding is used mainly for evolving programs or expressions (i.e.,
genetic programming)

• Every chromosome is a tree of some objects, such as functions or
commands in programming language.

• Programming language LISP is often used for this purpose, so
crossover and mutation can be done relatively easily.

Cromosome (+ X (/ 5 y))

Example of Problem: Finding a function
that would best match given pairs of values
(approximant function)

• Input and output values are given. The
task is to find a function that will give the
best outputs for all inputs.

• Chromosome are functions represented
in a tree

Genetic Algorithms and Evolutionary Computation – p. 27/33

Genetic Algorithms Explained: Crossover/Mutation (IV)

Specific operators have to be selected also for tree encoding
• Tree crossover: one crossover point is selected in both parents,

parents are divided in that point and the parts below crossover points
are exchanged to produce new offspring

• Changing mutation: the operator, number, or variable in a randomly
selected nodes is changed

Genetic Algorithms and Evolutionary Computation – p. 28/33

Time for Another Demo

Stolen again from:
http://www.obitko.com/tutorials/genetic-algorithms/tsp-example.php

Genetic Algorithms and Evolutionary Computation – p. 29/33

Tips & Tricks

These “rules of thumb” are often results of empiric studies performed on
binary encoding only, but they usually work fine . . .

• Crossover rate should be high, generally about 80%− 95% (However
some results show that for some problems crossover rate about 60%
is the best.)

• Mutation rate should be very low. Good rates could be about
0.5%− 1% per allele

• Very big population size usually does not improve performance (in the
sense of speed of finding solution). Good population size is about
20− 30, however sometimes sizes 50− 100 are reported as the best

• Basic roulette wheel selection can be used, but sometimes rank
selection can be better. Elitism should be used for sure if you do not
use other method for saving the best found solution

Genetic Algorithms and Evolutionary Computation – p. 30/33

http://www.obitko.com/tutorials/genetic-algorithms/tsp-example.php

Understanding Genetic Algorithms: Building Blocks

Holland (1975) formalized the idea of building block and schema:

A string S will contain sub-strings. We can represent this as a ‘similarity
template string’ (i.e., the schema) H which uses a ‘wild card’ symbol to
mark positions not belonging to the sub-strings (they can take 1 or 0).

Example: schema **11 represents strings 1111, 0011, 1011 and 0111.
Alternatively, 1011 and 1101 contain common schemata 1***, ***1
and 1**1.

Note: Since 2 strings have 3 common schemata each, making a total of 6
schemata; processing a string implicitly processes many more schemata.

In general, for a string of length l, there are 3l schemata.

This property is usually referred as implicit parallelism.

Genetic Algorithms and Evolutionary Computation – p. 31/33

Understanding Genetic Algorithms: Schema Theorem

By evaluating many strings we implicitly estimate the expected value of
schemata, and working out a “little bit of math” we can approximate the
expected number of schemata at next step:

M(Hi, t+ 1) ≥ M(Hi, t) ·

[

f(Hi)

f̄

]

·

[

1− pc ·
δ(Hi)

l − 1

]

·

[

(1− pm)o(Hi)
]

.

• f(Hi): Mean fitness of the ith schema

• f̄ : Mean fitness of population

• δ(Hi): Length of the ith schema

• l: Length of strings in the search space
• o(Hi): Number of known bits in the schema

• pm and pc: Mutation and Crossover probabilities

Genetic Algorithms and Evolutionary Computation – p. 32/33

Understanding Genetic Algorithms: What’s going on?

The previous formula states two important concepts for the understanding
of genetics algorithm:

Schema Theorem

Above average fitness, short, low-order schemata will have a
large survival probability. They will grow at least exponentially in

the population.

Building Block Hypothesis

Short, highly fit, low order schemata are called building blocks; it
is thought that they represent partial solutions to the problem and

that processing them will build up the full solution.

Genetic Algorithms and Evolutionary Computation – p. 33/33

	{Large Genetic Algorithms} \ vspace {0.2cm} {large -- Introduction --}
	Terminology (From Biology)
	From Biology to Genetic Algorithms
	Genetic Algorithms: A Powerful Idea from Nature
	Genetic Algorithm Applications
	Outline of the Basic Genetic Algorithm
	Two Comments to the Basic Genetic Algorithm
	Example: Minimum of a Function
	Minimization Example: Chromosome Encoding
	Minimization Example: Crossover Operator
	Minimization Example: Mutation Operator
	Minimization Example: Demo
	{Large Genetic Algorithms} \ vspace {0.2cm} {large -- Into the groove --}
	Genetic Algorithms Explained: Selection
	Roulette Wheel Selection
	Rank Selection
	Tournament Selection
	Boltzmann Selection
	Genetic Algorithms Explained: Elitism
	Genetic Algorithms Explained: Encoding (I)
	Genetic Algorithms Explained: Crossover/Mutation (I)
	Genetic Algorithms Explained: Encoding (II)
	Genetic Algorithms Explained: Crossover/Mutation (II)
	Genetic Algorithms Explained: Encoding (III)
	Genetic Algorithms Explained: Crossover/Mutation (III)
	Genetic Algorithms Explained: Encoding (IV)
	Genetic Algorithms Explained: Crossover/Mutation (IV)
	Time for Another Demo
	Tips & Tricks
	Understanding Genetic Algorithms: Building Blocks
	Understanding Genetic Algorithms: Schema Theorem
	Understanding Genetic Algorithms: What's going on?

