based on Manuela M. Veloso lectures on



PLANNING, EXECUTION AND LEARNING

# Cognitive Robotics 2016/2017

Planning: State, Actions and Goal Representation

Matteo Matteucci matteo.matteucci@polimi.it

Artificial Intelligence and Robotics Lab - Politecnico di Milano

#### **Recall «Think hard, act later»?**

Planning is about «thinking»

- Given the *actions* available in a task domain.
- Given a problem specified as:
  - an *initial state* of the world
  - a goal statement (*set of goals*) to be achieved
- Find a *solution* to the problem
- a way, in terms of a <u>sequence of actions</u>, Plan: to transform the *initial state* into It's all about states, a *new state* of the world where the *goal statement is true*.

Newell and Simon 1956

actions, and plans!





#### The Block World

The Block World is a useful abstraction to introduce <u>States, Actions and Plans</u>

- Blocks are on the Table, or on top of each other.
- There is an Arm the Arm can be empty or holding one block.
- The table is always clear.









#### The Block World: Assumptions/Limitations

The Block World models Classical Deterministic Planning ...

- There is a single initial state
- The description is complete
- The plan is deterministic
- What is not true in the state is false

The basic operators perform queries on states

- $On(A,B) \rightarrow returns true or false$
- $On(A,x) \rightarrow returns x=Table or x=B$
- On-table (x)  $\rightarrow$  returns x=A and x=C







. .

#### **The Block World: State Description**

A-on-B  $\neg A - on - B \land \neg A - on - Table$ A-on-Table  $\neg B$ -on- $A \land \neg B$ -on-Table  $\neg$ Holding-A  $\land \neg$ Holding-B B-on-A B-on-Table  $\neg B$ -on-A Holding-A  $\neg A$ -on-B Holding-B Handempty Clear-A Clear-B A-on-x {Ø, table, B} B-on-x {Ø, table, A}





## The Block World: Planning as State-Space Search





#### **Models for State Spaces**

Different models for states exist ...

- Atomic identification of states (s1, s2,...)
- Symbolic feature based states
- Symbolic predicate based states

- ... together with different ways of combining them
  - Conjunctive  $\rightarrow$  observable
  - Probabilistic  $\rightarrow$  approximate
  - Incremental  $\rightarrow$  on-demand
  - Temporal  $\rightarrow$  dynamic





. . .

#### **Goal Specification**

We can specify a Goal according to different levels of generality:

- Goal State → Completely specified state
- Goal Statement  $\rightarrow$  Partially specified state
- Objective function  $\rightarrow$  Defines "good" or "optimal" plan

Increased Generality



- Initial: A-on-x = Table; B-on-x = A; C-on-x = Table
- Goal: A-on-x = B





#### What is an Action?

<u>Plan</u>: a way, in terms of a <u>sequence of actions</u>, to transform the <u>initial state</u> into a <u>new state</u> of the world where the <u>goal statement is true</u>.

Newell and Simon 1956

Action: a transition from one (partial) state to another

- May be applicable only in particular states
- Generates new state
  - Deterministic:  $t_{det}$ : S x A  $\rightarrow$  S
  - Non-deterministic:  $t_{non-det} : S \times A \rightarrow 2^{S}$
  - Probabilistic:  $t_{prob}$ : S x A  $\rightarrow$  <2<sup>S</sup>, r>



**Explicit Action Representation** 



#### The Block World Dynamics: Actions



- Blocks are on the Table, or on top of each other
- Blocks are picked up and put down by the arm
- A block can be picked up only if it is clear, i.e., without a block on top
- The arm can pick up a block only if the arm is empty, i.e., if it is not holding another block, i.e., the arm can pick up only one block at a time
- The arm can put down blocks on blocks or on the table
- The table is always clear



### **STRIPS Action Representation**

STRIPS (Stanford Research Institute Problem Solver) was the planner used by Shakley, it was developed at SRI International by Richard Fikes and Nils Nilsson in 1971.

#### Explicit action a representation

- {preconds(a), effects<sup>-</sup>(a), effects<sup>+</sup>(a)}
- effects<sup>-</sup>(a)  $\cap$  effects<sup>+</sup>(a) = Ø
- $\tau(S, a) = \{S effects^{-}(a) \cup effects^{+}(a)\},\$ where  $S \in 2^{S}$

### Example in the Block World

Pickup\_from\_table(?b)

Pre: ... Add: ... Delete: ...

*Let's try this out together!* 





#### **Actions in the Block World**



In the Block World:

- An action a is applicable in s if all its preconditions are satisfied by s.
- RESULT $(s,a) = (s \text{Del}(a)) \cup \text{Add}(a)$
- No explicit mention of time
  - The precondition always refers to time t
  - The effect always refers to time t+1



Pickup\_from\_table(b) Pre: Block(b), Handempty Clear(b), On(b, Table) Add: Holding(b) Delete: Handempty, On(b, Table) Clear(b)

Putdown\_on\_table(b) Pre: Block(b), Holding(b) Add: Handempty, On(b, Table) Delete: Holding(b) Pickup\_from\_block(b1, b2) Pre: Block(b1),Block(b2), Handempty Clear(b1), On(b1,b2) Add: Holding(b1), Clear(b2) Delete: Handempty, On(b1,b2) Clear (b1)

Putdown\_on\_block(b1, b2) Pre: Block(b1), Holding(b1) Block(b2), Clear(b2), b1 ≠ b2 Add: Handempty, On(b1, b2) Delete: Holding(b1), Clear(b2)



### **More Realistic Actions Representations**

## **Conditional Effects**

```
    Pickup (b)
        Pre: Block(b), Handempty, Clear(b), On(b, x)
        Add: Holding(b)
            if (Block(x)) then Clear(x)
        Delete: Handempty, On(b, x)
```

#### **Quantified Effects**

```
    Move (o, x)
        Pre: At(o, y), At(Robot, y)
        Add: At(o, x), At(Robot, x)
            forall (Object(u)) [ if (In(u, o)) then At(u, y)]
            Delete: At(o, y), At(Robot, y),
                 forall (Object(u)) [ if (In(u, o)) then At(u, y)]
```

**Disjunctive and Negated Preconditions** 

Holding(x) Or Not[Lighter\_Than\_Air(x)]



All these extensions

can be emulated

adding actions!

#### **More Realistic Actions Representations**

#### Inference Operators / Axioms

• Clear(x) iff forall(Block(y))[ Not[On(y, x)]]

#### **Functional effects**

• Move (o, x)

```
Pre: At(o, y), At(Robot, y), Fuel(f), f ≥ Fuel_Needed(y, x)
Add: At(o, x), At(robot, x), Fuel(f - Fuel_Needed(y, x)),
forall (Object(u)) [ if (In(u, o)) then At(u, y)]
Delete: At(o, y), At(Robot, y), Fuel(f),
forall (Object(u)) [ if (In(u, o)) then At(u, y)]
```

#### **Disjunctive Effects**





These extensions make

the planning problem

significantly harder





# **Cognitive Robotics**

Planning: Plan Generation

Matteo Matteucci matteo.matteucci@polimi.it

Artificial Intelligence and Robotics Lab - Politecnico di Milano

### **Different Plans ...**

A plan can have different degrees of generality ...

- Sequence of Instantiated Actions
- Partial Order of Instantiated Actions
- Set of Instantiated Actions
- Policy (a direct mapping from states to actions)

... and adopt different search stratiegies:

- Progression, a.k.a. forward state space search, a.k.a. forward chaining
- Regression, a.k.a. backward state-space search, a.k.a. backward chaining

Increased Generality





#### **Plan Generation**

Backtracking Search Through a Search Space

- How to conduct the search
- How to represent the search space
- How to evaluate the solutions

Non-Deterministic Choices Determine Backtracking

- Choice of actions
- Choice of variable bindings
- Choice of temporal orderings
- Choice of subgoals to work on





### **Properties of Planning Algorithms**

Soundness

 A planning algorithm is <u>sound</u> if all solutions are legal plans, i.e., all preconditions, goals, and any additional constraints are satisfied

Completeness

- A planning algorithm is <u>complete</u> if a solution can be found whenever one actually exists
- A planning algorithm is <u>strictly complete</u> if all solutions are included in the search space

Optimality

 A planning algorithm is <u>optimal</u> if it maximizes a predefined measure of plan quality



#### **Linear Planning and Means-ends Analysis**

Linear Planning

 Uses a Goal stac and work on one goal until completely solved before moving on to the next goal

Mean-ends Analysis

 Search by reducing the difference between the state and the goals, i.e., What means (operators) are available to achieve the desired ends (goal)?

```
GPS Algorithm (state, goals, plan)
If goals ⊆ state, then return (state,plan)
Choose a difference d ∈ goals between state and goals
Choose an operator o to reduce the difference d
If no applicable operators, then return False
(state,plan) = GPS (state, preconditions(o), plan)
If state, then return GPS (apply (o, state), goals, [plan,o])
```

Initial call: GPS (initial-state, initial-goals, [])





















[Pick\_Block(C)]











[Pick\_Block(C)]



[Pick Block(C)]



[Pick\_Block(C); Put\_Block(C, B)]







[Pick\_Block(C); Put\_Block(C, B)]



[Pick\_Block(C); Put\_Block(C, B)]







[Pick\_Block(C); Put\_Block(C, B)]



17. Search StackStateOn(A, C) On(C, B)Clear(C)Put\_Block(A, C)On(B, Table)Clear(A)On(C, B)Holding(A)

[Pick\_Block(C); Put\_Block(C, B); Pick\_Table(A)]







## **The Sussman Anomaly**

Pickup(?b)
Pre:(handempty)
 (clear ?b)
 (on-table ?b)
Add:(holding ?b)
Delete:(handempty)
 (on-table ?b)
 (clear ?b)

Putdown(?b)
Pre:(holding ?b)
Add:(handempty)
 (on-table ?b)

Delete:(holding ?b)



Unstack(?a, ?b) Stack
Pre:(handempty) Pre:(
 (clear ?a)(on ?a ?b) Add:(holding ?a)(clear ?b) Add:(
Delete:(handempty) Delet
 (on ?a ?b)(clear ?a)

Stack(?a, ?b)
Pre:(holding ?a)
 (clear ?b)
Add:(handempty)(on ?a ?b)
Delete:(holding ?a)
 (clear ?b)









## **POLITECNICO** MILANO 1863

#### (on B C)

- Pickup (B)
- Stack (B, C)

#### (on A B)

- Unstack (B, C)
- Putdown (B)
- Unstack (C, A)
- Putdown (C)
- Pickup(A)
- Stack (A, B)

(on B C)

- Unstack (A, B)
- Putdown (A)
- Pickup (B)
- Stack (B, C)





#### (on B C)

- Pickup (B)
- Stack (B, C)

#### (on A B)

- Unstack (B, C)
- Putdown (B)
- Unstack (C, A)
- Putdown (C)
- Pickup(A)
- Stack (A, B)

#### (on B C)

- Unstack (A, B)
- Putdown (A)
- Pickup (B)
- Stack (B, C)

#### (on A B)

- Pickup (A)
- Stack (A,B)







State

#### (on A B)

- Unstack (C, A)
- Putdown (C)
- Pickup(A)
- Stack (A, B)





#### (on A B)

- Unstack (C, A)
- Putdown (C)
- Pickup(A)
- Stack (A, B)

(on B C)

- Unstack (A, B)
- Putdown (A)
- Pickup (B)
- Stack (B, C)





#### (on A B)

- Unstack (C, A)
- Putdown (C)
- Pickup(A)
- Stack (A, B)

#### (on B C)

- Unstack (A, B)
- Putdown (A)
- Pickup (B)
- Stack (B, C)

#### (on A B)

- Pickup (A)
- Stack (A, B)

*Is it Optimal? Can we* do it with less actions?









### Linear Planning and the Goal Stack

#### Advantages

- Reduced search space, since goals are solved one at a time, and not all possible goal orderings are considered
- Advantageous if goals are (mainly) independent
- Linear planning is sound

What about completeness?

#### Disadvantages

- Linear planning may produce suboptimal solutions (based on the number of operators in the plan)
- Planner's efficiency is sensitive to goal orderings
  - Control knowledge for the "right" ordering
  - Random restarts
  - Iterative deepening



#### **One Way Rocket (Veloso '89)**

(OPERATOR LOAD-ROCKET :preconds ?roc ROCKET ?obj OBJECT ?loc LOCATION (and (at ?obj ?loc) (at ?roc ?loc)) :effects add (inside ?obj ?roc) del (at ?obj ?loc))

(OPERATOR UNLOAD-ROCKET :preconds ?roc ROCKET ?obj OBJECT ?loc LOCATION (and (inside ?obj ?roc) (at ?roc ?loc)) :effects add (at ?obj ?loc) del (inside ?obj ?roc))

(OPERATOR MOVE-ROCKET :preconds ?roc ROCKET ?from-l LOCATION ?to-l LOCATION (and (at ?roc ?from-l) (has-fuel ?roc)) :effects add (at ?roc ?to-l) del (at ?roc ?from-l) del (has-fuel ?roc))

Plan

Initial state: (at obj1 locA) (at obj2 locA) Goal statement: (at ROCKET locA) (has-fuel ROCKET) (and (at obj1 locB)

(at obj1 locB) (LOAD-ROCKET obj1 locA) (MOVE-ROCKET) (at obj1 locB) (At obj2 locB) (At obj2 locB) (At obj2 locB)

Goal



#### **State Space Non Linear Planning**

Extend linear planning:

- From stack to set of goals
- Include in the search space all possible interleaving of goals

State-space nonlinear planning is complete

| Goal           | Plan                                       |
|----------------|--------------------------------------------|
| (at obj1 locB) | (LOAD-ROCKET obj1 locA)                    |
| (at obj2 locB) | (LOAD-ROCKET obj2 locA)                    |
| (at obj1 locB) | (MOVE-ROCKET)<br>(UNLOAD-ROCKET obj1 locB) |
| (at obj2 locB) | (UNLOAD-ROCKET obj1 locB)                  |



### Prodigy4.0 (Veloso et al. 90)

- 1. Terminate if the goal statement is satisfied in the current state. Initially the set of applicable relevant operators is empty.
- 2. Compute the SET of pending goals G, and the SET of applicable relevant operators A.
  - A goal is pending if it is a precondition, not satisfied in the current state, of a relevant operator already in the plan.
  - A relevant operator is applicable when all its preconditions are satisfied in the state.
- 3. Choose a pending goal G in G or choose a relevant applicable operator A in A.
- 4. If the pending goal G has been chosen, then
  - Expand goal G, i.e., get the set O of relevant instantiated operators that could achieve G,
  - Choose an operator O from O, as a relevant operator for goal G.
  - Go to step 1.
- 5. If a relevant operator A has been selected as directly applicable, then
  - Apply A,
  - Go to step 1.



#### **Prodigy4.0 Search Representation**









#### After all, it is all about graph exploration





### **Planning issues**

State representation

- The frame problem
- The "choice" of predicates

(e.g., On-table (x), On (x, table), On-table-A, On-table-B,...)

Action representation

- Many alternative definitions
- Reduce to "needed" definition
- Conditional effects
- Uncertainty
- Quantification
- Functions

Generation – planning algorithm(S)





### Wrap-up slide on "Planning and Plan Generation"

What should remain from this lecture?

- Planning: selecting one sequence of actions (operators) that transform (apply to) an initial state to a final state where the goal statement is true.
- Means-ends analysis: identify and reduce, as soon as possible, differences between state and goals.
- Linear planning: backward chaining with means-ends analysis using a stack of goals, potentially efficient, possibly unoptimal, incomplete; GPS
- Nonlinear planning with means-ends analysis: backward chaining using a set of goals; reason about when "to reduce the differences;" Prodigy4.0.

#### References

 S. Russell, P. Norvig. «Artificial Intelligence: A Modern Approach». Chapter 11: Planning, pages 375-416.Pearson, 2010.

