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Neural Networks
– Introduction –
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Why should we care about Neural Networks?
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Why should we care about Neural Networks?

Everyday computer systems are good at:
• Doing precisely what the programmer programs they to do
• Doing arithmetic very fast
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Why should we care about Neural Networks?

Everyday computer systems are good at:
• Doing precisely what the programmer programs they to do
• Doing arithmetic very fast

But we whould like them to:
• Interact with noisy data or data from the environment
• Be massively parallel and fault tolerant
• Adapt to circumstances
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Why should we care about Neural Networks?

Everyday computer systems are good at:
• Doing precisely what the programmer programs they to do
• Doing arithmetic very fast

But we whould like them to:
• Interact with noisy data or data from the environment
• Be massively parallel and fault tolerant
• Adapt to circumstances

We should look for a computational model other than
Von Neumann Machine!
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The Biological Neuron

In the brain we have:
• 1011 neurons
• 104 synapses per neurons
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The Biological Neuron

In the brain we have:
• 1011 neurons
• 104 synapses per neurons

The computational model of the brain is:
• Distributed among simple units called neurons
• Intrinsically parallel

• Redundant and thus fault tolerant
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Computation in Biological Neurons
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Computation in Biological Neurons

Cell Body

Dendrites
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Dendrites

Information is transmitted through chemical mechanisms:
• Dendrites collect input charges from synapses

◦ Inhibitory synapses with different weight
◦ Excitatory synapses with different weight
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Computation in Biological Neurons

Cell Body

Dendrites

Axon

Synapse

Synapse

Dendrites

Information is transmitted through chemical mechanisms:
• Dendrites collect input charges from synapses

◦ Inhibitory synapses with different weight
◦ Excitatory synapses with different weight

• Axon transmit accumulated charges through synapses
◦ Once the charge is above a threshold the neuron fires
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The Artificial Neuron

s1
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. . .

bj = −wj0 · 1
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∑

i wji · si

zj

gj(.)

wj1

wji

. . .

In this simple model of neuron j we can identify:
• The synaptic weights or simply weights wji

• The activation value zj =
∑

i wjisi

• The activation threshold or bias bj
.
= −wj0 · 1

• The activation function gj(.)
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The Artificial Neuron

s1

si

. . .

bj = −wj0 · 1

sj
∑

i wji · si

zj

gj(.)

wj1

wji

. . .

In this simple model of neuron j we can identify:
• The synaptic weights or simply weights wji

• The activation value zj =
∑

i wjisi

• The activation threshold or bias bj
.
= −wj0 · 1

• The activation function gj(.)

The final output of neuron j is: sj = gj(
∑N

i=1 wjisi − bj) = gj(
∑N

i=0 wjisi)
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Common Activation Functions

Step function: g(zj) =











1 if zj > 0

0 if zj = 0

−1 if zj < 0

1  

-1  

Linear function: g(zj) = zj

Sigmoid function: g(zj) =
1

1 + e−zj

1  

Hyperbolic tangent: g(zj) =
ezj − e−zj

ezj + e−zj

1  

-1  
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The Perceptron

The first model of neuron proposed was the Perceptron:
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Step function: g(zj) =











1 if zj > 0

0 if zj = 0

−1 if zj < 0

with zj =
∑N

i=0 wixi
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The Perceptron

The first model of neuron proposed was the Perceptron:
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Step function: g(zj) =











1 if zj > 0

0 if zj = 0

−1 if zj < 0

with zj =
∑N

i=0 wixi

What can I do with such a simple model?
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The Perceptron as a Logic Operator

Perceptron as a logic AND

y

x
  1

x
  2

  1

w

w
  2

1

  1

w

= 3/2

w
  2

= 1

= -2

  1
x

  2
x y

0

0

1

1

0

1

0

1

-1

-1

-1

1

sign

w
  0

w
  0

Lecture Notes on Natural Computation – Matteo Matteucci (matteucci@elet.polimi.it) – p. 9/73

The Perceptron as a Logic Operator

Perceptron as a logic AND
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Perceptron as a logic OR
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How does it work?

We can compute the decision boundary for the Perceptron:

0 = x1 · w1 + x2 · w2 + w0

x2 · w2 = −x1 · w1 − w0

x2 = −w1

w2
· x1 −

w0

w2
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How does it work?

We can compute the decision boundary for the Perceptron:

0 = x1 · w1 + x2 · w2 + w0

x2 · w2 = −x1 · w1 − w0

x2 = −w1

w2
· x1 −

w0

w2

The decision boundary is a line:
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Hebb Learning Rule

Weights were learned using the Hebbian learning rule:

“The strength of a synapse increase according to the simultaneous
activation of the relative input and the desired target”

(Hebb 1949)
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Hebb Learning Rule

Weights were learned using the Hebbian learning rule:

“The strength of a synapse increase according to the simultaneous
activation of the relative input and the desired target”

(Hebb 1949)

Hebbian learning can be summarized by the following rule:

wn+1
i = wn

i + ∆wi

∆wi = η · t · xi

Where we have
• η: learning rate

• xi: the ith perceptron input
• t: the desired output
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Hebbian Learning of the AND Operator (0)

Suppose we start from a random initialization of w1 = 0, w2 = 1 and w0 = 0
using a learning rate η = 1/2 we get:
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Hebbian Learning of the AND Operator (1)

Epoch 1
• Record 1:

◦ w1 = 0 + 0 = 0
◦ w2 = 1 + 0 = 1
◦ w0 = 0 − 1/2 = −1/2

• Record 2:
◦ w1 = 0 + 0 = 0
◦ w2 = 1 − 1/2 = 1/2

◦ w0 = −1/2 − 1/2 = −1

• Record 3: Ok
• Record 4:

◦ w1 = 0 + 1/2 = 1/2

◦ w2 = 1/2 + 1/2 = 1

◦ w0 = −1 + 1/2 = −1/2

x1 x2 x0 y

0 0 1 -1

0 1 1 -1

1 0 1 -1

1 1 1 1
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Hebbian Learning of the AND Operator (1)
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• Record 2:
◦ w1 = 0 + 0 = 0
◦ w2 = 1 − 1/2 = 1/2

◦ w0 = −1/2 − 1/2 = −1

• Record 3: Ok
• Record 4:

◦ w1 = 0 + 1/2 = 1/2

◦ w2 = 1/2 + 1/2 = 1
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Hebbian Learning of the AND Operator (2)

Epoch 2
• Record 1: OK
• Record 2:

◦ w1 = 1/2 + 0 = 1/2

◦ w2 = 1 − 1/2 = 1/2

◦ w0 = −1/2 − 1/2 = −1

• Record 3: Ok
• Record 4:

◦ w1 = 1/2 + 1/2 = 1

◦ w2 = 1/2 + 1/2 = 1

◦ w0 = −1 + 1/2 = −1/2

x1 x2 x0 y

0 0 1 -1

0 1 1 -1

1 0 1 -1

1 1 1 1
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Hebbian Learning of the AND Operator (2)

Epoch 2
• Record 1: OK
• Record 2:

◦ w1 = 1/2 + 0 = 1/2

◦ w2 = 1 − 1/2 = 1/2

◦ w0 = −1/2 − 1/2 = −1

• Record 3: Ok
• Record 4:

◦ w1 = 1/2 + 1/2 = 1

◦ w2 = 1/2 + 1/2 = 1

◦ w0 = −1 + 1/2 = −1/2
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Hebbian Learning of the AND Operator (3)

Epoch 3
• Record 1: Ok
• Record 2:

◦ w1 = 1 + 0 = 1
◦ w2 = 1 − 1/2 = 1/2

◦ w0 = −1/2 − 1/2 = −1

• Record 3:
◦ w1 = 1 − 1/2 = 1/2

◦ w2 = 1/2 − 0 = 1/2

◦ w0 = −1 − 1/2 = −3/2

• Record 4:
◦ w1 = 1/2 + 1/2 = 1

◦ w2 = 1/2 + 1/2 = 1

◦ w0 = −3/2 + 1/2 = −1

x1 x2 x0 y

0 0 1 -1

0 1 1 -1

1 0 1 -1

1 1 1 1
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Hebbian Learning of the AND Operator (3)

Epoch 3
• Record 1: Ok
• Record 2:

◦ w1 = 1 + 0 = 1
◦ w2 = 1 − 1/2 = 1/2

◦ w0 = −1/2 − 1/2 = −1

• Record 3:
◦ w1 = 1 − 1/2 = 1/2

◦ w2 = 1/2 − 0 = 1/2

◦ w0 = −1 − 1/2 = −3/2

• Record 4:
◦ w1 = 1/2 + 1/2 = 1

◦ w2 = 1/2 + 1/2 = 1

◦ w0 = −3/2 + 1/2 = −1
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Hebbian Learning of the AND Operator (...)

. . . let’s skip some epochs ;) . . .
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Hebbian Learning of the AND Operator (7)

Epoch 8
• Record 1: Ok
• Record 2:

◦ w1 = 3/2 − 0 = 3/2

◦ w2 = 3/2 − 1/2 = 1

◦ w0 = −3/2 − 1/2 = −2

• Record 3: OK
• Record 4: OK

x1 x2 x0 y

0 0 1 -1

0 1 1 -1

1 0 1 -1

1 1 1 1
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Hebbian Learning of the AND Operator (7)

Epoch 8
• Record 1: Ok
• Record 2:

◦ w1 = 3/2 − 0 = 3/2

◦ w2 = 3/2 − 1/2 = 1

◦ w0 = −3/2 − 1/2 = −2

• Record 3: OK
• Record 4: OK

x1 x2 x0 y

0 0 1 -1

0 1 1 -1

1 0 1 -1

1 1 1 1
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The XOR Problem

Great, but what if we have a non linearly separable problem?
(i.e., The XOR problem, Minsky ’69)
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The XOR Problem

Great, but what if we have a non linearly separable problem?
(i.e., The XOR problem, Minsky ’69)
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The XOR Problem

Great, but what if we have a non linearly separable problem?
(i.e., The XOR problem, Minsky ’69)
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XOR

Wait until the ’80s and you’ll see!
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Topology and Complexity

 A

 A

 B

 B

 B

 B

 A

 A

 B

 B

 A

 A

 A
 B

 A
 B

 A

 B

Type of 
Decision RegionTopology XOR Problem Classes with

Meshed Regions
Most General
Region Shapes

Half bounded
by hyperplanes

Convex Open or
Clesed Regions

Arbitrary Regions
(Complexity limited by
the number of nodes)
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Neural Networks
– Feedforward Topology –
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Multi-Layer Perceptrons and Artificial Neural Networks

Artificial Neural Network: A set of neurons
connected according to a topology

Layer: Neurons at the same distance from
the input neurons

Input Layer: Layer of neurons that receives
as input the data to process

Output Layer: Layer of neurons that gives
the final result of the network

Hidden Layer: Layer of neurons that pro-
cess data from other neurons to be
processed from other neurons

Input Layer

Output Layer

Hidden Layer
g(.)

o(.)

y

Output
  2y  1

x
  1

x
  2

x
  3
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Multi-Layer Perceptrons and Artificial Neural Networks

Artificial Neural Network: A set of neurons
connected according to a topology

Layer: Neurons at the same distance from
the input neurons

Input Layer: Layer of neurons that receives
as input the data to process

Output Layer: Layer of neurons that gives
the final result of the network

Hidden Layer: Layer of neurons that pro-
cess data from other neurons to be
processed from other neurons

Input Layer

Output Layer

Hidden Layer
g(.)

o(.)

y

Output
  2y  1

x
  1

x
  2

x
  3

An artificial neural network is a non-linear model characterized by the
number of neurons, their topology, activation functions, and the values of

synaptic weights and biases.
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Learning in Multi Layer Perceptrons: The Idea

Use Gradient Descend to iteratively minimize the network error (it turns out
that this was rediscovered many times and named in a different ways):

• Delta Rule
• Widrow Hoff Rule
• Adaline Rule
• Backpropagation
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Learning in Multi Layer Perceptrons: The Idea

Use Gradient Descend to iteratively minimize the network error (it turns out
that this was rediscovered many times and named in a different ways):

• Delta Rule
• Widrow Hoff Rule
• Adaline Rule
• Backpropagation

Learning can thus be summarized by the following rule:

wn+1 = wn + ∆w

∆w = −η · ∂E

∂w

• η: learning rate

• ∂E
∂w

: gradient of the error function w.r.t. the weights

Lecture Notes on Natural Computation – Matteo Matteucci (matteucci@elet.polimi.it) – p. 22/73

Learning in Multi Layer Perceptrons: An Example (I)
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x
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g(.)
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h(.)

h(.)

w

W

.

.

.

y = g(

J
∑

j

Wj · h(

I
∑

i

wji · xi))

E =

N
∑

n

(tn − yn)2

Goal: approximate a target function t given a finite set of N observation
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Learning in Multi Layer Perceptrons: An Example (I)
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y = g(

J
∑

j

Wj · h(

I
∑

i

wji · xi))

E =

N
∑

n

(tn − yn)2

Goal: approximate a target function t given a finite set of N observation

We define some useful variables:

• aj =
∑I

i wji · xi (activation value)

• bj = h(aj) (output of jth hidden neuron)

• A =
∑J

j Wjbj
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Learning in Multi Layer Perceptrons: An Example (II)

Given E =
∑N

n (tn − yn)2 =
∑N

n (tn − g(A))2

∂E

∂Wj

=

N
∑

n

2(t − g(A)) · ∂

∂Wj

(t − g(A))

=

N
∑

n

2(t − g(A)) · (−g′(A)) · ∂

∂Wj

A

=

N
∑

n

2(t − g(A)) · (−g′(A)) · bj
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Learning in Multi Layer Perceptrons: An Example (II)

Given E =
∑N

n (tn − yn)2 =
∑N

n (tn − g(A))2

∂E

∂Wj

=

N
∑

n

2(t − g(A)) · ∂

∂Wj

(t − g(A))

=

N
∑

n

2(t − g(A)) · (−g′(A)) · ∂

∂Wj

A

=

N
∑

n

2(t − g(A)) · (−g′(A)) · bj

We obtain the Backpropagation update rule for Wjs

W t+1
j = W t

j + 2η
∑N

n (t − g(A)) · g′(A) · bj
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Learning in Multi Layer Perceptrons: An Example (III)

∂E

∂wji

=

N
∑

n

2(t − g(A)) · (−g′(A)) · ∂

∂wji

A

=

N
∑

n

2(t − g(A)) · (−g′(A)) · Wj ·
∂

∂wji

bj

=

N
∑

n

2(t − g(A)) · (−g′(A)) · Wj · h′(aj)
∂

∂wji

aj

=

N
∑

n

2(t − g(A)) · (−g′(A)) · Wj · h′(aj) · xi
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Learning in Multi Layer Perceptrons: An Example (III)

∂E

∂wji

=

N
∑

n

2(t − g(A)) · (−g′(A)) · ∂

∂wji

A

=

N
∑

n

2(t − g(A)) · (−g′(A)) · Wj ·
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2(t − g(A)) · (−g′(A)) · Wj · h′(aj)
∂

∂wji

aj

=

N
∑

n

2(t − g(A)) · (−g′(A)) · Wj · h′(aj) · xi

We obtain the Backpropagation update rule for wjis

wt+1
ji = wt

ji + 2η
∑N

n (t − g(A)) · g′(A) · Wj · h′(aj) · xi
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Artificial Neural Network Demo

Stolen from:
http://www.obitko.com/tutorials/neural-network-prediction/function-prediction.html
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http://www.obitko.com/tutorials/neural-network-prediction/function-prediction.html


Learning in Multi Layer Perceptrons: Regression (I)
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J
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j

Wj · h(

I
∑

i

wji · xi))

Goal: approximate a target function t given a finite set of N observation

tn = yn + ǫn ǫ ∼ N(0, σ2) → tn ∼ N(yn, σ2)

Thus we have a sample t1, t2, . . . tN of i.i.d. observations from N(y,Σ)
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Learning in Multi Layer Perceptrons: Regression (I)
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y = g(

J
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Wj · h(

I
∑

i

wji · xi))

Goal: approximate a target function t given a finite set of N observation

tn = yn + ǫn ǫ ∼ N(0, σ2) → tn ∼ N(yn, σ2)

Thus we have a sample t1, t2, . . . tN of i.i.d. observations from N(y,Σ)

Learning in Artificial Neural Networks ⇒ Maximum Likelihood Estimation
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Learning in Multi Layer Perceptrons: Regression (II)

We have a sample t1, t2, . . . tN of i.i.d. observations from N(y, σ2); define
the Likelihood L of the sample as its probability (suppose k = 1)

L(w) =
N
∏

n

1√
2πσ

e−
1

2σ2 (tn−yn)2
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Learning in Multi Layer Perceptrons: Regression (II)

We have a sample t1, t2, . . . tN of i.i.d. observations from N(y, σ2); define
the Likelihood L of the sample as its probability (suppose k = 1)

L(w) =
N
∏

n

1√
2πσ

e−
1

2σ2 (tn−yn)2

Look for the set of weights that maximize it

arg max
w

L(w) = arg max
w

N
∑

n

[

log
1√
2πσ

− 1

2σ2
(tn − yn)2

]

= arg max
w

−
N

∑

n

1

2σ2
(tn − yn)2

= arg min
w

N
∑

n

(tn − yn)2
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Learning in Multi Layer Perceptrons: Classification (I)
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y = g(

J
∑

j

Wj · h(

I
∑

i

wji · xi))

Goal: separate two (or more) classes Ω0, Ω1 according to the posterior
probability (this time t = 1 if t ∈ Ω1 and t = 0 if t ∈ Ω0)

p(t|x) = yt(1 − y)1−t → t ∼ Be(y)

Thus we have a sample t1, t2, . . . tN of i.i.d. observations from a Bernulli
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∑
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Wj · h(

I
∑
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wji · xi))

Goal: separate two (or more) classes Ω0, Ω1 according to the posterior
probability (this time t = 1 if t ∈ Ω1 and t = 0 if t ∈ Ω0)

p(t|x) = yt(1 − y)1−t → t ∼ Be(y)

Thus we have a sample t1, t2, . . . tN of i.i.d. observations from a Bernulli

Learning in Artificial Neural Networks ⇒ Maximum Likelihood Estimation
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Learning in Multi Layer Perceptrons: Classification (II)

We have a sample t1, t2, . . . tN of i.i.d. observations from a Bernoulli
distribution define the Likelihood L of the sample as its probability

L(w) =
N
∏

n

ytn
n (1 − yn)1−tn
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Learning in Multi Layer Perceptrons: Classification (II)

We have a sample t1, t2, . . . tN of i.i.d. observations from a Bernoulli
distribution define the Likelihood L of the sample as its probability

L(w) =
N
∏

n

ytn
n (1 − yn)1−tn

Look for the set of weights that maximize it

arg max
w

L(w) = arg max
w

N
∑

n

tn log yn + (1 − tn) log(1 − yn)

= arg min
w

−
N

∑

n

tn log yn + (1 − tn) log(1 − yn)
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Learning in Multi Layer Perceptrons: Classification (II)

We have a sample t1, t2, . . . tN of i.i.d. observations from a Bernoulli
distribution define the Likelihood L of the sample as its probability

L(w) =
N
∏

n

ytn
n (1 − yn)1−tn

Look for the set of weights that maximize it

arg max
w

L(w) = arg max
w

N
∑

n

tn log yn + (1 − tn) log(1 − yn)

= arg min
w

−
N

∑

n

tn log yn + (1 − tn) log(1 − yn)

Note: this is called cross entropy and its minimization is equivalent to the minimization of the

Kullback-Leibler divergence of the network output and the target distribution

Lecture Notes on Natural Computation – Matteo Matteucci (matteucci@elet.polimi.it) – p. 30/73

Issues in Learning Artificial Neural Networks

• Improving Convergence
◦ Gradient Descend with Momentum
◦ Quasi Newton Methods
◦ Conjugate Gradient Methods
◦ . . .
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• Improving Convergence
◦ Gradient Descend with Momentum
◦ Quasi Newton Methods
◦ Conjugate Gradient Methods
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• Local Optima
◦ Multiple Restarts
◦ Randomized Algorithms
◦ . . .
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Issues in Learning Artificial Neural Networks

• Improving Convergence
◦ Gradient Descend with Momentum
◦ Quasi Newton Methods
◦ Conjugate Gradient Methods
◦ . . .

• Local Optima
◦ Multiple Restarts
◦ Randomized Algorithms
◦ . . .

• Generalization and Overfitting
◦ Early Stopping
◦ Weight Decay
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Issues in Learning Artificial Neural Networks

• Improving Convergence
◦ Gradient Descend with Momentum
◦ Quasi Newton Methods
◦ Conjugate Gradient Methods
◦ . . .

• Local Optima
◦ Multiple Restarts
◦ Randomized Algorithms
◦ . . .

• Generalization and Overfitting
◦ Early Stopping
◦ Weight Decay

Let’s focus on generalization and overfitting!
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Generalization & Overfitting

Overfitting : we have overfitting when the model we learnt fits the noise
in the data, thus it does not generalize on new samples (it just
memorizes the training set).
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Generalization & Overfitting

Overfitting : we have overfitting when the model we learnt fits the noise
in the data, thus it does not generalize on new samples (it just
memorizes the training set).

Can we measure generalization?

1. Hide some data before learning the model(Test Set)

2. Estimate how well the model predict on “new” data (Test Set Error)
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Generalization & Overfitting

Overfitting : we have overfitting when the model we learnt fits the noise
in the data, thus it does not generalize on new samples (it just
memorizes the training set).

Can we measure generalization?

1. Hide some data before learning the model(Test Set)

2. Estimate how well the model predict on “new” data (Test Set Error)

Can we avoid overfitting?
• Use cross-validation techniques
• Use statistical bias on the model space

General rule: Use Occam’s razor!
“Entia non sunt multiplicanda praeter necessitatem”
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Improving Generalization: Early Stopping

We would like to stop the learning process (a.k.a. optimization routine)
before the model starts to fit the noise in the data

Error

0 Epochs

Validation

Training

Desired Stop
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Improving Generalization: Early Stopping

We would like to stop the learning process (a.k.a. optimization routine)
before the model starts to fit the noise in the data

Error

0 Epochs

Validation

Training

Desired Stop

This is usually a good method to find out how many neurons we need in
the hidden layer: compare different topologies w.r.t. the validation error.
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Improving Generalization: Weight Decay (I)

Up to now, we have used Maximum Likelihood Estimation for the weights:

ŵ = arg max
w

P (D|w)
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Improving Generalization: Weight Decay (I)

Up to now, we have used Maximum Likelihood Estimation for the weights:

ŵ = arg max
w

P (D|w)

If we use a Bayesian approach, we can use Maximum A-Posteriori:

ŵ = arg max
w

P (w|D) = arg max
w

P (D|w)P (w)

(We “just” need a prior distribution P (w) for the network weights)
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Improving Generalization: Weight Decay (I)

Up to now, we have used Maximum Likelihood Estimation for the weights:

ŵ = arg max
w

P (D|w)

If we use a Bayesian approach, we can use Maximum A-Posteriori:

ŵ = arg max
w

P (w|D) = arg max
w

P (D|w)P (w)

(We “just” need a prior distribution P (w) for the network weights)

From theoretical consideration and empirical results we get:
• Use conjugate priors to get an “easy” posterior distribution
• Small weights improve network generalization capabilities
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Improving Generalization: Weight Decay (I)

Up to now, we have used Maximum Likelihood Estimation for the weights:

ŵ = arg max
w

P (D|w)

If we use a Bayesian approach, we can use Maximum A-Posteriori:

ŵ = arg max
w

P (w|D) = arg max
w

P (D|w)P (w)

(We “just” need a prior distribution P (w) for the network weights)

From theoretical consideration and empirical results we get:
• Use conjugate priors to get an “easy” posterior distribution
• Small weights improve network generalization capabilities

w ∼ N(0, σ2
w)
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Improving Generalization: Weight Decay (II)

ŵ = arg max
w

P (D|w)P (w)

= arg max
w

N
∏

n

1√
2πσ

e−
1

2σ2 (tn−yn)2 ·
M
∏

m

1√
2πσw

e
−

1
2σ2

w
(0−wm)2

= arg min
w

N
∑

n

1

2σ2
(tn − y)2 +

M
∑

m

1

2σ2
w

w2

= arg min
w

N
∑

n

(tn − y)2 + γ

M
∑

m

w2

This way we penalize “network complexity” introducing a bias
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Neural Networks
– Radial Basis Functions –
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Radial Basis Approximation

Consider the following function approximation:

f̂(x) = w0 +
U

∑

u=1

wu · Ku(d(xu,x))

Where we have:
• xu is an instance from X

• Ku(d(xu,x)) is called Kernel function and it is defined so that it
decrease as the distance d(xu,x) increase
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Radial Basis Approximation

Consider the following function approximation:

f̂(x) = w0 +
U

∑

u=1

wu · Ku(d(xu,x))

Where we have:
• xu is an instance from X

• Ku(d(xu,x)) is called Kernel function and it is defined so that it
decrease as the distance d(xu,x) increase

f̂(x) is a global approximation of f(x) obtain from the local contributions of
xus and it is possible approximate any function with arbitrarily small error,

provided a sufficiently large number U of radial basis functions.
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Radial Basis Functions

Consider to use a Gaussian function as Kernel

Ku(d(xu,x)) = e−
1

2σ2 d2(xu,x).
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Radial Basis Functions

Consider to use a Gaussian function as Kernel

Ku(d(xu,x)) = e−
1

2σ2 d2(xu,x).

We can rewrite the radial bases approximation as a two layer artificial
neural network (called Radial Basis Function):

y
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.

.

.

x
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x
  2

x
  I

w

.

.

.

1

  0

w  1

w   u

lin

y = w0 +

U
∑

u=1

wu · e− 1
2σ2 d2(xu,x)
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Where Does d(xu,x) Come From?

Consider the classical formula to compute the activation value for the jth

hidden neuron as in feed-forward neural network (our uth radial base)

zj =

I
∑

i

wji · xi
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Where Does d(xu,x) Come From?

Consider the classical formula to compute the activation value for the jth

hidden neuron as in feed-forward neural network (our uth radial base)

zj =

I
∑

i

wji · xi

This can be written as the scalar (dot) product between the input vector ~x

and the weigth vector of jth hidden unit wj :

zj =
I

∑

i

wji · xi =
I

∑

i

xi · wji = x.wT
j
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Where Does d(xu,x) Come From?

Consider the classical formula to compute the activation value for the jth

hidden neuron as in feed-forward neural network (our uth radial base)

zj =

I
∑

i

wji · xi

This can be written as the scalar (dot) product between the input vector ~x

and the weigth vector of jth hidden unit wj :

zj =
I

∑

i

wji · xi =
I

∑

i

xi · wji = x.wT
j

Just rename j as u and wj as xu to get d(xu,x) = x.xT
u .
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Where Does d(xu,x) Come From?

Consider the classical formula to compute the activation value for the jth

hidden neuron as in feed-forward neural network (our uth radial base)

zj =

I
∑

i

wji · xi

This can be written as the scalar (dot) product between the input vector ~x

and the weigth vector of jth hidden unit wj :

zj =
I

∑

i

wji · xi =
I

∑

i

xi · wji = x.wT
j

Just rename j as u and wj as xu to get d(xu,x) = x.xT
u .

The scalar product is used as distance between
the input vector and the basis centers.
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Learning with Radial Basis Functions

Radial Basis Function are typically trained in a two stage process:

1. The number U of hidden units is determined and each hidden unit is
defined by choosing the values of xu and σ2

u that define its kernel
function Ku(d(xu,x))
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Learning with Radial Basis Functions

Radial Basis Function are typically trained in a two stage process:

1. The number U of hidden units is determined and each hidden unit is
defined by choosing the values of xu and σ2

u that define its kernel
function Ku(d(xu,x))

2. The weights wu are trained to maximize the fitting of the network
using the error function

E =
1

2

N
∑

n

(f(xn) − f̂(xn))2
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Learning with Radial Basis Functions

Radial Basis Function are typically trained in a two stage process:

1. The number U of hidden units is determined and each hidden unit is
defined by choosing the values of xu and σ2

u that define its kernel
function Ku(d(xu,x))

2. The weights wu are trained to maximize the fitting of the network
using the error function

E =
1

2

N
∑

n

(f(xn) − f̂(xn))2

Since the kernel functions are held fixed during the second stage, the
linear weights wu can be trained very efficiently!
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Linear Regression to Learn the Weighs (I)

According to the RBF model we can consider the network output Y as a
linear combination of hidden neurons output U:

Y = Uw

Learning is thus the solution of N linear equations in U unknowns that we
can write using matrix notation:
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∣
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[N × 1] = [N × U ] · [U × 1]
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Linear Regression to Learn the Weighs (II)

Suppose we have no noise, exact model and well-conditioned U matrix we
can obtain a closed form for the solution (note we cannot invert directly U

since it could be not invertible):

Y = Uw

U′Y = U′(Uw)

U′Y = (U′U)w

(U′U)−1U′Y = (U′U)−1(U′U)w

(U′U)−1U′Y = w

This is not iterative! It could be computationally intensive, but “years” of
linear algebra have discovered efficient solutions for computing (U′U)−1

even with ill-conditioned matrixes ... check out for that on:

Numerical recipes in Fortran/C/C++
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Radial Basis Function Demo

Stolen from:
http://lcn.epfl.ch/tutorial/english/rbf/html/index.html
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Setting Up the Kernels

We can find different approaches for the choice of the kernel functions:

1. Allocate a Gaussian kernel function for each training example
< xn, f(xn) > centering it at xn and assigning some width σ2.

• Global approximation from local interactions of data points
• Good fitting of the training data
• We could have problem with overfitting and performance
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Setting Up the Kernels

We can find different approaches for the choice of the kernel functions:

1. Allocate a Gaussian kernel function for each training example
< xn, f(xn) > centering it at xn and assigning some width σ2.

• Global approximation from local interactions of data points
• Good fitting of the training data
• We could have problem with overfitting and performance

2. Use a relatively small U , place one neuron at the time, train the
network and place a new neuron on the record with the higher
prediction error.
• Faster that using a kernel function for each data point
• Improved generalization capabilities
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Neural Networks
– Recurrent Architectures –

Lecture Notes on Natural Computation – Matteo Matteucci (matteucci@elet.polimi.it) – p. 45/73

Neural Networks for Dynamical Systems

A new Task: we want to predict the next day stock market average y(t + 1)
based on the current day’s economic indicators x(t)
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Neural Networks for Dynamical Systems

A new Task: we want to predict the next day stock market average y(t + 1)
based on the current day’s economic indicators x(t)

We have mainly three approaches to do that with artificial neural networks:
• Standard Feedforward: we can do regression from x(t) to y(t + 1), but

we cannot capture dependencies on earlier values of x
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Neural Networks for Dynamical Systems

A new Task: we want to predict the next day stock market average y(t + 1)
based on the current day’s economic indicators x(t)

We have mainly three approaches to do that with artificial neural networks:
• Standard Feedforward: we can do regression from x(t) to y(t + 1), but

we cannot capture dependencies on earlier values of x

• Feedforward with Delayed Input: we can replicate a finite number of
earlier values of x and apply regression from [x(t)x(t− 1) . . .x(t− q)],
but we do not know how much is q
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Neural Networks for Dynamical Systems

A new Task: we want to predict the next day stock market average y(t + 1)
based on the current day’s economic indicators x(t)

We have mainly three approaches to do that with artificial neural networks:
• Standard Feedforward: we can do regression from x(t) to y(t + 1), but

we cannot capture dependencies on earlier values of x

• Feedforward with Delayed Input: we can replicate a finite number of
earlier values of x and apply regression from [x(t)x(t− 1) . . .x(t− q)],
but we do not know how much is q

• Recurrent Artificial Neural Networks: we can add a new unit b to the
hidden layer and a new input unit c(t) to represent the value of b at
time (t− 1). b thus can summarize information from earlier values of x
arbitrarily distant in time.
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Feedforward with Delayed Input
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Feedforward with Delayed Input

  y(t+1)

.
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w
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x(t) y(t+1)
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x(t-2)

3
4
5
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How can we learn the weights for this kind of network?
• Build-up a delayed dataset from the original one
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Feedforward with Delayed Input

  y(t+1)
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w
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x(t) y(t)
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...

x(t) y(t+1)
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4
5
6
...

8
9
5
...

x(t-1)

1
2
3
4
5
6
...

x(t-2)

3
4
5
6
...

How can we learn the weights for this kind of network?
• Build-up a delayed dataset from the original one
• Use the standard backpropagation learning algorithm

y(t + 1) = g(

J
∑

j

Wj · h(

T
∑

i=0

wji · x(t − i)))

Lecture Notes on Natural Computation – Matteo Matteucci (matteucci@elet.polimi.it) – p. 47/73



Recurrent Artificial Neural Networks
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Recurrent Artificial Neural Networks
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1. Recurr the output as input (network output → equilibrium)

2. Recurr the output (and its previous values) as input

3. Recurr the internal (hidden) state of the network as input
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Finding Structure in Time (Elman Networks)
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∑

i

wji · xt
i) +

+

B
∑

b

Wb · h(

B
∑

b′

vbb′ · ct
b′ +

I
∑

i

vbi · xt
i))

ct
b = h(

B
∑
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Finding Structure in Time (Elman Networks)
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How can we learn the weights for this kind of networks?
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Backpropagation Through Time (Elman Networks)

1. Perform “network unfolding”

y

.

.

.

x
  1

x
  2

x
  I

g(.)

h(.)

h(.)

h(.)

w

W

.

.

.

h(.)
   c

v(t)

.

.

.

h(.)

  

   

       1

  

      B  c

h(.)
   c (t-1)

.

.

.

h(.)

  

   

       1

  

       B

x (t-1)
   1

   2

   I

h(.)
   c

v(t-2)

.

.

.

h(.)

  

   

       1

  

      B  c

  

   

       1
h(.)

v

.

.

.

h(.)

x (t-1)

x (t-1)

.

.

.

   c (t-1)

...

...

Context
Network

x (t-2)
   1

   2

   I

x (t-2)

x (t-2)

.

.

.

x (t-3)
   1

   2

   I

x (t-3)

x (t-3)

.

.

.

v(t-1)v(t-3)

Lecture Notes on Natural Computation – Matteo Matteucci (matteucci@elet.polimi.it) – p. 50/73



Backpropagation Through Time (Elman Networks)
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2. Approximate backpropagation by:
• Use a finite number unwrapping steps U

• Take the average of weigths over time: vjb = 1
U

∑U
u vjb(t − u)

• Compute the sum of gradients over time: ∂E
∂vjb

=
∑U

u
∂E

∂vjb(t−u)
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Neural Networks
– Neuro-Fuzzy Networks –
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Neuro vs Fuzzy Modeling

Both Neural Networks and Fuzzy Rules are non-linear modeling paradigms
robust with respect to uncertanty (noise) in the data. In theory, they are
equivalent, yet in practice each has its own pros and cons:
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Neuro vs Fuzzy Modeling

Both Neural Networks and Fuzzy Rules are non-linear modeling paradigms
robust with respect to uncertanty (noise) in the data. In theory, they are
equivalent, yet in practice each has its own pros and cons:

• Neural networks
◦ Knowledge automatically acquired from experience →good :)
◦ No explanation on what’s going on in the black-box →bad :(
◦ No way to extract/integrate structural knowledge →bad :(
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• Neural networks
◦ Knowledge automatically acquired from experience →good :)
◦ No explanation on what’s going on in the black-box →bad :(
◦ No way to extract/integrate structural knowledge →bad :(

• Fuzzy rules
◦ Reasoning on imprecise information →good :)
◦ Clear understanding of the inference mechanism →good :)
◦ No way of learning experience directly from data →bad :(
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Neuro vs Fuzzy Modeling

Both Neural Networks and Fuzzy Rules are non-linear modeling paradigms
robust with respect to uncertanty (noise) in the data. In theory, they are
equivalent, yet in practice each has its own pros and cons:

• Neural networks
◦ Knowledge automatically acquired from experience →good :)
◦ No explanation on what’s going on in the black-box →bad :(
◦ No way to extract/integrate structural knowledge →bad :(

• Fuzzy rules
◦ Reasoning on imprecise information →good :)
◦ Clear understanding of the inference mechanism →good :)
◦ No way of learning experience directly from data →bad :(

Can we get the best of the two worlds from a single (hybrid) system?
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Neuro vs Fuzzy Modeling

Both Neural Networks and Fuzzy Rules are non-linear modeling paradigms
robust with respect to uncertanty (noise) in the data. In theory, they are
equivalent, yet in practice each has its own pros and cons:

• Neural networks
◦ Knowledge automatically acquired from experience →good :)
◦ No explanation on what’s going on in the black-box →bad :(
◦ No way to extract/integrate structural knowledge →bad :(

• Fuzzy rules
◦ Reasoning on imprecise information →good :)
◦ Clear understanding of the inference mechanism →good :)
◦ No way of learning experience directly from data →bad :(

Can we get the best of the two worlds from a single (hybrid) system?
Can we extend neural network to extract fuzzy rules from data?
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Neural Learning of Sugeno-Type Fuzzy Inference (I)

Suppose we have the the fuzzy system having rules in the form:

Rj : if x1 is Aj1 ∧ x2 is Aj2 ∧ . . . ∧ xI is AjI then y = zj

Being Aji fuzzy numbers of triangular form and zj real numbers, the
system can be represented as a non-linear mapping:

y = f(x) = f(x1, ...xI)
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Neural Learning of Sugeno-Type Fuzzy Inference (I)

Suppose we have the the fuzzy system having rules in the form:

Rj : if x1 is Aj1 ∧ x2 is Aj2 ∧ . . . ∧ xI is AjI then y = zj

Being Aji fuzzy numbers of triangular form and zj real numbers, the
system can be represented as a non-linear mapping:

y = f(x) = f(x1, ...xI)

• Define the firing level of jth rule by the Larsen’s product operator (or

any other t-norm for the and operator): αj =
∏I

i=1 Aji(xi)

• The output of the system is thus defined as: y =
P

j αjzj
P

j αj
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Neural Learning of Sugeno-Type Fuzzy Inference (I)

Suppose we have the the fuzzy system having rules in the form:

Rj : if x1 is Aj1 ∧ x2 is Aj2 ∧ . . . ∧ xI is AjI then y = zj

Being Aji fuzzy numbers of triangular form and zj real numbers, the
system can be represented as a non-linear mapping:

y = f(x) = f(x1, ...xI)

• Define the firing level of jth rule by the Larsen’s product operator (or

any other t-norm for the and operator): αj =
∏I

i=1 Aji(xi)

• The output of the system is thus defined as: y =
P

j αjzj
P

j αj

Can we learn the shapes of fuzzy numbers Aji and output zj from
experience D = {(x, t)1, . . . , (x, t)n, . . . , (x, t)N}?
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Neural Learning of Sugeno-Type Fuzzy Inference (II)

To better understand how this is related to neural networks and learning
consider a simplified example.

• Suppose we have a system formed by just two rule with two input and
one output variable:

R1 : if x1 is A1 ∧ x2 is A2 then y = z1

R2 : if x1 is A2 ∧ x2 is A1 then y = z2

with fuzzy terms A1 (small) and A2 (big) having a sigmoidal
membership function defined by: Ak(x) = 1

1+exp (bk(x−ak)) .
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Neural Learning of Sugeno-Type Fuzzy Inference (II)

To better understand how this is related to neural networks and learning
consider a simplified example.

• Suppose we have a system formed by just two rule with two input and
one output variable:

R1 : if x1 is A1 ∧ x2 is A2 then y = z1

R2 : if x1 is A2 ∧ x2 is A1 then y = z2

with fuzzy terms A1 (small) and A2 (big) having a sigmoidal
membership function defined by: Ak(x) = 1

1+exp (bk(x−ak)) .

• Define now a three new special neurons ...
1. P (.): performing the Product of its input

2. S(.): performing the Sum of its input

3. R(.): performing the Ratio of its input
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Neural Learning of Sugeno-Type Fuzzy Inference (II)

To better understand how this is related to neural networks and learning
consider a simplified example.

• Suppose we have a system formed by just two rule with two input and
one output variable:

R1 : if x1 is A1 ∧ x2 is A2 then y = z1

R2 : if x1 is A2 ∧ x2 is A1 then y = z2

with fuzzy terms A1 (small) and A2 (big) having a sigmoidal
membership function defined by: Ak(x) = 1

1+exp (bk(x−ak)) .

• Define now a three new special neurons ...
1. P (.): performing the Product of its input

2. S(.): performing the Sum of its input

3. R(.): performing the Ratio of its input

Here it is your first Fuzzy-Neural Network ... o well on the next slide ;)
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Neural Learning of Sugeno-Type Fuzzy Inference (III)
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α1 + α2

Lecture Notes on Natural Computation – Matteo Matteucci (matteucci@elet.polimi.it) – p. 55/73



Neural Learning of Sugeno-Type Fuzzy Inference (III)
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w

y =
2

∑
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zj · αj

α1 + α2

=
z1 · α1 + z2 · α2

α1 + α2

Now you got the idea, all remains to do is learning zj , ak and bk so let’s:

1. Define your favourite Error measure over the training samples:

E = 1
2

∑N
n (yn − tn)2

2. Run your fashioned steepest descend optimization package on the
network ... or do it by hand!
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Neural Learning of Sugeno-Type Fuzzy Inference (IV)
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((yn − tn)
∂yn
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) =

N
∑
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((yn − tn)
αj(xn)

∑

j αj(xn)
)
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Neural Learning of Sugeno-Type Fuzzy Inference (IV)
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Neural Learning of Sugeno-Type Fuzzy Inference (IV)
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In 1993 R. Jang showed that fuzzy inference systems with simplified fuzzy
rules (i.e., having crisp outputs) are universal approximators. The more
fuzzy terms and rules are used, the closer is the output of the fuzzy
system to the desired one.
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Neural Learning of Sugeno-Type Fuzzy Inference (IV)

∂E

∂zj

=
∂

∂zj

1

2

N
∑

n

(yn − tn)2 =

N
∑

n

((yn − tn)
∂yn

∂zj

) =

N
∑

n

((yn − tn)
αj(xn)

∑

j αj(xn)
)

∂E

∂ai

=
∂

∂ai

1

2

N
∑

n

(yn − tn)2 =

N
∑

n

((yn − tn)
∂yn

∂ai

) = . . .

∂E

∂bi

=
∂

∂bi

1

2

N
∑

n

(yn − tn)2 =

N
∑

n

((yn − tn)
∂yn

∂bi

) = . . .

In 1993 R. Jang showed that fuzzy inference systems with simplified fuzzy
rules (i.e., having crisp outputs) are universal approximators. The more
fuzzy terms and rules are used, the closer is the output of the fuzzy
system to the desired one.

Does this remind you about anything?
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Adaptive Neuro-Fuzzy Inference System [ANFIS] (I)

Consider now a more complex example using the following fuzzy rules:

R1 : if x1 is L1 ∧ x2 is L2 ∧ x3 is L3 then y = V B

R2 : if x1 is H1 ∧ x2 is H2 ∧ x3 is L3 then y = B

R3 : if x1 is H1 ∧ x2 is H2 ∧ x3 is H3 then y = S

Being x1, x2, x3 the exchange rates USD vs DEM, USD vs SEK, and USD
vs FIM, we obtain:

R1 if the USD is weak against DEM, SEK, and FIM then our portfolio
value is very big

R2 if the USD is strong against DEM, SEK, and USD is weak against FIM
then our portfolio value is big

R3 if the USD is strong against DEM, SEK, and FIM then our portfolio
value is small big

Note: this was a pre-Euro Swedish example :)
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Adaptive Neuro-Fuzzy Inference System [ANFIS] (II)

Define the fuzzy sets for the input and output variables:

• LOW is Li(x) = 1
1+exp(bi(x−ci))

• HIGH is Hi(x) = 1 − Li(x) = 1
1+exp(−bi(x−ci))

• VERY_SMALL is V S(x) = 1
1+exp(bS(x−cS−cV ))

• VERY_BIG is V B(x) = 1 − V S(x) = 1 − 1
1+exp(bS(x−cS−cV ))

• SMALL is S(x) = 1
1+exp(bS(x−cS))

• BIG is B(x) = 1 − S(x) = 1 − 1
1+exp(−bS(x−cS))
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Adaptive Neuro-Fuzzy Inference System [ANFIS] (II)

Define the fuzzy sets for the input and output variables:

• LOW is Li(x) = 1
1+exp(bi(x−ci))

• HIGH is Hi(x) = 1 − Li(x) = 1
1+exp(−bi(x−ci))

• VERY_SMALL is V S(x) = 1
1+exp(bS(x−cS−cV ))

• VERY_BIG is V B(x) = 1 − V S(x) = 1 − 1
1+exp(bS(x−cS−cV ))

• SMALL is S(x) = 1
1+exp(bS(x−cS))

• BIG is B(x) = 1 − S(x) = 1 − 1
1+exp(−bS(x−cS))

Let’s evaluate the daily portfolio value by Tsukamoto’s reasoning:

1. The firing level is obtained by: αj = L1(x1) ∧ L2(x2) ∧ L3(x3).

2. The output is derived: zj = FuzzySet−1(αj)

3. The overall output is composed: y =
P

j αj ·zj
P

j αj
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Adaptive Neuro-Fuzzy Inference System [ANFIS] (III)

Let’s evaluate the first rule by Tsukamoto’s reasoning:

1. The firing level is obtained by: α1 = L1(x1) ∧ L2(x2) ∧ L3(x3).

2. The output is derived: z1 = V B−1(αj) = cS + cV + 1
bB

ln 1−α1

α1

3. The overall output is composed: y = α1·z1+α3·z2+α3·z3

α1+α2+α3
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Adaptive Neuro-Fuzzy Inference System [ANFIS] (III)

Let’s evaluate the first rule by Tsukamoto’s reasoning:

1. The firing level is obtained by: α1 = L1(x1) ∧ L2(x2) ∧ L3(x3).

2. The output is derived: z1 = V B−1(αj) = cS + cV + 1
bB

ln 1−α1

α1

3. The overall output is composed: y = α1·z1+α3·z2+α3·z3
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Let’s evaluate the first rule by Tsukamoto’s reasoning:

1. The firing level is obtained by: α1 = L1(x1) ∧ L2(x2) ∧ L3(x3).

2. The output is derived: z1 = V B−1(αj) = cS + cV + 1
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3. The overall output is composed: y = α1·z1+α3·z2+α3·z3
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Let’s put it in a neural network!
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Adaptive Neuro-Fuzzy Inference System [ANFIS] (IV)
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Layer 1: The output of the nodes is the degree to which the give input
satisfies the linguistic label
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Adaptive Neuro-Fuzzy Inference System [ANFIS] (IV)
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Layer 2: Each node computes the firing strength of the associated rule
(rule nodes) using a t-norm operator
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Adaptive Neuro-Fuzzy Inference System [ANFIS] (IV)

x

   1

x
  2

H (.)

L (.)

   1

T(.)

H (.)

L (.)

  1

    2

    2

T(.)

y

z

S(.)

x
  3

H (.)

L (.)
    3

    3

T(.) N(.)

N(.)

N(.) P(.)

    3
z

    1

    2
z

\alpha
    1

\alpha
    2

\alpha
    3

\beta
    1

\beta
    2

\beta
    3

P(.)

P(.)

S  (.)
  -1

B  (.)
  -1

VB  (.)
  -1

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Layer 3: Nodes labeled N(.) perform a normalization of firing level
βj =

αj
P

j αj
. Others compute rule output (i.e., z1 = V B−1(α1))
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Adaptive Neuro-Fuzzy Inference System [ANFIS] (IV)
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Layer 4: Node in this layer compute the product of the normalized strength
βj and the rule output zj
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Adaptive Neuro-Fuzzy Inference System [ANFIS] (IV)
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Layer 5: The single node in this layer computes the overall system output
as the sum of all incoming signals y =

∑

j zj
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Adaptive Neuro-Fuzzy Inference System [ANFIS] (IV)
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Now you know the trick! Plug you best backpropagation algorithm and learn
your brand new Adaptive Neuro Fuzzy Inference System from data!
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The Neuro-Fuzzy Trick Explained

Given a rule set:

Rj : if x1 is Aj1 ∧ x2 is Aj2 ∧ . . . ∧ xI is AjI then y = zj
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The Neuro-Fuzzy Trick Explained

Given a rule set:

Rj : if x1 is Aj1 ∧ x2 is Aj2 ∧ . . . ∧ xI is AjI then y = zj

We can write a closed form to express its output as a non-linear mapping:

y = f(x) = f(x1, ...xI)
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The Neuro-Fuzzy Trick Explained

Given a rule set:

Rj : if x1 is Aj1 ∧ x2 is Aj2 ∧ . . . ∧ xI is AjI then y = zj

We can write a closed form to express its output as a non-linear mapping:

y = f(x) = f(x1, ...xI)

If this form is differentiable then it is possible to minimize and error function
(e.g., sum of squared errors) by gradient descend as with neural networks:

θt+1 = θt − η
∂E(f,D)

∂θ
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The Neuro-Fuzzy Trick Explained

Given a rule set:

Rj : if x1 is Aj1 ∧ x2 is Aj2 ∧ . . . ∧ xI is AjI then y = zj

We can write a closed form to express its output as a non-linear mapping:

y = f(x) = f(x1, ...xI)

If this form is differentiable then it is possible to minimize and error function
(e.g., sum of squared errors) by gradient descend as with neural networks:

θt+1 = θt − η
∂E(f,D)

∂θ

But only if we use differentiable t-norm, t-conorm, and inference!
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Neural Networks
– Self Organizing Maps –
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Self Organizing Features Maps: The Task

Kohonen Self Organizing Features Maps (a.k.a SOM) provide a way to
represent multidimensional data in much lower dimensional spaces.

• They implement a data compression technique similar to vector
quantization

• They store information in such a way that any topological relationships
within the training set are maintained
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Self Organizing Features Maps: The Task

Kohonen Self Organizing Features Maps (a.k.a SOM) provide a way to
represent multidimensional data in much lower dimensional spaces.

• They implement a data compression technique similar to vector
quantization

• They store information in such a way that any topological relationships
within the training set are maintained

Example: Mapping of colors from their three dimensional components (i.e.,
red, green and blue) into two dimensions.
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Self Organizing Features Maps: The Topology

Input

Layer

Output Layer
• The network is a lattice of

‘nodes’, each of which is fully
connected to the input layer

• Each node has a specific
topological position and contains
a vector of weights of the same
dimension as the input vectors

• There are no lateral connections
between nodes within the lattice
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Self Organizing Features Maps: The Topology

Input

Layer

Output Layer
• The network is a lattice of

‘nodes’, each of which is fully
connected to the input layer

• Each node has a specific
topological position and contains
a vector of weights of the same
dimension as the input vectors

• There are no lateral connections
between nodes within the lattice

A SOM does not need a target output to be specified; instead, where the
node weights match the input vector, that area of the lattice is selectively

optimized to more closely resemble the data vector
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Self Organizing Features Maps: The Algorithm

Training occurs in several steps over many iterations:

1. Initialize each node’s weights
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Self Organizing Features Maps: The Algorithm

Training occurs in several steps over many iterations:

1. Initialize each node’s weights

2. Presented a random vector from the training set to the lattice
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Self Organizing Features Maps: The Algorithm

Training occurs in several steps over many iterations:

1. Initialize each node’s weights

2. Presented a random vector from the training set to the lattice

3. Examinate every node to calculate which one’s weights are most like
the input vector (the winning node is commonly known as the Best
Matching Unit)
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Self Organizing Features Maps: The Algorithm

Training occurs in several steps over many iterations:

1. Initialize each node’s weights

2. Presented a random vector from the training set to the lattice

3. Examinate every node to calculate which one’s weights are most like
the input vector (the winning node is commonly known as the Best
Matching Unit)

4. Calculate the radius of the neighborhood of the BMU (this is a value
that starts large, typically set to the ’radius’ of the lattice, but
diminishes each time-step), any nodes found within this radius are
deemed to be inside the BMU’s neighborhood
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Self Organizing Features Maps: The Algorithm

Training occurs in several steps over many iterations:

1. Initialize each node’s weights

2. Presented a random vector from the training set to the lattice

3. Examinate every node to calculate which one’s weights are most like
the input vector (the winning node is commonly known as the Best
Matching Unit)

4. Calculate the radius of the neighborhood of the BMU (this is a value
that starts large, typically set to the ’radius’ of the lattice, but
diminishes each time-step), any nodes found within this radius are
deemed to be inside the BMU’s neighborhood

5. Each neighboring node’s weights are adjusted to make them more
like the input vector. The closer a node is to the BMU, the more its
weights get altered

Lecture Notes on Natural Computation – Matteo Matteucci (matteucci@elet.polimi.it) – p. 70/73



Self Organizing Features Maps: The Algorithm

Training occurs in several steps over many iterations:

1. Initialize each node’s weights

2. Presented a random vector from the training set to the lattice

3. Examinate every node to calculate which one’s weights are most like
the input vector (the winning node is commonly known as the Best
Matching Unit)

4. Calculate the radius of the neighborhood of the BMU (this is a value
that starts large, typically set to the ’radius’ of the lattice, but
diminishes each time-step), any nodes found within this radius are
deemed to be inside the BMU’s neighborhood

5. Each neighboring node’s weights are adjusted to make them more
like the input vector. The closer a node is to the BMU, the more its
weights get altered

6. Repeat step 2 for N iterations
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Practical Learning of Self Organizing Features Maps

There are few things that have to be specified in the previous algorithm:
• Choosing the weights initialization
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Practical Learning of Self Organizing Features Maps

There are few things that have to be specified in the previous algorithm:
• Choosing the weights initialization
• We select the Best Matching Unit according to its the weight distance

from the input vector:
||x − wi|| =

√

∑p
k=1(x[k] − wi[k])2
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Practical Learning of Self Organizing Features Maps

There are few things that have to be specified in the previous algorithm:
• Choosing the weights initialization
• We select the Best Matching Unit according to its the weight distance

from the input vector:
||x − wi|| =

√

∑p
k=1(x[k] − wi[k])2

• Select the neighborhood according to some decreasing function

hij = e−
(i−j)2

2σ2
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Practical Learning of Self Organizing Features Maps

There are few things that have to be specified in the previous algorithm:
• Choosing the weights initialization
• We select the Best Matching Unit according to its the weight distance

from the input vector:
||x − wi|| =

√

∑p
k=1(x[k] − wi[k])2

• Select the neighborhood according to some decreasing function

hij = e−
(i−j)2

2σ2

• Define the updating rule

wi(t+1) =

{

wi + α(t)[x(t) − wi(t)], i ∈ Ni(t)

wi, i /∈ Ni(t)
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Self Organizing Feature Maps Demo

Stolen from:
http://www.ai-junkie.com
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Material on Neural Networks

• Machine Learning, T. Mitchell, McGraw Hill, 1997

• Neural Networks and Pattern Recognition, C. Bishop, Oxford
University Press, 1995

• Reti Neuronali e Metordi Statistici, a cura di Salvatore Ingrassia e
Cristina Davino, Franco Angeli editore, 2002

• Neural Networks FAQ: ftp://ftp.sas.com/pub/neural/FAQ.html

. . . and much much more on the net!
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ftp://ftp.sas.com/pub/neural/FAQ.html
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