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What are Genetic Algorithms? 

 

Algorithms to learn (sub-optimal) models  

inspired by the biological genetic model 

 

Each model can be considered as the solution of a problem 
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Looking for solutions of a problem 

Looking for solutions of a problem is different from looking for data in a 

database: the potential solutions might be so many that it could not 

possible even list all of them. 

 

We would like to generate candidate solutions to be evaluated, by 

applying some criteria to riduce this generation to the ones that could be 

good enough to be considered. 

 

Many algorithms to search for solutions exhist, each applicable in 

particular conditions, and showing different performances on different 

problems (hill climbing, A*, tabu search, simulated annealing, ...) 
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Search space 

We say that we search a solution in a search space. 

 

The quality of the solution is called "fitness" in analogy with the biological 

terminology. 

 

Genetic algorithms are an effective  tool to search in very large search 

spaces (e.g., 1070), also when these show irregularities. 

 

GA recombine parts of solutions to generate better ones. There is no 

guarantee to get to the optimum, but it is proved that the solutions are 

improving with the iterations of the algorithm.  
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Fitness landscape 

The fitness landscape is a spatial 

representation of the solutions with the 

respective quality 

 

If we have two values to represent the 

solution, we can visualize the fitness 

landscape in a three-dimensional space, 

where we could see mountains and 

valleys. 

 

Genetic algorithms are quite good also 

when the fitness landscape has many 

local minima and maxima. 
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Short history 

Genetic Algorithms are a part of evolutionary computation, and they are inspired 
by Darwin's theory of evolution: Problems are solved by an evolutionary process 
that mimics natural evolution in looking for a best (fittest) solution (survivor). 

 

We can trace a brief history of evolutionary computation: 

1960: Ingo Rechenberg introduces the idea of evolutionary computing in his 
work "Evolution strategies" 

1975: John Holland invents Genetic Algorithms and publishes his book "Adaption 
in Natural and Artificial Systems" 

1992: John Koza uses genetic algorithm to evolve programs to perform certain 
tasks. He called his method Genetic Programming 

1995: Stewart Wilson re-invents learning classifier systems with XCS: GA to learn 
rules... 
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Applications of genetic algorithms 

Optimization: circuit layout, job shop scheduling... 

Automatic programming: evolving computer programs, inventions, … 

Classification: classifying etities from theri features 

Prediction: whether forecast, proteins ... 

Economy: bidding strategies, market evolution, ... 

Ecology: biological arm races, host-parasite coevolution, ... 

... 



Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)  - 8 of 45 

Terminology 

In biology 

 

Chromosome: information that characerizes an individual 

 

Gene: elementary information contained in chromosomes (e.g.: eye color); 

each gene has a specific position in the chromosome 

 

Allele: value for a gene (e.g.: brown, blue, ...) 

 

Genome: the complete collection of the genetic material (all chromosomes) 
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Terminology (2) 

Genotype: the specific set of genes contained in the genome; two 

individuals with the same genome have the same genotype 

 

Fenotype: specific set of genes for an individual (physical features) 

 

Diploid: individual with paired chromosomes 

 

Haploid: individual with non-paired chomosomes 
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Terminology (3) 

Crossover: in sexual reproduction, paired chromosomes exchange genetic 

material to generate a gamete that combines with that of the other parent 

to generate the diploides of the offsprings. In the haploid reproduction, 

the chromosomes of the parents mix with each other to obtain the 

offsprings' chomosome. 

 

Mutation: a gene changes during reproduction 

 

Fitness: probability of life and of reproduction, or, also, function of the 

generated offsping 
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From biology to genetic algorithms 

Chromosome:  candidate solution for a problem, usually represented by a 

bit string or a character string 

 

Gene: single bit, or set of bits, that charaerize a solution 

 

Allele: in a bit string is either 0 or 1; in generale: an elelment of the 

alphabet used to represent a chromosome 

 

In general,  reproduction is haploid 
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How does a genetic algorithm work? 

1.  [Start] Generate random population of n chromosomes (suitable solutions) 

2. [Fitness] Evaluate the fitness f(x) of each chromosome x in the population 

3. [Test] If the end condition is satisfied, return the best solution in current 
population, otherwise 

4.  [New population] Create a new population by repeating the following steps until the 
  new population is complete 

(a)  [Selection] Select two parent chromosomes from a population according to 
their fitness (the better fitness, the bigger chance to be selected) 

(b)  [Crossover] With a crossover probability cross over the parents to form new 
offspring. If no crossover was performed, offspring is the exact copy of parents. 

(c)  [Mutation] With a mutation probability mutate new offsprings at each locus 

(d)  [Accepting] Place new offsprings in the new population 

5.  [Replace] Use new generated population for a further run of the algorithm 

6.  [Loop] Go to step 2 
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Designing genetic algorithm applications 

There are many parameters and settings that can be implemented 

differently in various problems: 

•How to define a fitness function 

•How to create chromosomes and what type of encoding do we have to 

choose 

•How to select parents for crossover in the hope that the better parents will 

produce better offspring 

•How to define crossover and mutation, the two basic operators of GA 
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Fitness Function 

f(x) is used to evaluate the quality (fitness) of an individual (solution). It 

defines the solution to be found and drives the search. 

 

The evaluation is used to sort the individuals, fundamental operation for 

genetic evolution. 
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Data model 

Sets (populations) of chromosomes, each representing a candidate solution 

for the proposed problem.  

The first step in developing a genetic algorithm is defining how to encode a 

solution: 

• A chromosome should in some way contain information about the solution 

that it represents 

• The encoding depends mainly on the problem to be solved (e.g., integer or 

real numbers, permutations, parsing trees, . . . ) 

 

E.g.: 

   0 1 1 0 1 1 0 0 1 1 

   Low High Medium Low Low 

   1.234 67.345 899.00 78.786 
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Binary encoding 

Binary encoding is the most common one, mainly because, when all 

configurations are used, it guarantees the maximum exploitation of 
the information representation. 

• In binary encoding, every chromosome is a string of bits (0 or 1) 

• Simple implementation of the genetic operators 

• Not natural for many problems 

 

E.g.: 

   0 1 1 0 1 1 0 0 1 1 
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Binary encoding: operators 

For binary encoding we have many operators. 

• Single point crossover: one crossover point is selected, the binary 
string from the beginning of the chromosome to the crossover 
point is copied from the first parent, the rest is copied from the 
other parent 

 

 

 

   0 0 1 1 0 0 0 1    0 0 1 1 1 1 0 0 

 

 

      1 0 0 1 1 1 0 0    1 0 0 1 0 0 0 1 
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Binary encoding: operators (2) 

• Two point crossover: two crossover points are selected, binary 
string from the beginning of the chromosome to the first crossover 
point is copied from the first parent, the part from the first to the 
second crossover point is copied from the other parent and the rest 
is copied from the first parent again 

• Uniform crossover: bits are randomly copied from the first or from 
the second parent 

• Arithmetic crossover: some arithmetic operation is performed to 
make a new offspring (e.g., logic AND) 

• Mutation: inversion of bits selected with a given probability 
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Binary encoding: example 

 Knapsack problem 

• There are things with given value and size. The knapsack has given 
capacity. Select things to maximize the value of things in knapsack, 
but do not extend knapsack capacity. 

• Each bit says whether the corresponding thing is in the knapsack. 
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Another example 

In this simple example we are looking for the extreme of a function 

defined over a search space. 

1.  Search Space: An interval of the real line 

2.  Fitness Function: The value of the function we are “exploring” 

Why should we use genetic algorithms for this? 

Because functions may get quite nasty ;) 
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An example 

Our chromosome may look like these: 

Cromosome 1  1 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 

Cromosome 2   1 0 1 1 1 1 0 0 0 1 1 1 1 0 0 1 

 

Each chromosome is represented as the binary code of a real number 

We apply single point crossover and standard flipping value mutation  

 

A demo stolen from: 

http://www.obitko.com/tutorials/genetic-algorithms/example-function-

minimum.php 

 

http://www.obitko.com/tutorials/genetic-algorithms/example-function-minimum.php
http://www.obitko.com/tutorials/genetic-algorithms/example-function-minimum.php
http://www.obitko.com/tutorials/genetic-algorithms/example-function-minimum.php
http://www.obitko.com/tutorials/genetic-algorithms/example-function-minimum.php
http://www.obitko.com/tutorials/genetic-algorithms/example-function-minimum.php
http://www.obitko.com/tutorials/genetic-algorithms/example-function-minimum.php
http://www.obitko.com/tutorials/genetic-algorithms/example-function-minimum.php
http://www.obitko.com/tutorials/genetic-algorithms/example-function-minimum.php
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Permutation encoding 

Permutation encoding can be used in ordering problems 

• Every chromosome is a string of numbers that represent a position 
in a sequence 

• Crossover and mutation must be designed to leave the chromosome 
consistent (i.e., have real sequence in it) 

 

 E.g.: 

Cromosome 1   15 7 8 3 5 13 10 11 16 12 1 14 2 4 6 9  

Cromosome 2  2 9 14 1 11 5 8 15 13 6 12 16 7 3 10 4  
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Permutation encoding: operators 

For permutation encoding we have to preserve consistency of the 
solution 

 

• Single point crossover: one crossover point is selected, the 
permutation is copied from the first parent till the crossover point,  
then the other parent is scanned looking the other numbers 

 (1 2 3 4 5 6 7 8 9) + (4 5 3 6 8 9 7 2 1) = (1 2 3 4 5 6 8 9 7) 

 

• Order changing mutation: two numbers are selected and exchanged 

 (1 2 3 4 5 6 8 9 7) ⇒ (1 8 3 4 5 6 2 9 7) 



Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)  - 24 of 45 

Permutation encoding example 

Traveling salesman problem (TSP) 

• There are cities and given distances between them. Traveling 
salesman has to visit all of them, but he does not want to travel 
more than necessary. Find a sequence of cities with a minimal 
traveled distance. 

• The chromosome describes the order of cities 

 

An example stolen from: 

http://www.obitko.com/tutorials/genetic-algorithms/tsp-example.php 
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Direct value encoding 

Direct value encoding can be used in problems where some more 

complicated values are required 

• Every chromosome is a sequence of some values connected to the 
problem, such as (real) numbers, chars or any objects 

• Good choice for some special problems, but necessary to develop 
some specific crossover and mutation 

Cromosome1  -  A  B  H   YV V 

Cromosome2   -   2.5678 1.4361 3.3426 7.8761 

Cromosome3  -  close open walk  back 
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Direct value: operators 

For real value encoding we can reuse crossover from binary 
encoding: 

• Creep mutation: a small number is added (or subtracted) to 
selected values 

 

(1.29 5.68 2.86 4.11 5.55) ⇒ (1.29 5.68 2.73 4.22 5.55) 
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Direct encoding example 

Finding weights for a neural network 

• A neural network is given with defined architecture. Find weights 
between neurons to get the desired output from the network 

• Real values in chromosomes represent weights in the neural 
network 
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Tree encoding 

Tree encoding is used mainly for evolving programs or expressions   
(i.e., genetic programming) 

• Every chromosome is a tree of some objects, such as functions or 
commands in programming language. 

• Programming language LISP is often used for this purpose, so  
crossover and mutation can be done relatively easily. 

Cromosome (+ X (/ 5 y)) 

 

 

x 

+ 

/ 

5 y 
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Tree encoding: operators 

Crossover cuts a link and excanges material. Mutation changes values 
in nodes 

x 

+ 

/ 

5 y 

y 

- 

* 

6 x 

x 

+ 

* 

6 x 
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Tree encoding example 

Finding  a  function that would best match given pairs of values 
(approximant function) 

• Input and output values are given. The task is to find a function 
that will give the best outputs for all inputs. 

• Chromosome are functions represented in a tree 
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Selection of the individuals 

According to Darwin's theory of evolution the best chromosomes 
survive to create new offspring.  

The best individuals should be selected to contribute to the new 
population so that it improves. They are the ones that mate to 
generate hopefully better offsprings. 

Genetic operators are applied to pairs of good individuals to generate 
offsprings to be inserted in the population. 
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Selection methods 

There are many methods to select the best chromosomes: 

• Roulette wheel selection, 

• Rank selection 

• Tournament selection 

• Boltzmann selection 

• . . . 
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Roulette wheel selection 

Parents are selected proportionally to their fitness. 

The better they are, the more chances to be selected they have. 

1.  Imagine a roulette wheel where all the chromosomes in the 
population are placed 

2.  The size of the section in the roulette wheel is proportional to the 
value of the fitness function of every chromosome - the bigger the 
value is, the larger the section is 

3. A marble is thrown in the roulette wheel and the chromosome  
where it stops is selected 

 

 

 

 

Possible problems if there is a large difference of fitness from the best 
to the worst, which could hardly be selected. 
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Rank selection 

Parents are ranked and the selection probability is proportional to the 
rank. 

 

 

 

 

Roulette before ranking 

 

 

 

 

Roulette after ranking 

 

Possible problems: slow convergence, due to small difference 
between best and worst parents. 



Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it)  - 35 of 45 

Tournament selection 

 Parents are pooled and a tournament is held within the pool(s). 

 

Pseudocode: 

• choose k (the tournament size) individuals from the population at 
random 

• choose the best individual from pool/tournament with probability p 

• choose the second best individual with probability p ∗ (1 − p) 

• choose the third best individual with probability p ∗ ((1 − p)2 ) 

• and so on... 

 

Efficient implementation, easy to adjust. 
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Boltzmann selection 

Parents are selected with a probability that favors exploration at the 
beginning of learning and tends to stabilize and select the best 
solutions as generations proceed. 

Let 

  

 be the fitness value of the best individual so far obtained,  
and 

     
 be the fitness of the current string 

   
. If 

     
> 

  
  then 

the current string is taken, otherwise it is taken with a probability as: 

                  
 

where           
 

and  ∈ [0, 1], T0∈ [5, 100], 

      k = 1 + 100 ∗ g/G 

where g is the generation number and G the maximum number of 

generations 
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Reproduction 

How the new individuals are generated? 

 

10101110 (0.98) 

01000100 (0.95)       ? 

11101000 (0.88) 

00101011 (0.75) 

01010100 (0.56) 

00101000 (0.42) 
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Copy operator 

When creating a new population, we have a big chance that we will lose 
the best chromosome. 

Elitism is the name of the method that first copies the best chromosome 
(or few best chromosomes) to the new population. It can rapidly increase 
the performance, because it prevents a loss of the so–far best found 
solution. 

The copy operator simply copies the individual in the new population. 

 

The other operators used are crossover and mutation, already introduced. 
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Why does crossover work? 

Hypothesis: an individual is good because it contains good sequences 

(building blocks hypothesis) 

 

There is some probability that crossover compose good solution parts 

obtaining an individual better than its parents 

 

Crossover point is randomly selected in order to avoid blocking the 

dimension of the building blocks to be found 
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Schemata 

Holland (1975) formalizes the idea ofbuilding block 

 

A schema is a set of strings  described by a template made of 0, 1 and  *,  

where * is a wildcard character and stands for any of the others 

E.g., 

 H=1****1  

 represents any bit string that starts and ends by 1. 

The order of the schema is the number of defined bits (in this case 2) 

 

Any bit string of length l is an individual made of  2l schemata. 

Any string evaluation actually evaluate many schemata. 

The more the evaluated strings for a schema, the more the average value 

reliably represents its value 
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Schema theorem 

The expected number of individuals belonging to the same schema, at the 

next step is bounded by: 
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Consequence of the schema theorem 

Short schemata, of low order, whose fitness is higher than the average 

fitness of teh population have a number of samples evaluated that grows 

exponentially, given that they are less damaged by crossover and mutation 

 

 

 

Convergency 

 

 

 

Given that many schemata are evaluated at the same time, we can say that 

Genetic Algorithms exploit implicit parallelism 
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When should we use genetic algorithms? 

• large, non-unimodal, non-smooth search space 

• a global optimum is not strictly required, but a sub-optimal 

solution found in a short time is acceptableIl problema non 

richiede un ottimo globale, ma si accontenta di un sub-ottimo 

trovato rapidamente 

• fitness function is noisy 

 

If… 

• the search space is small => exaustive search 

• the search space is unimodal => steepest ascent (e.g., 

gradient) 

• The search space is known => heuristics 
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Some general modeling criteria 

• Shorter strings are easier to learn 

• The chromosome should describe completely the solution 

• Binary representation gives the highest possibility to develop building 
blocks 

• Aim at supporting  the presence of significant building blocks 
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Rules of thumb 

These “rules of thumb” are often results of empiric studies performed on 
binary encoding only, but they usually work fine . . . 

• Crossover rate should be high, generally about 80% − 95% (however 
some results show that for some problems crossover rate about 60% is 
the best.) 

• Mutation rate should be very low. Good rates could be about 0.5% − 1% 
per allele 

• Very big population size usually does not improve performance (in the 
sense of speed of finding solution). Good population size is about 20 − 30, 
however sometimes sizes 50 − 100 are reported as the best 

• Basic roulette wheel selection can be used, but sometimes rank or 
tournament selection can be better. Elitism should be used for sure if you 
do not use other method for saving the best found solution 


