Artificial Neural Networks and Deep Learning

- From Perceptrons to Feed Forward Neural Networks -

Matteo Matteucci, PhD (matteo.matteucci@polimi.it)
Artificial Intelligence and Robotics Laboratory
Politenico di Milano

$$
A \mid R \perp \wedge B
$$

«Deep Learning is not AI, nor Machine Learning»

The inception of Al

1) Automatic Computers

If a machine can do a job, then an automatic calculator can
be programmed to simulate the machine. The speeds and

A PROPOSAL FOR THE

 DARTMOUTH SUMMER RESEARCH PROJECT ON ARTIFICIAL INT ELLIGENCEJ. McCarthy, Dartmouth College M. L. Minsky, Harvard University
N. Rochester, I. B, M. Corp
C. E. Shannon, Bell Telepho

A Proposal for the
DARTMOUTH SUMMER RESEARCH PROJECT ON ARTIFICIAL INTELLI

We propose that a 2 month, 10 man study of artificial intelligence
Probably a truly intelligent machine will carry out activities which may best be described as self-improvement. Some schemes for doing this have been proposed and are worth further study. It seems likely that this question can be studied abstractly as well.

3. Neuron Nets

How can a set of (hypothetical) neurons be ar ranged so as to form concepts. Considerable theoretical and experimental work has been done on this problem by Uttley, Rashevsky and his group, Farley and Clark, Pitts and McCulloch, Minsky, Rochester and Holland, and others. Partial results have been obtained but the problem needs more theoretical work.
we have.
memory capacities of present computers may be insufficient
to simulate many of the higher functions of the human brain,
but the major obstacle is not lack of machine capacity, but
our inability to write programs taking full advantage of what

5) Self-Improvement

August 31, 1955

(2)

carried out during the summer of 1956 at Dartmouth College in Hanover, New Hampshire. The study is to proceed on the basis of the conjecture that every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it. An attempt will be made to find how to make machines use language, form abstractions and concepts, solve kinds of problems now reserved for humans, and improve themselves. We think that a significant advance can be made in one or more of these problems if a carefully selected group of scientists work on it together for a summer.

The following are some aspects of the artificial intelligence problem:

6) Abstractions

A number of types of "abstraction" can be distinctly defined and several others less distinctly. A direct attempt to classify these and to describe machine
methods of forming abstractions from sensory and other
data would seem worthwhile.

Let's go back to 1940s ...

Computers were already good at

- Doing precisely what the programmer programs them to do
- Doing arithmetic very fast

However, they would have liked them to:

- Interact with noisy data or directly with the environment
- Be massively parallel and fault tolerant
- Adapt to circumstances

Researchers were seeking a computational model beyond the Von Neumann Machine!

The Brain Computationa Model

The human brain has a huge number of computing units:

- 10^{11} (one hundred billion) neurons
- 7,000 synaptic connections to other neurons
- In total from 10^{14} to 5×10^{14} (100 to 500 trillion) in adults to 10^{15} synapses (1 quadrillion) in a three year old child

The computational model of the brain is:

- Distributed among simple non linear units
- Redundant and thus fault tolerant
- Intrinsically parallel

Perceptron: a computational model based on the brain!

Computation in Biological Neurons

Computation in Artificial Neurons

Information is transmitted through chemical mechanisms:

- Dendrites collect charges from synapses, both Inhibitory and Excitatory
- Cumulates charge is released (neuron fires) once a Threshold is passed

$$
h_{j}(x \mid \mathrm{w}, \mathrm{~b})=\mathrm{h}_{\mathrm{j}}\left(\Sigma_{i=1}^{I} w_{i} \cdot x_{i}-b\right)=\mathrm{h}_{\mathrm{j}}\left(\Sigma_{i=0}^{I} w_{i} \cdot x_{i}\right)=h_{j}\left(w^{T} x\right)
$$

Computation in Artificial Neurons

Information is transmitted through chemical mechanisms:

- Dendrites collect charges from synapses, both Inhibitory and Excitatory
- Cumulates charge is released (neuron fires) once a Threshold is passed

$$
h_{j}(x \mid \mathrm{w}, \mathrm{~b})=\mathrm{h}_{\mathrm{j}}\left(\sum_{i=1}^{I} w_{i} \cdot x_{i}-b\right)=\mathrm{h}_{\mathrm{j}}\left(\sum_{i=0}^{I} w_{i} \cdot x_{i}\right)=h_{j}\left(w^{T} x\right)
$$

Who did it first?

Several researchers were investigating models for the brain

- In 1943, Warren McCullog and Walter Harry Pitts proposed the Treshold Logic Unit or Linear Unit, the activation function was a threshold unit equivalent to the Heaviside step function
- In 1957, Frank Rosemblatt developed the first Perceptron. Weights were encoded in potentiometers, and weight updates during learning were performed by electric motors
- In 1960, Bernard Widrow introduced the idea of representing the threshold value as a bias term in the ADALINE (Adaptive Linear Neuron or later Adaptive Linear Element)

What can you do with it?

Perceptron as

Logical OR

x_{0}	x_{1}	x_{2}	OR
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$
\begin{gathered}
h_{O R}\left(w_{0}+w_{1} \cdot x_{1}+w_{2} \cdot x_{2}\right)= \\
=h_{O R}\left(-\frac{1}{2}+x_{1}+x_{2}\right)= \\
=\left\{\begin{array}{lc}
1, & \text { if }\left(-\frac{1}{2}+x_{1}+x_{2}\right)>0 \\
0, & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

x_{0}	x_{1}	x_{2}	AND
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

$$
\begin{gathered}
h_{A N D}\left(w_{0}+w_{1} \cdot x_{1}+w_{2} \cdot x_{2}\right)= \\
=h_{A N D}\left(-2+\frac{3}{2} x_{1}+x_{2}\right)= \\
=\left\{\begin{array}{lc}
1, & \text { if }\left(-2+\frac{3}{2} x_{1}+x_{2}\right)>0 \\
0, & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

Hebbian Learning

"The strength of a synapse increases according to the simultaneous activation of the relative input and the desired target"
(Donald Hebb, The Organization of Behavior, 1949)

Hebbian learning can be summarized by the follow

Start from a random initialization

$$
\begin{aligned}
w_{i}^{k+1} & =w_{i}^{k}+\Delta w_{i}^{k} \\
\Delta w_{i}^{k} & =\eta \cdot x_{i}^{k} \cdot t^{k}
\end{aligned}
$$

Where we have: Fix the weights one sample at the time (online), and

- η : learning rate
- x_{i}^{k} : the $i^{t h}$ perceptron input at time k
- t^{k} : the desired output at time k

Perceptron Example

Learn the weights to implement the OR operator

- Start from random weights, e.g.,

$$
w=\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]
$$

- Chose a learning rate, e.g.,

$$
\eta=0.5
$$

- Cycle through the records by fixing those which are not correct

x_{0}	x_{1}	x_{2}	OR
1	-1	-1	-1
1	-1	1	1
1	1	-1	1
1	1	1	1

Perceptron Math

A perceptron computes a weighted sum, returns its Sign (Thresholding)

$$
h_{j}(x \mid \mathrm{w})=\mathrm{h}_{\mathrm{j}}\left(\sum_{i=0}^{I} w_{i} \cdot x_{i}\right)=\operatorname{Sign}\left(w_{0}+w_{1} \cdot x_{1}+\cdots+w_{I} \cdot x_{I}\right)
$$

It is a linear classifier for which the decision boundary is the hyperplane

$$
w_{0}+w_{1} \cdot x_{1}+\cdots+w_{I} \cdot x_{I}=0
$$

In 2D, this turns into

$$
\begin{gathered}
w_{0}+w_{1} \cdot x_{1}+w_{2} \cdot x_{2}=0 \\
w_{2} \cdot x_{2}=-w_{0}-w_{1} \cdot x_{1} \\
x_{2}=-\frac{w_{0}}{w_{2}}-\frac{w_{1}}{w_{2}} \cdot x_{1}
\end{gathered}
$$

Boolean Operators are Linear Boundaries

Linear boundary explains how Perceptron implemêhts Boolean operators

What can't you do with it?

What if the dataset we want to learn does not have a linear separation boundary?

x_{0}	x_{1}	x_{2}	XOR
1	-1	-1	-1
1	-1	1	1
1	1	-1	1
1	1	1	-1

Marvin Minsky, Seymour Papert "Perceptrons: an introduction to computational geometry" 1969.

The Perceptron does not work any more and we need alternative solutions

- Non linear boundary
- Alternative input representations

What can't you do with it?

Topology

Layer Perceptrons

Feed Forward Neural Networks Non-linear model cheracacterited by the number of neurons, activation functions, and the values of weights.

Which Activation Function?

Linear activation function

$$
\begin{aligned}
& g(a)=a \\
& g^{\prime}(a)=1
\end{aligned}
$$

Sigmoid activation function

$$
\begin{gathered}
g(a)=\frac{1}{1+\exp (-a)} \\
g^{\prime}(a)=g(a)(1-g(a))
\end{gathered}
$$

Tanh activation function

$$
\begin{gathered}
g(a)=\frac{\exp (a)-\exp (-a)}{\exp (a)+\exp (-a)} \\
g^{\prime}(a)=1-g(a)^{2}
\end{gathered}
$$

Output Layer in Regression and Classification

In Regression the output spans the whole \mathfrak{R} domain:

- Use a Linear activation function for the output neuron

In Classification with two classes, chose according to their coding:

- Two classes $\left\{\Omega_{0}=-1, \Omega_{1}=+1\right\}$ then use Tanh output activation
- Two classes $\left\{\Omega_{0}=0, \Omega_{1}=1\right\}$ then use Sigmoid output activation (it can be interpreted as class posterior probability)

When dealing with multiple classes (K) use as many neuron as classes

- Classes are coded as $\left\{\Omega_{0}=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right], \Omega_{1}=\left[\begin{array}{lll}0 & 1 & 0\end{array}\right], \Omega_{2}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]\right\}$
- Output neurons use a softmax unit $\mathrm{y}_{\mathrm{k}}=\frac{\exp \left(z_{k}\right)}{\sum_{k} \exp \left(z_{k}\right)}=\frac{\exp \left(\sum_{j} w_{k j} h_{j}\left(\sum_{i}^{I} w_{j i} \cdot x_{i}\right)\right)}{\sum_{k=1}^{K} \exp \left(\sum_{j} w_{k j} h_{j}\left(\sum_{i}^{I} w_{j i} \cdot x_{i}\right)\right)}$

Neural Networks are Universal Approximators

"A single hidden layer feedforward neural network with S shaped activation functions can approximate any measurable function to any desired degree of accuracy on a compact set "

Universal approximation theorem
(Kurt Hornik, 1991)

Images from Hugo Larochelle's DL Summer School Tutorial

Regardless the function we are learning, a single layer can represent it:

- Doesn't mean a learning algorithm can find the necessary weights!
- In the worse case, an exponential number of hidden units may be required
- The layer may have to be unfeasibly large and may fail to learn and generalize

Classification requires just one extra layer ...

Optimization and Learning (Supervised learning)

Recall learning a parametric model $y\left(x_{n} \mid \theta\right)$ in regression/classification

- Given a training set

$$
D=<x_{1}, t_{1}>\cdots<x_{N}, t_{N}>
$$

- We want to find model parameters such that for new data

$$
y\left(x_{n} \mid \theta\right) \sim t_{n}
$$

- In case of a Neural Network this can be rewritten as

$$
g\left(x_{n} \mid w\right) \sim t_{n} \quad \begin{aligned}
& \text { For this you can minimize } \\
& E=\sum_{n}^{N}\left(t_{n}-g\left(x_{n} \mid w\right)\right)^{2}
\end{aligned}
$$

Sum of Squared Errors

Non Linear Optimization 101

To find the minimum of a generic function, we compute the partial derivatives of the function and set them to zero

$$
\frac{\partial J(w)}{\partial w}=0
$$

Closed-form solutions are practically never available so we can use iterative solutions (gradient descent):

- Initialize the weights to a random value
- Iterate until convergence

$$
w^{k+1}=w^{k}-\left.\eta \frac{\partial J(w)}{\partial w}\right|_{w^{k}}
$$

Gradient descent - Backpropagation

Finding the weighs of a Neural Network is a nor

$$
\operatorname{argmin}_{w} E(w)=\sum_{n=1}^{N}\left(t_{n}-g\left(x_{n}, w\right)\right)^{2}
$$

$$
E(w)
$$

We iterate starting from an initial random configuration

$$
w^{k+1}=w^{k}-\left.\eta \frac{\partial E(w)}{\partial w}\right|_{w^{k}}
$$

To avoid local minima can use momentum

$$
w^{k+1}=w^{k}-\left.\eta \frac{\partial E(w)}{\partial w}\right|_{w^{k}}-\left.\alpha \frac{\partial E(w)}{\partial w}\right|_{w^{k-1}}
$$

It depends on where we start from

Gradient Descent Example

$$
E(w)=\sum_{n=1}^{N}\left(t_{n}-g_{1}\left(x_{n}, w\right)\right)^{2}
$$

$$
\frac{\partial E(w)}{\partial w_{3,5}^{(1)}}=\frac{\partial \sum_{n=1}^{N}\left(t_{n}-g_{1}\left(x_{n}, w\right)\right)^{2}}{\partial w_{3,5}^{(1)}}=\sum_{n=1}^{N} \frac{\partial\left(t_{n}-g_{1}\left(x_{n}, w\right)\right)^{2}}{\partial w_{3,5}^{(1)}}=-2 \sum_{n}^{N}\left(t_{n}-g_{1}\left(x_{n}, w\right)\right) \frac{\partial g_{1}\left(x_{n}, w\right)}{\partial w_{3,5}^{(1)}}
$$

$$
\frac{\partial g_{1}\left(x_{n}, w\right)}{\partial w_{3,5}^{(1)}}=\frac{\partial g_{1}\left(\sum_{j=0}^{J} w_{1 j}^{(2)} \cdot h_{j}(.)\right)}{\partial w_{3,5}^{(1)}}=g_{1}^{\prime}\left(x_{n}, w\right) \cdot \frac{\partial \sum_{j=0}^{J} w_{1 j}^{(2)} \cdot h_{j}(.)}{\partial w_{3,5}^{(1)}}=g_{1}^{\prime}\left(x_{n}, w\right) \cdot w_{1,3}^{(2)} \cdot \frac{\partial h_{3}\left(\sum_{i=0}^{I} w_{3 i}^{(1)} \cdot x_{i, n}\right)}{\partial w_{3,5}^{(1)}}
$$

$$
\begin{gathered}
\frac{\partial h_{3}\left(\sum_{i=0}^{I} w_{3 i}^{(1)} \cdot x_{i, n}\right)}{\partial w_{3,5}^{(1)}}=h_{3}^{\prime}\left(\sum_{i=0}^{I} w_{3, i}^{(1)} \cdot x_{i, n}\right) \frac{\partial \sum_{i=0}^{I} w_{3, i}^{(1)} \cdot x_{i, n}}{\partial w_{3,5}^{(1)}}=h_{3}^{\prime}\left(\sum_{i=0}^{I} w_{3, i}^{(1)} \cdot x_{i, n}\right) x_{5, n} \\
\frac{\partial E(w)}{\partial w_{3,5}^{(1)}}=-2 \sum_{n}^{N}\left(t_{n}-g_{1}\left(x_{n}, w\right)\right) g_{1}^{\prime}\left(x_{n}, w\right) w_{1,3}^{(2)} h_{3}^{\prime}\left(\sum_{i=0}^{I} w_{3, i}^{(1)} \cdot x_{i, n}\right) x_{5, n}
\end{gathered}
$$

Gradient Descent Example

Gradient Descent Variations

Batch gradient descent

$$
\frac{\partial E(w)}{\partial w}=\frac{1}{N} \sum_{n}^{N} \frac{\partial E\left(x_{n}, w\right)}{\partial w}
$$

Stochastic gradient descent (SGD)

Use a single sample, unbiased, but with high variance

$$
\frac{\partial E(w)}{\partial w} \approx \frac{\partial E_{S G D}(w)}{\partial w}=\frac{\partial E\left(x_{n}, w\right)}{\partial w}
$$

Use a subset of
Mini-batch gradient descent

$$
\frac{\partial E(w)}{\partial w} \approx \frac{\partial E_{M B}(w)}{\partial w}=\frac{1}{M} \sum_{n \in \text { Minibatch }}^{M<N} \frac{\partial \dot{E}\left(x_{n}, w\right)}{\partial w}
$$

Gradient Descent Example

Backpropagation and Chain Rule (1)

Weights update can be done in parallel, locally, and requires just 2 passes

- Let x be a real number and two functions $f: \mathfrak{R} \rightarrow \mathfrak{R}$ and $g: \Re \rightarrow \Re$
- Consider the composed function $z=f(g(x))=f(y)$ where $y=g(x)$
- The derivative of \mathbf{z} w.r.t. x can be computed applying the chain rule

$$
\frac{d z}{d x}=\frac{d z}{d y} \frac{d y}{d x}=f^{\prime}(y) g^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)
$$

The same holds for backpropagation

Backpropagation and Chain Rule (2)

Backpropagation and Chain Rule (2)

Gradient Descent Example

A Note on Maximum Likelihood Estimation

Let's observe i.i.d. samples from a Gaussian distribution with known σ^{2}

$$
x_{1}, x_{2}, \ldots, x_{N} \sim N\left(\mu, \sigma^{2}\right) \quad p\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

A Note on Maximum Likelihood Estimation

Let's observe i.i.d. samples from a Gaussian distribution with known σ^{2}

$$
x_{1}, x_{2}, \ldots, x_{N} \sim N\left(\mu, \sigma^{2}\right) \quad p\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Maximum Likelihood: Chose parameters which maximize data probability

Maximum Likelihood Estimation: The Recipe

Let $\theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{p}\right)^{T}$ a vector of parameters, find the MLE for θ :

- Write the likelihood $L=P($ Data $\mid \theta)$ for the data
- [Take the logarithm of likelihood $\mathrm{l}=\log P($ Data $\mid \theta)$]
- Work out $\frac{\partial L}{\partial \theta}$ or $\frac{\partial l}{\partial \theta}$ using high-school calculus
- Solve the set of simultaneous equations $\frac{\partial L}{\partial \theta_{i}}=0$ or $\frac{\partial l}{\partial \theta_{i}}=0$
- Check that $\theta^{M L E}$ is a maximum

To maximize/minimize the (log)likelihood you with some analitical stuff

- Analytical Techniques (i.e., solve the equations)
- Optimization Techniques (e.g., Lagrange multipliers)
- Numerical Techniques (e.g., gradient descend)

Maximum Likelihood Estimation Example

Let's observe i.i.d. samples coming from a Gaussian with known σ^{2}

$$
x_{1}, x_{2}, \ldots, x_{N} \sim N\left(\mu, \sigma^{2}\right)
$$

$$
p\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Find the Maximum Likelihood Estimator for μ

Maximum Likelihood Estimation Example

Let's observe i.i.d. samples coming from a Gaussian with known σ^{2}

$$
x_{1}, x_{2}, \ldots, x_{N} \sim N\left(\mu, \sigma^{2}\right)
$$

$$
p\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

- Write the likelihood $L=P($ Data $\mid \theta)$ for the data

$$
\begin{gathered}
L(\mu)=p\left(x_{1}, x_{2}, \ldots, x_{N} \mid \mu, \sigma^{2}\right)=\prod_{n=1}^{N} p\left(x_{n} \mid \mu, \sigma^{2}\right)= \\
=\prod_{n=1}^{N} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\left(x_{n}-\mu\right)^{2}}{2 \sigma^{2}}}
\end{gathered}
$$

Maximum Likelihood Estimation Example

Let's observe i.i.d. samples coming from a Gaussian with known σ^{2}

$$
x_{1}, x_{2}, \ldots, x_{N} \sim N\left(\mu, \sigma^{2}\right)
$$

$$
p\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

- Take the logarithm $l=\log P($ Data $\mid \theta)$ of the likelihood

$$
\begin{gathered}
l(\mu)=\log \left(\prod_{n=1}^{N} \frac{1}{\sqrt{2 \cdot \pi} \sigma} e^{-\frac{\left(x_{n}-\mu\right)^{2}}{2 \cdot \sigma^{2}}}\right)=\sum_{n=1}^{N} \log \frac{1}{\sqrt{2 \cdot \pi} \sigma} e^{-\frac{\left(x_{n}-\mu\right)^{2}}{2 \cdot \sigma^{2}}}= \\
=N \cdot \log \frac{1}{\sqrt{2 \cdot \pi} \sigma}-\frac{1}{2 \cdot \sigma^{2}} \sum_{n}^{N}\left(x_{n}-\mu\right)^{2}
\end{gathered}
$$

Maximum Likelihood Estimation Example

Let's observe i.i.d. samples coming from a Gaussian with known σ^{2}

$$
x_{1}, x_{2}, \ldots, x_{N} \sim N\left(\mu, \sigma^{2}\right)
$$

$$
p\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

- Work out $\partial l / \partial \theta$ using high-school calculus

$$
\begin{gathered}
\frac{\partial l(\mu)}{\partial \mu}=\frac{\partial}{\partial \mu}\left(N \cdot \log \frac{1}{\sqrt{2 \pi} \sigma}-\frac{1}{2 \sigma^{2}} \sum_{n}^{N}\left(x_{n}-\mu\right)^{2}\right)= \\
=-\frac{1}{2 \sigma^{2}} \frac{\partial}{\partial \mu} \sum_{n}^{N}\left(x_{n}-\mu\right)^{2}=\frac{1}{2 \sigma^{2}} \sum_{n}^{N} 2\left(x_{n}-\mu\right)
\end{gathered}
$$

Maximum Likelihood Estimation Example

Let's observe i.i.d. samples coming from a Gaussian with known σ^{2}

$$
x_{1}, x_{2}, \ldots, x_{N} \sim N\left(\mu, \sigma^{2}\right)
$$

$$
p\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

- Solve the set of simultaneous equations $\frac{\partial l}{\partial \theta_{i}}=0$

$$
\begin{gathered}
\frac{1}{2 \sigma^{2}} \sum_{n}^{N} 2\left(x_{n}-\mu\right)=0 \\
\sum_{n_{N}}^{N}\left(x_{n}-\mu\right)=0
\end{gathered}
$$

$$
\sum_{n}^{N} x_{n}=\sum_{n}^{N} \mu \Rightarrow \mu^{M L E}=\frac{1}{N} \sum_{n}^{N} x_{n}
$$

Neural Networks for Regression

Goal: approximate a target function t having N observations

$$
t_{n}=g\left(x_{n} \mid w\right)+\epsilon_{n}, \quad \epsilon_{n} \sim N\left(0, \sigma^{2}\right)
$$

Statistical Learnig Framework

Neural Networks for Regression

Goal: approximate a target function t having N observations

$$
t_{n}=g\left(x_{n} \mid w\right)+\epsilon_{n}, \quad \epsilon_{n} \sim N\left(0, \sigma^{2}\right) \quad \Rightarrow \quad t_{n} \sim N\left(g\left(x_{n} \mid w\right), \sigma^{2}\right)
$$

Maximum Likelihood Estimation for Regression

We have i.i.d. samples coming from a Gaussian with known σ^{2}

$$
t_{n} \sim N\left(g\left(x_{n} \mid w\right), \sigma^{2}\right) \quad p\left(t \mid g(x \mid w), \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(t-g(x \mid w))^{2}}{2 \sigma^{2}}}
$$

Write the likelihood $L=P($ Data $\mid \theta)$ for the data

$$
\begin{gathered}
L(w)=p\left(t_{1}, t_{2}, \ldots, t_{N} \mid g(x \mid w), \sigma^{2}\right)=\prod_{n=1}^{N} p\left(t_{n} \mid g\left(x_{n} \mid w\right), \sigma^{2}\right)= \\
=\prod_{n=1}^{N} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\left(t_{n}-g\left(x_{n} \mid w\right)\right)^{2}}{2 \sigma^{2}}}
\end{gathered}
$$

Maximum Likelihood Estimation for Regression

We have i.i.d. samples coming from a Gaussian with known σ^{2}

$$
t_{n} \sim N\left(g\left(x_{n} \mid w\right), \sigma^{2}\right) \quad p\left(t \mid g(x \mid w), \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(t-g(x \mid w))^{2}}{2 \sigma^{2}}}
$$

Write the loglikelihood $\mathrm{l}=\log P(\operatorname{Data} \mid \theta)$ for the data

$$
\begin{gathered}
l(w)=\log \prod_{n=1}^{N} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\left(t_{n}-g\left(x_{n} \mid w\right)\right)^{2}}{2 \sigma^{2}}}=\sum_{n}^{N} \log \left(\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\left(t_{n}-g\left(x_{n} \mid w\right)\right)^{2}}{2 \sigma^{2}}}\right) \\
=\sum_{n}^{N} \log \frac{1}{\sqrt{2 \pi} \sigma}-\frac{1}{2 \sigma^{2}}\left(t_{n}-g\left(x_{n} \mid w\right)\right)^{2}
\end{gathered}
$$

Maximum Likelihood Estimation for Regression

We have i.i.d. samples coming from a Gaussian with known σ^{2}

$$
t_{n} \sim N\left(g\left(x_{n} \mid w\right), \sigma^{2}\right) \quad p\left(t \mid g(x \mid w), \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(t-g(x \mid w))^{2}}{2 \sigma^{2}}}
$$

Look for the weights which maximixe the loglikelihood

$$
\begin{aligned}
& \operatorname{argmax}_{w} l(w)=\operatorname{argmax}_{w} \sum_{n}^{N} \log \frac{1}{\sqrt{2 \pi} \sigma}-\frac{1}{2 \sigma^{2}}\left(t_{n}-g\left(x_{n} \mid w\right)\right)^{2}= \\
&=\operatorname{argmin}_{w} \sum_{n}^{N}\left(t_{n}-g\left(x_{n} \mid w\right)\right)^{2}
\end{aligned}
$$

Neural Networks for Classification

Goal: approximate a posterior probability t having N observations

$$
g\left(x_{n} \mid w\right)=p\left(t_{n} \mid x_{n}\right), t_{n} \in\{0,1\} \quad \Rightarrow t_{n} \sim \operatorname{Be}\left(g\left(x_{n} \mid w\right)\right)
$$

Maximum Likelihood Estimation for Classification

We have some i.i.d. samples coming from a Bernulli distribution

$$
t_{n} \sim \operatorname{Be}\left(g\left(x_{n} \mid w\right)\right) \quad p(t \mid g(x \mid w))=g(x \mid w)^{t} \cdot(1-g(x \mid w))^{1-t}
$$

Write the likelihood $L=P($ Data $\mid \theta)$ for the data

$$
\begin{aligned}
L(w)= & p\left(t_{1}, t_{2}, \ldots, t_{N} \mid g(x \mid w)\right)=\prod_{n=1}^{N} p\left(t_{n} \mid g\left(x_{n} \mid w\right)\right)= \\
& =\prod_{n=1}^{N} g\left(x_{n} \mid w\right)^{t_{n}} \cdot\left(1-g\left(x_{n} \mid w\right)\right)^{1-t_{n}}
\end{aligned}
$$

Maximum Likelihood Estimation for Classification

We have some i.i.d. samples coming from a Bernulli distribution

$$
t_{n} \sim \operatorname{Be}\left(g\left(x_{n} \mid w\right)\right) \quad p(t \mid g(x \mid w))=g(x \mid w)^{t} \cdot(1-g(x \mid w))^{1-t}
$$

Compute the \log likelihood $l=\log P(\operatorname{Data} \mid \theta)$ for the data

$$
\begin{aligned}
& l(w)=\log \prod_{n=1}^{N} g\left(x_{n} \mid w\right)^{t_{n}} \cdot\left(1-g\left(x_{n} \mid w\right)\right)^{1-t_{n}} \\
= & \sum_{n}^{N} t_{n} \log g\left(x_{n} \mid w\right)+\left(1-t_{n}\right) \log \left(1-g\left(x_{n} \mid w\right)\right)
\end{aligned}
$$

Maximum Likelihood Estimation for Classification

We have some i.i.d. samples coming from a Bernulli distribution

$$
t_{n} \sim \operatorname{Be}\left(g\left(x_{n} \mid w\right)\right) \quad p(t \mid g(x \mid w))=g(x \mid w)^{t} \cdot(1-g(x \mid w))^{1-t}
$$

Look for the weights which maximize the loglikelihood

$$
\begin{gathered}
\operatorname{argmax}_{w} l(w)=\operatorname{argmax}_{w} \sum_{n}^{N} t_{n} \log g\left(x_{n} \mid w\right)+\left(1-t_{n}\right) \log \left(1-g\left(x_{n} \mid w\right)\right) \\
=\operatorname{argmin}_{w}-\sum_{n}^{N} t_{n} \log g\left(x_{n} \mid w\right)+\left(1-t_{n}\right) \log \left(1-g\left(x_{n} \mid w\right)\right)
\end{gathered}
$$

Crossentropy
$-\sum_{n}^{N} t_{n}^{T} \log g\left(x_{n} \mid w\right)$

How to Chose the Error Function?

We have observed different error functions so far

Sum of Squared Errors

$$
\begin{gathered}
E(w)=\sum_{n=1}^{N}\left(t_{n}-g_{1}\left(x_{n}, w\right)\right)^{2} \\
E(w)=-\sum_{n}^{N} t_{n} \log g\left(x_{n} \mid w\right)+\left(1-t_{n}\right) \log \left(1-g\left(x_{n} \mid w\right)\right)
\end{gathered}
$$

Error functions define the task to be solved, but how to design them?

- Use all your knowledge/assumptions about the data distribution
- Exploit background knowledge on the task and the model
- Use your creativity!

This requires lots of
As for the Perceptron trial and errors ...

Hyperplanes Linear Algebra

Let consider the hyperplane (affine set) $L \in \mathfrak{R}^{2}$

$$
L: w_{0}+w^{T} \mathrm{x}=0
$$

Any two points x_{1} and x_{2} on $L \in \mathfrak{R}^{2}$ have

$$
w^{T}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)=0
$$

The versor normal to $L \in \mathfrak{R}^{2}$ is then

$$
w^{*}=w /\|w\|
$$

For any point x_{0} in $L \in \mathfrak{R}^{2}$ we have

$$
w^{T} x_{0}=-w_{0}
$$

The signed distance of any point x from $L \in \mathcal{C}^{\left(w^{T} x+w_{0}\right) \text { is proportional to }}$

$$
w^{* T}\left(\mathrm{x}-\mathrm{x}_{0}\right)=\frac{1}{\|w\|}\left(w^{T} \mathrm{x}+w_{0}\right)
$$

$$
\text { the distance of } \mathrm{x} \text { from the plane }
$$

$$
\text { defined by }\left(w^{T} x+w_{0}\right)=0
$$

Perceptron Learning Algorithm (1/2)

It can be shown, the error function the Hebbian rule is minimizing is the distance of misclassified points from the decision boundary.

Let's code the perceptron output as $+1 /-1$

- If an output which should be +1 is misclassified then $w^{T} x+w_{0}<0$
- For an output with -1 we have the opposite

The goal becomes minimizing

Set of points misclassified

$$
D\left(w, w_{0}\right)=-\sum_{i \in \mathrm{M}} t_{i}\left(\mathrm{w}^{\mathrm{T}} \mathrm{x}_{\mathrm{i}}+\mathrm{w}_{0}\right)
$$

This is non negative and proportional to the distance of the misclassified points from $w^{T} x+w_{0}=0$

Perceptron Learning Algorithm (2/2)

Let's minimize by stochastic gradient descend the error function

$$
D\left(w, w_{0}\right)=-\sum_{i \in \mathrm{M}} t_{i}\left(\mathrm{w}^{\mathrm{T}} \mathrm{x}_{\mathrm{i}}+\mathrm{w}_{0}\right)
$$

The gradients with respect to the model parameters are

$$
\frac{\partial D\left(w, w_{0}\right)}{\partial w}=-\sum_{i \in \mathrm{M}} t_{i} \cdot \mathrm{x}_{\mathrm{i}} \quad \frac{\partial D\left(w, w_{0}\right)}{\partial w_{0}}=-\sum_{i \in \mathrm{M}} t_{i}
$$

Stochastic gradient descent applies for each misclassified point

$$
\binom{w^{k+1}}{w_{0}^{k+1}}=\binom{w^{k}}{w_{0}^{k}}+\eta\binom{t_{i} \cdot x_{i}}{t_{i}}=\binom{w^{k}}{w_{0}^{k}}+\eta\binom{t_{i} \cdot x_{i}}{t_{i} \cdot x_{0}}
$$

