
Cognitive Robotics
2016/2017

Matteo Matteucci
matteo.matteucci@polimi.it

Artificial Intelligence and Robotics Lab - Politecnico di Milano

Planning: State, Actions and Goal Representation

based on Manuela M. Veloso lectures on

PLANNING, EXECUTION AND LEARNING

2

Recall «Think hard, act later»?

Planning is about «thinking»

• Given the actions available in a task domain.

• Given a problem specified as:

• an initial state of the world

• a goal statement (set of goals) to be achieved

• Find a solution to the problem

Plan: a way, in terms of a sequence of actions,

to transform the initial state into

a new state of the world where

the goal statement is true.

Newell and Simon 1956

It’s all about states,
actions, and plans!

3

The Block World

The Block World is a useful abstraction to introduce States, Actions and Plans

• Blocks are on the Table, or on top of each other.

• There is an Arm – the Arm can be empty or holding one block.

• The table is always clear.

4

The Block World: States

Objects

• Blocks: A, B, C

• Table: Table

Predicates

• On(A, B), On(C, Table)

• Clear(B), Handempty, Holding(C)

• On-table(A), On(A,B), Top(B),…

States – Conjunctive

• On(A,B) and On(B,C) and Clear(A) and Handempty

• …

On-Table(A), On-Table(C),
On(A,B), Clear(C),

Clear(B), Handempty

On-Table(A), On-Table(C),
Clear(A), Clear(C),

Holding(B)

Some predicates
might be

redundant

5

The Block World: Assumptions/Limitations

The Block World models Classical Deterministic Planning ...

• There is a single initial state

• The description is complete

• The plan is deterministic

• What is not true in the state is false

The basic operators perform queries on states

• On(A,B) → returns true or false

• On(A,x) → returns x=Table or x=B

• On-table (x) → returns x=A and x=C

• …

CWA: Closed
World Assumption

6

The Block World: State Description

A-on-B

A-on-Table

B-on-A

B-on-Table

Holding-A

Holding-B

Handempty

Clear-A

Clear-B

A-on-x {∅, table, B}

B-on-x {∅, table, A}

¬A-on-B ∧ ¬A-on-Table

¬B-on-A ∧ ¬B-on-Table

¬Holding-A ∧ ¬Holding-B

¬B-on-A

¬A-on-B 2^4 Possible states

3^2 Possible States

All these define
the State Space

7

The Block World: Planning as State-Space Search

8

Models for State Spaces

Different models for states exist ...

• Atomic identification of states (s1, s2,...)

• Symbolic feature based states

• Symbolic predicate based states

• …

… together with different ways of combining them

• Conjunctive → observable

• Probabilistic → approximate

• Incremental → on-demand

• Temporal → dynamic

Predicates, conjunctive,
complete, correct,

deterministic

9

Goal Specification

We can specify a Goal according to different levels of generality:

• Goal State → Completely specified state

• Goal Statement → Partially specified state

• Objective function → Defines “good” or “optimal” plan

Goal Statement example:

• Initial: A-on-x = Table;

B-on-x = A;

C-on-x = Table

• Goal: A-on-x = B

Increased
Generality

10

What is an Action?

Plan: a way, in terms of a sequence of actions,

to transform the initial state into

a new state of the world where

the goal statement is true.

Action: a transition from one (partial) state to another

• May be applicable only in particular states

• Generates new state

• Deterministic: tdet: S x A → S

• Non-deterministic: tnon-det : S x A → 2S

• Probabilistic: tprob: S x A → <2S, r>

Newell and Simon 1956

Explicit Action Representation

11

The Block World Dynamics: Actions

• Blocks are on the Table, or on top of each other

• Blocks are picked up and put down by the arm

• A block can be picked up only if it is clear, i.e., without a block on top

• The arm can pick up a block only if the arm is empty, i.e., if it is not holding

another block, i.e., the arm can pick up only one block at a time

• The arm can put down blocks on blocks or on the table

• The table is always clear

How do these
transform a state

into another?

12

STRIPS Action Representation

STRIPS (Stanford Research Institute Problem Solver) was the planner used by Shakley,

it was developed at SRI International by Richard Fikes and Nils Nilsson in 1971.

Explicit action a representation

• {preconds(a), effects–(a), effects+(a)}

• effects–(a) ∩ effects+(a) = ∅

• (S, a) = {S – effects–(a) ∪ effects+(a)},

where S ∈ 2S

Example in the Block World

• Pickup_from_table(?b)

Pre: ...

Add: ...

Delete: ...
Let’s try this out

together!

13

Actions in the Block World

In the Block World:

• An action a is applicable in s if all its preconditions are satisfied by s.

• RESULT(s,a) = (s – Del (a)) U Add (a)

• No explicit mention of time

o The precondition always refers to time t

o The effect always refers to time t+1

14

The Block World: Actions

Pickup_from_table(b)

Pre: Block(b), Handempty

Clear(b), On(b, Table)

Add: Holding(b)

Delete: Handempty, On(b, Table)

Clear(b)

Putdown_on_table(b)

Pre: Block(b), Holding(b)

Add: Handempty,

On(b, Table)

Delete: Holding(b)

Pickup_from_block(b1, b2)

Pre: Block(b1),Block(b2), Handempty

Clear(b1), On(b1,b2)

Add: Holding(b1), Clear(b2)

Delete: Handempty, On(b1,b2)

Clear (b1)

Putdown_on_block(b1, b2)

Pre: Block(b1), Holding(b1)

Block(b2), Clear(b2), b1 ≠ b2

Add: Handempty, On(b1, b2)

Delete: Holding(b1), Clear(b2)

15

More Realistic Actions Representations

Conditional Effects
• Pickup (b)

Pre: Block(b), Handempty, Clear(b), On(b, x)

Add: Holding(b)

if (Block(x)) then Clear(x)

Delete: Handempty, On(b, x)

Quantified Effects
• Move (o, x)

Pre: At(o, y), At(Robot, y)

Add: At(o, x), At(Robot, x)

forall (Object(u)) [if (In(u, o)) then At(u, y)]

Delete: At(o, y), At(Robot, y),

forall (Object(u)) [if (In(u, o)) then At(u, y)]

Disjunctive and Negated Preconditions
• Holding(x) Or Not[Lighter_Than_Air(x)]

All these extensions
can be emulated
adding actions!

16

More Realistic Actions Representations

Inference Operators / Axioms
• Clear(x) iff forall(Block(y))[Not[On(y, x)]]

Functional effects
• Move (o, x)

Pre: At(o, y), At(Robot, y), Fuel(f), f ≥ Fuel_Needed(y, x)

Add: At(o, x), At(robot, x), Fuel(f – Fuel_Needed(y, x)),

forall (Object(u)) [if (In(u, o)) then At(u, y)]

Delete: At(o, y), At(Robot, y), Fuel(f),

forall (Object(u)) [if (In(u, o)) then At(u, y)]

Disjunctive Effects
• Pickup_from_block(b)

Pre: Block(b), Handempty, Clear(b), On(b, c), Block(c)

C1: Add: Clear(c), Holding(b); Delete: On(b, c), Handempty

C2: Add: Clear(c), On(b, Table); Delete: On(b, c)

C3: Add: ; Delete:

These extensions make
the planning problem

significantly harder

Much harder and you
can add probability!!!

Cognitive Robotics

Matteo Matteucci
matteo.matteucci@polimi.it

Artificial Intelligence and Robotics Lab - Politecnico di Milano

Planning: Plan Generation

18

Different Plans ...

A plan can have different degrees of generality …

• Sequence of Instantiated Actions

• Partial Order of Instantiated Actions

• Set of Instantiated Actions

• Policy (a direct mapping from states to actions)

… and adopt different search stratiegies:

• Progression, a.k.a. forward state space search,

a.k.a. forward chaining

• Regression, a.k.a. backward state-space search,

a.k.a. backward chaining

Increased
Generality

19

Plan Generation

Backtracking Search Through a Search Space

• How to conduct the search

• How to represent the search space

• How to evaluate the solutions

Non-Deterministic Choices Determine Backtracking

• Choice of actions

• Choice of variable bindings

• Choice of temporal orderings

• Choice of subgoals to work on

20

Properties of Planning Algorithms

Soundness

• A planning algorithm is sound if all solutions are legal plans, i.e., all

preconditions, goals, and any additional constraints are satisfied

Completeness

• A planning algorithm is complete if a solution can be found

whenever one actually exists

• A planning algorithm is strictly complete if all solutions are included

in the search space

Optimality

• A planning algorithm is optimal if it maximizes a predefined

measure of plan quality

21

Linear Planning and Means-ends Analysis

Linear Planning

• Uses a Goal stac and work on one goal until completely solved before

moving on to the next goal

Mean-ends Analysis

• Search by reducing the difference between the state and the goals, i.e.,

What means (operators) are available to achieve the desired ends (goal)?

GPS Algorithm (state, goals, plan)

If goals ⊆ state, then return (state,plan)

Choose a difference d ∈ goals between state and goals

Choose an operator o to reduce the difference d

If no applicable operators, then return False

(state,plan) = GPS (state, preconditions(o), plan)

If state, then return GPS (apply (o, state), goals, [plan,o])

Initial call: GPS (initial-state, initial-goals, [])

Newell and Simon 60s

22

The Block World: GPS at Work

A

B

C

Goal

A B

C

State

23

The Block World: GPS at Work

A

B

C

Goal

A B

C

State

24

The Block World: GPS at Work

A

B

C

Goal

A B

C

State

25

The Block World: GPS at Work

A

B

C

Goal

A B

C

State

26

The Block World: GPS at Work

A

B

C

Goal

A B

C

State

27

The Block World: GPS at Work

A

B

C

Goal

A B

C

State

28

The Block World: GPS at Work

A

B

C

Goal

A

B

C

State

29

The Block World: GPS at Work

A

B

C

Goal

A

B

C

State

30

The Block World: GPS at Work

A

B

C

Goal

A

B

C

State

Sound? Optimal?
Complete?

31

The Sussman Anomaly

A

B

C

Goal

A B

C

State

Pickup(?b)

Pre:(handempty)

(clear ?b)

(on-table ?b)

Add:(holding ?b)

Delete:(handempty)

(on-table ?b)

(clear ?b)

Putdown(?b)

Pre:(holding ?b)

Add:(handempty)

(on-table ?b)

Delete:(holding ?b)

Stack(?a, ?b)

Pre:(holding ?a)

(clear ?b)

Add:(handempty)(on ?a ?b)

Delete:(holding ?a)

(clear ?b)

Unstack(?a, ?b)

Pre:(handempty)

(clear ?a)(on ?a ?b)

Add:(holding ?a)(clear ?b)

Delete:(handempty)

(on ?a ?b)(clear ?a)

32

The Sussmann Anomaly – Linear Solution 1
A

B

C

Goal

A B

C

State

A

B

C

State

A

B
C

State

(on B C)

• Pickup (B)

• Stack (B, C)

33

The Sussmann Anomaly – Linear Solution 1
A

B

C

Goal

A

B

C

State

A B

C

State

A

B
C

State

A B

C

State

A

B C

State

A B C

State

A

B C

State

(on B C)

• Pickup (B)

• Stack (B, C)

(on A B)

• Unstack (B, C)

• Putdown (B)

• Unstack (C, A)

• Putdown (C)

• Pickup(A)

• Stack (A, B)

34

The Sussmann Anomaly – Linear Solution 1

(on B C)

• Pickup (B)

• Stack (B, C)

(on A B)

• Unstack (B, C)

• Putdown (B)

• Unstack (C, A)

• Putdown (C)

• Pickup(A)

• Stack (A, B)

(on B C)

• Unstack (A, B)

• Putdown (A)

• Pickup (B)

• Stack (B, C)

A

B

C

Goal

A

B C

State

A

B C

State

A

B

C

State

A B C

State

A

B

C

State

35

The Sussmann Anomaly – Linear Solution 1

(on B C)

• Pickup (B)

• Stack (B, C)

(on A B)

• Unstack (B, C)

• Putdown (B)

• Unstack (C, A)

• Putdown (C)

• Pickup(A)

• Stack (A, B)

(on B C)

• Unstack (A, B)

• Putdown (A)

• Pickup (B)

• Stack (B, C)

(on A B)

• Pickup (A)

• Stack (A,B)

A

B

C

Goal

A

B

C

State

A B

C

State

A

B

C

State

36

The Sussmann Anomaly – Linear Solution 2

(on A B)

• Unstack (C, A)

• Putdown (C)

• Pickup(A)

• Stack (A, B)

A

B

C

Goal

A B

C

State

A B

C

State

A B C

State

A

B C

State

A

B C

State

37

The Sussmann Anomaly – Linear Solution 2

(on A B)

• Unstack (C, A)

• Putdown (C)

• Pickup(A)

• Stack (A, B)

(on B C)

• Unstack (A, B)

• Putdown (A)

• Pickup (B)

• Stack (B, C)

A

B

C

Goal

A

B C

State

A

B C

State

A

B

C

State

A B C

State

A

B

C

State

38

The Sussmann Anomaly – Linear Solution 2

(on A B)

• Unstack (C, A)

• Putdown (C)

• Pickup(A)

• Stack (A, B)

(on B C)

• Unstack (A, B)

• Putdown (A)

• Pickup (B)

• Stack (B, C)

(on A B)

• Pickup (A)

• Stack (A,B)

A

B

C

Goal

A

B

C

State

A B

C

State

A

B

C

State

Is it Optimal? Can we
do it with less actions?

39

The Sussmann Anomaly: Non Linear (Optimal) Solution

(on A B)

• Unstack (C, A)

• Putdown (C)

(on B C)

• Pickup (B)

• Stack (B, C)

(on A B)

• Pickup(A)

• Stack(A, B)

A

B

C

Goal

A B

C

State

A B

C

State

A B C

State

A

B

C

State

A

B

C

State

A B

C

State

A

B

C

State

40

Linear Planning and the Goal Stack

Advantages

• Reduced search space, since goals are solved one at a time,

and not all possible goal orderings are considered

• Advantageous if goals are (mainly) independent

• Linear planning is sound

Disadvantages

• Linear planning may produce suboptimal solutions

(based on the number of operators in the plan)

• Planner's efficiency is sensitive to goal orderings

• Control knowledge for the “right” ordering

• Random restarts

• Iterative deepening

What about
completeness?

41

One Way Rocket (Veloso ‘89)

42

State Space Non Linear Planning

Extend linear planning:

• From stack to set of goals

• Include in the search space all possible interleaving of goals

State-space nonlinear planning is complete

43

Prodigy4.0 (Veloso et al. 90)

1. Terminate if the goal statement is satisfied in the current state.

Initially the set of applicable relevant operators is empty.

2. Compute the SET of pending goals G, and the SET of applicable relevant

operators A.

• A goal is pending if it is a precondition, not satisfied in the

current state, of a relevant operator already in the plan.

• A relevant operator is applicable when all its preconditions are

satisfied in the state.

3. Choose a pending goal G in G or choose a relevant applicable operator A

in A.

4. If the pending goal G has been chosen, then

• Expand goal G, i.e., get the set O of relevant instantiated

operators that could achieve G,

• Choose an operator O from O, as a relevant operator for goal G.

• Go to step 1.

5. If a relevant operator A has been selected as directly applicable, then

• Apply A,

• Go to step 1.

44

Prodigy4.0 Search Representation

Head plan gap Tail plan

Applying and Operator
(moving it to the head)

Adding and operator
to the tail plan

45

After all, it is all about graph exploration

No need to explore the
whole graph, but you

should be able to do it!

Multiple solutions
are possible.

46

Planning issues

State representation

• The frame problem

• The “choice” of predicates

(e.g., On-table (x), On (x, table), On-table-A, On-table-B,…)

Action representation

• Many alternative definitions

• Reduce to “needed” definition

• Conditional effects

• Uncertainty

• Quantification

• Functions

Generation – planning algorithm(S)

47

Wrap-up slide on “Planning and Plan Generation”

What should remain from this lecture?

• Planning: selecting one sequence of actions (operators) that transform

(apply to) an initial state to a final state where the goal statement is true.

• Means-ends analysis: identify and reduce, as soon as possible, differences

between state and goals.

• Linear planning: backward chaining with means-ends analysis using

a stack of goals, potentially efficient, possibly unoptimal, incomplete; GPS

• Nonlinear planning with means-ends analysis: backward chaining using

a set of goals; reason about when “to reduce the differences;” Prodigy4.0.

References

• S. Russell, P. Norvig. «Artificial Intelligence: A Modern Approach». Chapter 11:

Planning, pages 375-416.Pearson, 2010.

