
Prof. Matteo Matteucci

Machine Learning
Linear Classification



Prof. Matteo Matteucci ïMachine Learning

Recall from the first lecture é2
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Example: Default dataset 3

Overall Default

Rate 3%
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Linear regression for classification?

o Suppose to predict the medical condition of a patient. 

How should this be encoded?

ÁWe could use dummy variables in case of binary output

but how to deal with multiple output?

ÁDifferent encodings could result in different models
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Recall here the Bayesian Classifier

o For a classification problem we can use the error rate i.e.

ÁWhere                   is an indicator function, which will give 1 if 

the condition               is correct, otherwise it gives a 0.

ÁThe error rate represents the fraction of incorrect 

classifications, or misclassifications 

o The Bayes Classifier minimizes the Average Test Error Rate

o The Bayes error rate refers to the lowest possible Error Rate 

achievable knowing the òtrueó distribution of the data
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possible estimates 

the class posterior 

probability!!
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Logistic Regression

o We want to model the probability of the class given the input 

but a linear model has some drawbacks
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Example: Default data & Linear Regression 7

Negative 

probability?

Overall Default

Rate 3%
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Logistic Regression

o We want to model the probability of the class given the input 

but a linear model has some drawbacks

o Logistic regression solves the negative probability (ad other 

issues as well) by regressing the logistic function
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Example: Default data & Logistic Regression 9
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Logistic Regression

o We want to model the probability of the class given the input 

but a linear model has some drawbacks (see later slide)

o Logistic regression solves the negative probability (ad other 

issues as well) by regressing the logistic function

from this we derive

and taking logarithms
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This is called odds

This is called 

log-odds or logit

Linear Regression

Logistic Regression
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Coefficient interpretation

o Interpreting what b1 means is not very easy with logistic 

regression, simply because we are predicting P(Y) and not Y.

ÁIf b1 =0, this means that there is no relationship between Y 

and X

ÁIf b1 >0, this means that when X gets larger so does the 

probability that Y = 1

ÁIf b1 <0, this means that when X gets larger, the probability 

that Y = 1 gets smaller.

o But how much bigger or smaller depends on where we are on 

the slope, i.e., it is not linear
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Training Logistic Regression (1/4)

o For the basic logistic regression wee need two parameters

o In principle we could use (non linear) Least Squares fitting on the 

observed data the corresponding model

o But a more principled approach for training in classification 

problems is based on Maximum Likelihood

ÁWe want to find the parameters which maximize the 

likelihood function
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Maximum Likelihood flash -back (1/6)

o Suppose we observe some i.i.d. samples coming from a Gaussian 

distribution with known variance:

Which distribution do you prefer?
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Maximum Likelihood flash -back (2/6)

o There is a simple recipe for Maximum Likelihood estimation

o Letõs try to apply it to our example
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Maximum Likelihood flash -back (3/6)

o Letõs try to apply it to our example

1. Write le likelihood for the data
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Maximum Likelihood flash -back (4/6)

o Letõs try to apply it to our example

2. (Take the logarithm of the likelihood -> log-likelihood)
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Maximum Likelihood flash -back (5/6)

o Letõs try to apply it to our example

3. Work out the derivatives using high-school calculus
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Maximum Likelihood flash -back (6/6)

o Letõs try to apply it to our example

4. Solve the unconstrained equations
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Training Logistic Regression (1/4)

o For the basic logistic regression we need two parameters

o In principle we could use (non linear) Least Squares fitting on the 

observed data the corresponding model

o But a more principled approach for training in classification 

problems is based on Maximum Likelihood

ÁWe want to find the parameters which maximize the 

likelihood function
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Training Logistic Regression (2/4)

o Letõs find the parameters which maximize the likelihood function

o If we compute the log-likelihood for N observations

where 

o We obtain a log-likelihood in the form of
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Can you derive it?
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Training Logistic Regression (3/4)

o Letõs find the parameters which maximize the likelihood function

ÁZ-statistics has the same role of the regression t-statistics, a 

large value means the parameter is not null

ÁIntercept does not have a particular meaning is used to adjust 

the probability to class proportions
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Example: Default data & Logistic Regression 22
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Training Logistic Regression (4/4)

o Letõs find the parameters which maximize the likelihood function

ÁWe can train the model using qualitative variables through the 

use of binary (dummy) variables
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Making predictions with Logistic Regression

o Once we have the model parameters we can predict the class

o The Default probability having 1000$ balance is <1%

while with a balance of 2000$ this becomes 58.6%

o With qualitative variables, i.e., dummy variables, we get that being 

a students results in 

24



Prof. Matteo Matteucci ïMachine Learning

Multiple Logistic Regression

o So far we have considered only one predictor, but we can extend 

the approach to multiple regressors

o By maximum likelihood we learn the corresponding parameters
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What about this?



Prof. Matteo Matteucci ïMachine Learning

An apparent contradiction 26

Positive

Negative!!!
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Example: Confounding in Default data set 27



Prof. Matteo Matteucci ïMachine Learning

Example: South African Heart Disease 28
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Logistic Regression for Feature Selection

o If we fit the complete model on these data we get

o While if we use stepwise Logistic Regression
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Logistic Regression parameters meaning

o Regression parameters represent the increment on the logit of 

probability given by a unitary increment of a variable

o Let consider the increase of tobaccoconsumption in life od 1Kg, 

this count for an increase in log-odds of exp(0.081)=1.084 which 

means an overall increase of 8.4%

o With a 95% confidence interval 
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