Cognitive Robotics

2016/2017

Planning: State, Actions and Goal Representation
Matteo Matteucci
matteo.matteucci@polimi.it

Artificial Intelligence and Robotics Lab - Politecnico di Milano

Recall «Think hard, act later»?

Planning is about «thinking»

- Given the actions available in a task domain.
- Given a problem specified as:
- an initial state of the world
- a goal statement (set of goals) to be achieved
- Find a solution to the problem

Plan: a way, in terms of a sequence of actions, to transform the initial state into a new state of the world where the goal statement is true.

The Block World

The Block World is a useful abstraction to introduce States, Actions and Plans

- Blocks are on the Table, or on top of each other.
- There is an Arm - the Arm can be empty or holding one block.
- The table is always clear.

The Block World: States
On-Table(A), On-Table(C),
$\operatorname{On}(A, B), \operatorname{Clear}(C)$,
Clear(B), Handempty

Objects

- Blocks: A, B, C

Table

States - Conjunctive

- On(A,B) and On(B,C) and Clear(A) and Handempty
- ...

The Block World: Assumptions/Limitations

The Block World models Classical Deterministic Planning

- There is a single initial state
- The description is complete
- The plan is deterministic
- What is not true in the state is false

The basic operators perform queries on states

- On(A,B) \rightarrow returns true or false
- $\operatorname{On}(A, x) \rightarrow$ returns $x=$ Table or $x=B$
- On-table $(x) \rightarrow$ returns $x=A$ and $x=C$
- ...

The Block World: State Description

A-on-B	$\neg A-o n-B \wedge \neg A$-on-Table
A-on-Table	$\neg B$-on- $A \wedge \neg B$-on-Table
B-on-A	\neg Holding-A \neg Holding- B
B-on-Table	$\neg B$-on-A
Holding-A	$\neg A-$ on-B
Holding-B	
Handempty	
Clear-A	
Clear-B	
A-on-x $\{\varnothing$, table, B $\}$	
B-on-x $\{\varnothing$, table, $A\}$	

All these define the State Space

2^4 Possible states

3^2 Possible States

The Block World: Planning as State-Space Search

Models for State Spaces

Different models for states exist ...

- Atomic identification of states (s1, s2,...)
- Symbolic feature based states
- Symbolic predicate based states

Predicates, conjunctive, complete, correct, deterministic

Goal Specification

We can specify a Goal according to different levels of generality:

- Goal State \rightarrow Completely specified state
- Goal Statement \rightarrow Partially specified state

Increased Generality

- Objective function \rightarrow Defines "good" or "optimal" plan

Goal Statement example:

- Initial: A-on-x = Table;

B-on-x = A;
C-on-x = Table

- Goal: A-on-x=B

What is an Action?

Plan: a way, in terms of a sequence of actions, to transform the initial state into a new state of the world where the goal statement is true.

Newell and Simon 1956

Action: a transition from one (partial) state to another

- May be applicable only in particular states
- Generates new state
- Deterministic: $t_{d e t} S \times \mathrm{A} \rightarrow \mathrm{S}$
- Non-deterministic: $t_{\text {non-det }}: S \times A \rightarrow 2^{S}$
- Probabilistic: $\left.t_{\text {prob }}: S \times A \rightarrow<2^{\mathrm{S}}, \mathrm{r}\right\rangle$

Explicit Action Representation

The Block World Dynamics: Actions

- Blocks are on the Table, or on top of each other
- Blocks are picked up and put down by the arm
- A block can be picked up only if it is clear, i.e., without a block on top
- The arm can pick up a block only if the arm is empty, i.e., if it is not holding another block, i.e., the arm can pick up only one block at a time
- The arm can put down blocks on blocks or on the table
- The table is always clear

STRIPS Action Representation

STRIPS (Stanford Research Institute Problem Solver) was the planner used by Shakley, it was developed at SRI International by Richard Fikes and Nils Nilsson in 1971.

Explicit action a representation

- $\left\{p r e c o n d s(a)\right.$, effects $^{-}(a)$, effects $\left.^{+}(a)\right\}$
- effects $^{-}(a) \cap$ effects $^{+}(a)=\varnothing$
- $\tau(S, a)=\left\{s-\right.$ effects $^{-}(a) \cup$ effects $\left.^{+}(a)\right\}$, where $s \in 2^{s}$

Example in the Block World

- Pickup_from_table(?b) Pre: ... Add: ... Delete: ...

Let's try this out together!

Actions in the Block World

In the Block World:

- An action a is applicable in s if all its preconditions are satisfied by s.
- RESULT(s,a) = (s - Del (a)) U Add (a)
- No explicit mention of time

The precondition always refers to time t
The effect always refers to time $t+1$

Pickup_from_table(b)
Pre: Block(b), Handempty
Clear(b), On(b, Table)
Add: Holding(b)
Delete: Handempty, On(b, Table) Clear(b)

Putdown_on_table(b)
Pre: Block(b), Holding(b)
Add: Handempty, On(b, Table)
Delete: Holding(b)

Pickup_from_block(b1, b2)
Pre: Block(b1),Block(b2), Handempty Clear(b1), On(b1,b2)
Add: Holding(b1), Clear(b2)
Delete: Handempty, On(b1,b2) Clear (b1)

Putdown_on_block(b1, b2)
Pre: Block(b1), Holding(b1) Block(b2), Clear(b2), b1 $=\mathrm{b} 2$
Add: Handempty, On(b1, b2)
Delete: Holding(b1), Clear(b2)

More Realistic Actions Representations

Conditional Effects

- Pickup (b)

```
Pre: Block(b), Handempty, Clear(b), On(b, x)
Add: Holding(b)
    if (Block(x)) then Clear(x)
Delete: Handempty, On(b, x)
```


Quantified Effects

- Move (o, x)

```
    Pre: At (o, y), At(Robot, y)
```

 Add: At \((0, x)\), At (Robot, \(x\))
 forall (Object(u)) [if (In(u, o)) then At(u, y)]
 Delete: At (o, y), At (Robot, y),
 forall (Object(u)) [if (In(u, o)) then At(u, y)]
 Disjunctive and Negated Preconditions

- Holding(x) Or Not[Lighter_Than_Air(x)]

More Realistic Actions Representations

Inference Operators / Axioms

- Clear(x) iff forall(Block(y)) [$\operatorname{Not[On(y,~x)]]}$

Functional effects

- Move (o, x)

```
Pre: At(o, y), At(Robot, y), Fuel(f), f \geq Fuel_Needed(y, x)
Add: At (o, x), At(robot, x), Fuel(f - Fuel_Needed(y, x)),
    forall (Object(u)) [ if (In(u, O)) then At(u, y)]
    Delete: At(o, y), At(Robot, y), Fuel(f),
    forall (Object(u)) [ if (In(u, o)) then At(u, y)]
```


Disjunctive Effects

- Pickup_from_block(b)

Pre: Block(b), Handempty, Clear(b), On(b, c), Block(c)
C1: Add: Clear (c), Holding(b); Delete: On (b, c), Handempty
C2: Add: Clear(c), On(b, Table); Delete: On(b, c)
C3: Add: ; Delete:

Cognitive Robotics

Planning: Plan Generation
Matteo Matteucci matteo.matteucci@polimi.it

Artificial Intelligence and Robotics Lab - Politecnico di Milano

Different Plans ...

A plan can have different degrees of generality ...

- Sequence of Instantiated Actions
- Partial Order of Instantiated Actions
- Set of Instantiated Actions

Increased
Generality

- Policy (a direct mapping from states to actions)
... and adopt different search stratiegies:
- Progression, a.k.a. forward state space search, a.k.a. forward chaining
- Regression, a.k.a. backward state-space search, a.k.a. backward chaining

Plan Generation

Backtracking Search Through a Search Space

- How to conduct the search
- How to represent the search space
- How to evaluate the solutions

Non-Deterministic Choices Determine Backtracking

- Choice of actions
- Choice of variable bindings
- Choice of temporal orderings
- Choice of subgoals to work on

Properties of Planning Algorithms

Soundness

- A planning algorithm is sound if all solutions are legal plans, i.e., all preconditions, goals, and any additional constraints are satisfied

Completeness

- A planning algorithm is complete if a solution can be found whenever one actually exists
- A planning algorithm is strictly complete if all solutions are included in the search space

Optimality

- A planning algorithm is optimal if it maximizes a predefined measure of plan quality

Linear Planning and Means-ends Analysis

Linear Planning

- Uses a Goal stac and work on one goal until completely solved before moving on to the next goal
Mean-ends Analysis
- Search by reducing the difference between the state and the goals, i.e., What means (operators) are available to achieve the desired ends (goal)?

```
GPS Algorithm (state, goals, plan)
Newell and Simon 60s
If goals \(\subseteq\) state, then return (state,plan)
Choose a difference \(d \in\) goals between state and goals
Choose an operator o to reduce the difference \(d\)
If no applicable operators, then return False
(state,plan) \(=\) GPS (state, preconditions(o), plan)
If state, then return GPS (apply (o, state), goals, [plan,o])
```

Initial call: GPS (initial-state, initial-goals, [])

The Block World: GPS at Work

$\frac{1 .}{1 . \text { Search Stack }}$	State
$\operatorname{On}(A, C)$ On(C, B)	Clear(B) Clear(C) On(C, A) On(A, Table) On(B, Table) Handempty

The Block World: GPS at Work

4. Search Stack	State
On(A, C) On(C, B)	Clear(B)
On(A, C)	Clear(C)
Put_Block(C, B)	On(A, Table)
Holding(C) Clear(B)	On(B, Table)
Holding(C)	
Clear(B)	

6. Search Stack

Handempty Clear(C) On(C, ?b)

The Block World: GPS at Work

Pick_Block(C)

State
Clear(B)
Clear(C)
On(C, A)
On(A, Table)
On(B, Table)
Handempty

8. Search Stack	State
On(A, C) On(C, B)	Clear(B)
On(A, C)	Clear(C)
Put_Block(C, B)	On(B, Table)
Holding(C) Clear(B)	Holding(C) Clear(A)

[Pick_Block(C)]

The Block World: GPS at Work

8. Search Stack	State
On(A, C) On(C, B)	Clear(B)
On(A, C)	Clear(C)
Put_Block(C, B)	On(B, Table)
Holding(C) Clear(B)	Holding(C) Clear(A)

[Pick_Block(C)]

[Pick_Block(C)]

The Block World: GPS at Work

[Pick_Block(C); Put_Block(C, B)]

11. Search Stack	State
On(A, C) On(C, B)	Clear(C)
Put_Block(A, C)	On(A, Table)
Holding(A) Clear(C)	Clear(A)
	Handempty On(C, B)

[Pick_Block(C) Put_Block(C, B)]

The Block World: GPS at Work
13. Search Stack

On(A, C) On(C, B)
Put_Block(A, C)
Holding(A) Clear(C)
Holding(A)

State

Clear(C)
On(A, Table)
On(B, Table)
Clear(A)
Handempty
On(C, B)

[Pick_Block(C); Put_Block(C, B)]
14. Search Stack

On(A, C) On(C, B)
Put_Block(A, C)
Holding(A) Clear(C)
Pick_Table(A)
Handempty Clear(A) On(A, Table)

[Pick_Block(C); Put_Block(C, B)]
[Pick_Block(C); Put_Block(C, B)]

The Block World: GPS at Work

16. Search Stack	State
On(A, C) On(C, B)	Clear (C)
Put_Block(A, C)	On(B, Table)
Holding(A) Clear(C)	$\mathrm{On}(\mathrm{C}, \mathrm{B})$
	Holding(A)

State

[Pick_Block(C); Put_Block(C, B); Pick_Table(A)]

17. Search Stack	State
On(A, C) On(C, B)	Clear(C)
Put_Block(A, C)	On(B, Table)
	On(C, B)
	Holding(A)

[Pick_Block(C);
Put_Block(C, B);
Pick_Table(A)]

The Block World: GPS at Work

16. Search Stack	State
On(A, C) On(C, B)	Clear (C)
Put_Block(A, C)	On(B, Table)
Holding(A) Clear(C)	$\mathrm{On}(\mathrm{C}, \mathrm{B})$
	Holding(A)

[Pick_Block(C); Put_Block(C, B); Pick_Table(A)]

State

17. Search Stack	State
On(A, C) On(C, B)	Clear (C)
Put_Block(A, C)	On(B, Table)
	Clear(A)
	On(C, B) Holding (A)

$\frac{18}{\text { 18. Search Stack }}$	State
$\operatorname{On}(A, C) \operatorname{On}(\mathrm{C}, \mathrm{B})$	On(B, Table) Clear(A) On(C', B) Handempty On(A, C)
Pick_Block(C);	

[Pick_Block(C);
Put_Block(C, B);
Pick_Table(A)]

Put_Block(C, B);
Pick_Table(A);
Put_Block(A, C)]

The Block World: GPS at Work

[Pick_Block(C); Put_Block(C, B); Pick_Table(A)]

17. Search Stack	State	18. Search Stack	State	19. Search Stack	State
On(A, C) On(C, B)	Clear(C)	On(A, C) On(C, B)	On(B, Table)	[Pick_Block(C); Put_Block(C, B); Pick_Table(A); Put_Block(A, C)]	On(B, Table)
Put Block(A, C)	On(B, Table)	[Pick_Block(C); Put_Block(C, B); Pick_Table(A); Put_Block(A, C)]	Clear(A)		Clear(A)
Put_Block(A, C)	Clear(A)		$\mathrm{On}(\mathrm{C}, \mathrm{B})$		$\mathrm{On}(\mathrm{C}, \mathrm{B})$
	On(C, B) Holding (A)		Handempty		Handempty
			$\mathrm{On}(\mathrm{A}, \mathrm{C})$		On(A, C)
[Pick_Block(C);					
Put_Block(C, B);					
Pick_Table(A)]					

The Sussman Anomaly

```
Pickup(?b)
Pre:(handempty)
    (clear ?b)
    (on-table ?b)
Add:(holding ?b)
Delete:(handempty)
        (on-table ?b)
        (clear ?b)
```


Putdown (?b)

Pre:(holding ?b)
Add: (handempty) (on-table ?b)
Delete: (holding ?b)


```
Unstack(?a, ?b)
Pre:(handempty)
    (clear ?a)(on ?a ?b)
Add:(holding ?a) (clear ?b)
Delete:(handempty)
    (on ?a ?b)(clear ?a)
```


Stack (?a, ?b)

Pre: (holding ?a)
(clear ?b)
Add: (handempty) (on ?a ?b)
Delete: (holding ?a) (clear ?b)

The Sussmann Anomaly - Linear Solution 1

(on B C)

- Pickup (B)
- Stack (B, C)

The Sussmann Anomaly - Linear Solution 1

```
(on B C)
    - Pickup (B)
    - Stack (B, C)
(on A B)
    - Unstack (B, C)
    - Putdown (B)
    - Unstack (C, A)
    - Putdown (C)
    - Pickup(A)
    - Stack (A, B)
- Unstack (B, C)
- Putdown (B)
- Unstack (C, A)
- Putdown (C)
- Pickup(A)
- Stack (A, B)
```


The Sussmann Anomaly - Linear Solution 1

```
(on B C)
    - Pickup (B)
    - Stack (B, C)
(on A B)
    - Unstack (B, C)
    - Putdown (B)
    - Unstack (C, A)
    - Putdown (C)
    - Pickup(A)
    - Stack (A, B)
(on B C)
    - Unstack (A, B)
    - Putdown (A)
    - Pickup (B)
    - Stack (B, C)
- Unstack (B, C)
- Putdown (B)
- Unstack (C, A)
- Putdown (C)
- Pickup(A)
- Stack (A, B)
(on B C)
- Unstack (A, B)
- Putdown (A)
- Pickup (B)
- Stack (B, C)
```


The Sussmann Anomaly - Linear Solution 1

```
(on B C)
    - Pickup (B)
    - Stack (B, C)
(on A B)
    - Unstack (B, C)
    - Putdown (B)
    - Unstack (C, A)
    - Putdown (C)
    - Pickup(A)
    - Stack (A, B)
(on B C)
    - Unstack (A, B)
    - Putdown (A)
    - Pickup (B)
    - Stack (B, C)
(on A B)
    - Pickup (A)
    - Stack (A,B)
```


The Sussmann Anomaly - Linear Solution 2

```
(on A B)
    - Unstack (C, A)
    - Putdown (C)
    - Pickup(A)
    - Stack (A, B)
```

- Stack (A, B)

The Sussmann Anomaly - Linear Solution 2

```
(on A B)
    - Unstack (C, A)
    - Putdown (C)
    - Pickup(A)
    - Stack (A, B)
(on B C)
    - Unstack (A, B)
    - Putdown (A)
    - Pickup (B)
    - Stack (B, C)
(on B C)
- Unstack (A, B)
- Putdown (A)
- Pickup (B)
- Stack (B, C)
```


The Sussmann Anomaly - Linear Solution 2

```
(on A B)
    - Unstack (C, A)
    - Putdown (C)
    - Pickup(A)
    - Stack (A, B)
(on B C)
- Unstack (A, B)
- Putdown (A)
- Pickup (B)
- Stack (B, C)
(on A B)
- Pickup (A)
- Stack (A,B)
(on B C)
```


Is it Optimal? Can we
do it with less actions?

The Sussmann Anomaly: Non Linear (Optimal) Solution
(on
A B)

- Unstack (C, A)
- Putdown (C)
(on
B C)
- Pickup (B)
- Stack (B, C)
(on
A B)
- Pickup (A)
- Stack(A, B)

Linear Planning and the Goal Stack

Advantages

- Reduced search space, since goals are solved one at a time, and not all possible goal orderings are considered
- Advantageous if goals are (mainly) independent
- Linear planning is sound

What about
completeness?
Disadvantages

- Linear planning may produce suboptimal solutions (based on the number of operators in the plan)
- Planner's efficiency is sensitive to goal orderings
- Control knowledge for the "right" ordering
- Random restarts
- Iterative deepening

One Way Rocket (Veloso ‘89)

```
(OPERATOR LOAD-ROCKET
:preconds
    ?roc ROCKET
    ?Obj OBJECT
    ?loc LOCATION
(and (at ?obj ?loc)
            (at ?roc ?loc))
:effects
    add (inside ?obj ?roc)
    del (at ?obj ?loc))
```

(OPERATOR UNLOAD-ROCKET
: preconds
?roc ROCKET
?obj OBJECT
?loc LOCATION
(and (inside ?obj ?roc) (at ?roc ?loc))
:effects
add (at ?obj ?loc)
del (inside ?obj ?roc))

```
(OPERATOR MOVE-ROCKET
:preconds
    ?roc ROCKET
    ?from-l LOCATION
    ?to-l LOCATION
(and (at ?roc ?from-l)
    (has-fuel ?roc))
:effects
    add (at ?roc ?to-l)
    del (at ?roc ?from-l)
    del (has-fuel ?roc))
```

Initial state:
(at obj1 locA)
(at obj2 locA) Goal statement:
(at ROCKET locA) (has-fuel ROCKET)
(and
(at obj1 locB)
(at obj2 locB))

Goal	Plan
(at obj1 locB)	(LOAD-ROCKET obj1 locA) (MOVE-ROCKET) (UNLOAD-ROCKET obj1 locB)
(at obj2 locB)	failure

State Space Non Linear Planning

Extend linear planning:

- From stack to set of goals
- Include in the search space all possible interleaving of goals

State-space nonlinear planning is complete

Goal	Plan					
(at obj1 locB)	(LOAD-ROCKET obj1 locA)					
(at obj2 locB)	(LOAD-ROCKET obj2 locA)					
(at obj1 locB)	(MOVE-ROCKET) (UNLOAD-ROCKET obj1 locB)		$	$	(at obj2 locB)	(UNLOAD-ROCKET obj1 locB)
:---	:---	:---				

Prodigy4.0 (Veloso et al. 90)

1. Terminate if the goal statement is satisfied in the current state. Initially the set of applicable relevant operators is empty.
2. Compute the SET of pending goals G, and the SET of applicable relevant operators A.

- A goal is pending if it is a precondition, not satisfied in the current state, of a relevant operator already in the plan.
- A relevant operator is applicable when all its preconditions are satisfied in the state.

3. Choose a pending goal G in G or choose a relevant applicable operator A in A.
4. If the pending goal G has been chosen, then

- Expand goal G, i.e., get the set O of relevant instantiated operators that could achieve G,
- Choose an operator O from O, as a relevant operator for goal G.
- Go to step 1.

5. If a relevant operator A has been selected as directly applicable, then

- Apply A,
- Go to step 1.

Prodigy4.0 Search Representation

Applying and Operator (moving it to the head)

Adding and operator to the tail plan

After all, it is all about graph exploration

Planning issues

State representation

- The frame problem
- The "choice" of predicates
(e.g., On-table (x), On (x, table), On-table-A, On-table-B,...)

Action representation

- Many alternative definitions
- Reduce to "needed" definition
- Conditional effects
- Uncertainty
- Quantification
- Functions

Generation - planning algorithm(S)

Wrap-up slide on "Planning and Plan Generation"

What should remain from this lecture?

- Planning: selecting one sequence of actions (operators) that transform (apply to) an initial state to a final state where the goal statement is true.
- Means-ends analysis: identify and reduce, as soon as possible, differences between state and goals.
- Linear planning: backward chaining with means-ends analysis using a stack of goals, potentially efficient, possibly unoptimal, incomplete; GPS
- Nonlinear planning with means-ends analysis: backward chaining using a set of goals; reason about when "to reduce the differences;" Prodigy4.0.

References

- S. Russell, P. Norvig. «Artificial Intelligence: A Modern Approach». Chapter 11: Planning, pages 375-416. Pearson, 2010.

