
Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 1 of 45

Genetic Algorithms

Andrea Bonarini

Artificial Intelligence and Robotics Lab

Department of Electronics, Information, and Bioengineering

Politecnico di Milano

E-mail: andrea.bonarini@polimi.it

URL:http://www.deib.polimi.it/people/bonarini

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 2 of 45

What are Genetic Algorithms?

Algorithms to learn (sub-optimal) models

inspired by the biological genetic model

Each model can be considered as the solution of a problem

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 3 of 45

Looking for solutions of a problem

Looking for solutions of a problem is different from looking for data in a

database: the potential solutions might be so many that it could not

possible even list all of them.

We would like to generate candidate solutions to be evaluated, by

applying some criteria to riduce this generation to the ones that could be

good enough to be considered.

Many algorithms to search for solutions exhist, each applicable in

particular conditions, and showing different performances on different

problems (hill climbing, A*, tabu search, simulated annealing, ...)

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 4 of 45

Search space

We say that we search a solution in a search space.

The quality of the solution is called "fitness" in analogy with the biological

terminology.

Genetic algorithms are an effective tool to search in very large search

spaces (e.g., 1070), also when these show irregularities.

GA recombine parts of solutions to generate better ones. There is no

guarantee to get to the optimum, but it is proved that the solutions are

improving with the iterations of the algorithm.

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 5 of 45

Fitness landscape

The fitness landscape is a spatial

representation of the solutions with the

respective quality

If we have two values to represent the

solution, we can visualize the fitness

landscape in a three-dimensional space,

where we could see mountains and

valleys.

Genetic algorithms are quite good also

when the fitness landscape has many

local minima and maxima.

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 6 of 45

Short history

Genetic Algorithms are a part of evolutionary computation, and they are inspired
by Darwin's theory of evolution: Problems are solved by an evolutionary process
that mimics natural evolution in looking for a best (fittest) solution (survivor).

We can trace a brief history of evolutionary computation:

1960: Ingo Rechenberg introduces the idea of evolutionary computing in his
work "Evolution strategies"

1975: John Holland invents Genetic Algorithms and publishes his book "Adaption
in Natural and Artificial Systems"

1992: John Koza uses genetic algorithm to evolve programs to perform certain
tasks. He called his method Genetic Programming

1995: Stewart Wilson re-invents learning classifier systems with XCS: GA to learn
rules...

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 7 of 45

Applications of genetic algorithms

Optimization: circuit layout, job shop scheduling...

Automatic programming: evolving computer programs, inventions, …

Classification: classifying etities from theri features

Prediction: whether forecast, proteins ...

Economy: bidding strategies, market evolution, ...

Ecology: biological arm races, host-parasite coevolution, ...

...

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 8 of 45

Terminology

In biology

Chromosome: information that characerizes an individual

Gene: elementary information contained in chromosomes (e.g.: eye color);

each gene has a specific position in the chromosome

Allele: value for a gene (e.g.: brown, blue, ...)

Genome: the complete collection of the genetic material (all chromosomes)

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 9 of 45

Terminology (2)

Genotype: the specific set of genes contained in the genome; two

individuals with the same genome have the same genotype

Fenotype: specific set of genes for an individual (physical features)

Diploid: individual with paired chromosomes

Haploid: individual with non-paired chomosomes

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 10 of 45

Terminology (3)

Crossover: in sexual reproduction, paired chromosomes exchange genetic

material to generate a gamete that combines with that of the other parent

to generate the diploides of the offsprings. In the haploid reproduction,

the chromosomes of the parents mix with each other to obtain the

offsprings' chomosome.

Mutation: a gene changes during reproduction

Fitness: probability of life and of reproduction, or, also, function of the

generated offsping

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 11 of 45

From biology to genetic algorithms

Chromosome: candidate solution for a problem, usually represented by a

bit string or a character string

Gene: single bit, or set of bits, that charaerize a solution

Allele: in a bit string is either 0 or 1; in generale: an elelment of the

alphabet used to represent a chromosome

In general, reproduction is haploid

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 12 of 45

How does a genetic algorithm work?

1. [Start] Generate random population of n chromosomes (suitable solutions)

2. [Fitness] Evaluate the fitness f(x) of each chromosome x in the population

3. [Test] If the end condition is satisfied, return the best solution in current
population, otherwise

4. [New population] Create a new population by repeating the following steps until the
 new population is complete

(a) [Selection] Select two parent chromosomes from a population according to
their fitness (the better fitness, the bigger chance to be selected)

(b) [Crossover] With a crossover probability cross over the parents to form new
offspring. If no crossover was performed, offspring is the exact copy of parents.

(c) [Mutation] With a mutation probability mutate new offsprings at each locus

(d) [Accepting] Place new offsprings in the new population

5. [Replace] Use new generated population for a further run of the algorithm

6. [Loop] Go to step 2

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 13 of 45

Designing genetic algorithm applications

There are many parameters and settings that can be implemented

differently in various problems:

•How to define a fitness function

•How to create chromosomes and what type of encoding do we have to

choose

•How to select parents for crossover in the hope that the better parents will

produce better offspring

•How to define crossover and mutation, the two basic operators of GA

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 14 of 45

Fitness Function

f(x) is used to evaluate the quality (fitness) of an individual (solution). It

defines the solution to be found and drives the search.

The evaluation is used to sort the individuals, fundamental operation for

genetic evolution.

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 15 of 45

Data model

Sets (populations) of chromosomes, each representing a candidate solution

for the proposed problem.

The first step in developing a genetic algorithm is defining how to encode a

solution:

• A chromosome should in some way contain information about the solution

that it represents

• The encoding depends mainly on the problem to be solved (e.g., integer or

real numbers, permutations, parsing trees, . . .)

E.g.:

 0 1 1 0 1 1 0 0 1 1

 Low High Medium Low Low

 1.234 67.345 899.00 78.786

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 16 of 45

Binary encoding

Binary encoding is the most common one, mainly because, when all

configurations are used, it guarantees the maximum exploitation of
the information representation.

• In binary encoding, every chromosome is a string of bits (0 or 1)

• Simple implementation of the genetic operators

• Not natural for many problems

E.g.:

 0 1 1 0 1 1 0 0 1 1

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 17 of 45

Binary encoding: operators

For binary encoding we have many operators.

• Single point crossover: one crossover point is selected, the binary
string from the beginning of the chromosome to the crossover
point is copied from the first parent, the rest is copied from the
other parent

 0 0 1 1 0 0 0 1 0 0 1 1 1 1 0 0

 1 0 0 1 1 1 0 0 1 0 0 1 0 0 0 1

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 18 of 45

Binary encoding: operators (2)

• Two point crossover: two crossover points are selected, binary
string from the beginning of the chromosome to the first crossover
point is copied from the first parent, the part from the first to the
second crossover point is copied from the other parent and the rest
is copied from the first parent again

• Uniform crossover: bits are randomly copied from the first or from
the second parent

• Arithmetic crossover: some arithmetic operation is performed to
make a new offspring (e.g., logic AND)

• Mutation: inversion of bits selected with a given probability

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 19 of 45

Binary encoding: example

 Knapsack problem

• There are things with given value and size. The knapsack has given
capacity. Select things to maximize the value of things in knapsack,
but do not extend knapsack capacity.

• Each bit says whether the corresponding thing is in the knapsack.

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 20 of 45

Another example

In this simple example we are looking for the extreme of a function

defined over a search space.

1. Search Space: An interval of the real line

2. Fitness Function: The value of the function we are “exploring”

Why should we use genetic algorithms for this?

Because functions may get quite nasty ;)

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 21 of 45

An example

Our chromosome may look like these:

Cromosome 1 1 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0

Cromosome 2 1 0 1 1 1 1 0 0 0 1 1 1 1 0 0 1

Each chromosome is represented as the binary code of a real number

We apply single point crossover and standard flipping value mutation

A demo stolen from:

http://www.obitko.com/tutorials/genetic-algorithms/example-function-

minimum.php

http://www.obitko.com/tutorials/genetic-algorithms/example-function-minimum.php
http://www.obitko.com/tutorials/genetic-algorithms/example-function-minimum.php
http://www.obitko.com/tutorials/genetic-algorithms/example-function-minimum.php
http://www.obitko.com/tutorials/genetic-algorithms/example-function-minimum.php
http://www.obitko.com/tutorials/genetic-algorithms/example-function-minimum.php
http://www.obitko.com/tutorials/genetic-algorithms/example-function-minimum.php
http://www.obitko.com/tutorials/genetic-algorithms/example-function-minimum.php
http://www.obitko.com/tutorials/genetic-algorithms/example-function-minimum.php

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 22 of 45

Permutation encoding

Permutation encoding can be used in ordering problems

• Every chromosome is a string of numbers that represent a position
in a sequence

• Crossover and mutation must be designed to leave the chromosome
consistent (i.e., have real sequence in it)

 E.g.:

Cromosome 1 15 7 8 3 5 13 10 11 16 12 1 14 2 4 6 9

Cromosome 2 2 9 14 1 11 5 8 15 13 6 12 16 7 3 10 4

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 23 of 45

Permutation encoding: operators

For permutation encoding we have to preserve consistency of the
solution

• Single point crossover: one crossover point is selected, the
permutation is copied from the first parent till the crossover point,
then the other parent is scanned looking the other numbers

 (1 2 3 4 5 6 7 8 9) + (4 5 3 6 8 9 7 2 1) = (1 2 3 4 5 6 8 9 7)

• Order changing mutation: two numbers are selected and exchanged

 (1 2 3 4 5 6 8 9 7) ⇒ (1 8 3 4 5 6 2 9 7)

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 24 of 45

Permutation encoding example

Traveling salesman problem (TSP)

• There are cities and given distances between them. Traveling
salesman has to visit all of them, but he does not want to travel
more than necessary. Find a sequence of cities with a minimal
traveled distance.

• The chromosome describes the order of cities

An example stolen from:

http://www.obitko.com/tutorials/genetic-algorithms/tsp-example.php

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 25 of 45

Direct value encoding

Direct value encoding can be used in problems where some more

complicated values are required

• Every chromosome is a sequence of some values connected to the
problem, such as (real) numbers, chars or any objects

• Good choice for some special problems, but necessary to develop
some specific crossover and mutation

Cromosome1 - A B H YV V

Cromosome2 - 2.5678 1.4361 3.3426 7.8761

Cromosome3 - close open walk back

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 26 of 45

Direct value: operators

For real value encoding we can reuse crossover from binary
encoding:

• Creep mutation: a small number is added (or subtracted) to
selected values

(1.29 5.68 2.86 4.11 5.55) ⇒ (1.29 5.68 2.73 4.22 5.55)

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 27 of 45

Direct encoding example

Finding weights for a neural network

• A neural network is given with defined architecture. Find weights
between neurons to get the desired output from the network

• Real values in chromosomes represent weights in the neural
network

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 28 of 45

Tree encoding

Tree encoding is used mainly for evolving programs or expressions
(i.e., genetic programming)

• Every chromosome is a tree of some objects, such as functions or
commands in programming language.

• Programming language LISP is often used for this purpose, so
crossover and mutation can be done relatively easily.

Cromosome (+ X (/ 5 y))

x

+

/

5 y

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 29 of 45

Tree encoding: operators

Crossover cuts a link and excanges material. Mutation changes values
in nodes

x

+

/

5 y

y

-

*

6 x

x

+

*

6 x

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 30 of 45

Tree encoding example

Finding a function that would best match given pairs of values
(approximant function)

• Input and output values are given. The task is to find a function
that will give the best outputs for all inputs.

• Chromosome are functions represented in a tree

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 31 of 45

Selection of the individuals

According to Darwin's theory of evolution the best chromosomes
survive to create new offspring.

The best individuals should be selected to contribute to the new
population so that it improves. They are the ones that mate to
generate hopefully better offsprings.

Genetic operators are applied to pairs of good individuals to generate
offsprings to be inserted in the population.

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 32 of 45

Selection methods

There are many methods to select the best chromosomes:

• Roulette wheel selection,

• Rank selection

• Tournament selection

• Boltzmann selection

• . . .

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 33 of 45

Roulette wheel selection

Parents are selected proportionally to their fitness.

The better they are, the more chances to be selected they have.

1. Imagine a roulette wheel where all the chromosomes in the
population are placed

2. The size of the section in the roulette wheel is proportional to the
value of the fitness function of every chromosome - the bigger the
value is, the larger the section is

3. A marble is thrown in the roulette wheel and the chromosome
where it stops is selected

Possible problems if there is a large difference of fitness from the best
to the worst, which could hardly be selected.

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 34 of 45

Rank selection

Parents are ranked and the selection probability is proportional to the
rank.

Roulette before ranking

Roulette after ranking

Possible problems: slow convergence, due to small difference
between best and worst parents.

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 35 of 45

Tournament selection

 Parents are pooled and a tournament is held within the pool(s).

Pseudocode:

• choose k (the tournament size) individuals from the population at
random

• choose the best individual from pool/tournament with probability p

• choose the second best individual with probability p ∗ (1 − p)

• choose the third best individual with probability p ∗ ((1 − p)2)

• and so on...

Efficient implementation, easy to adjust.

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 36 of 45

Boltzmann selection

Parents are selected with a probability that favors exploration at the
beginning of learning and tends to stabilize and select the best
solutions as generations proceed.

Let

 be the fitness value of the best individual so far obtained,
and

 be the fitness of the current string

. If

>

 then

the current string is taken, otherwise it is taken with a probability as:

where

and ∈ [0, 1], T0∈ [5, 100],

 k = 1 + 100 ∗ g/G

where g is the generation number and G the maximum number of

generations

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 37 of 45

Reproduction

How the new individuals are generated?

10101110 (0.98)

01000100 (0.95) ?

11101000 (0.88)

00101011 (0.75)

01010100 (0.56)

00101000 (0.42)

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 38 of 45

Copy operator

When creating a new population, we have a big chance that we will lose
the best chromosome.

Elitism is the name of the method that first copies the best chromosome
(or few best chromosomes) to the new population. It can rapidly increase
the performance, because it prevents a loss of the so–far best found
solution.

The copy operator simply copies the individual in the new population.

The other operators used are crossover and mutation, already introduced.

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 39 of 45

Why does crossover work?

Hypothesis: an individual is good because it contains good sequences

(building blocks hypothesis)

There is some probability that crossover compose good solution parts

obtaining an individual better than its parents

Crossover point is randomly selected in order to avoid blocking the

dimension of the building blocks to be found

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 40 of 45

Schemata

Holland (1975) formalizes the idea ofbuilding block

A schema is a set of strings described by a template made of 0, 1 and *,

where * is a wildcard character and stands for any of the others

E.g.,

 H=1****1

 represents any bit string that starts and ends by 1.

The order of the schema is the number of defined bits (in this case 2)

Any bit string of length l is an individual made of 2l schemata.

Any string evaluation actually evaluate many schemata.

The more the evaluated strings for a schema, the more the average value

reliably represents its value

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 41 of 45

Schema theorem

The expected number of individuals belonging to the same schema, at the

next step is bounded by:

)(

)1(

1

)(
1),(

)(

),(ˆ
))1,((

Ho

mc
p

l

Hd
ptHm

tf

tHu
tHmE

Average fitness
observed for H

Average
fitness in the
population

Number of
individuals of
type H at time t

Crossover
probability Length of H

Legth of
strings in the
search space

Mutation
Probability

Number of
bits defined
in H

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 42 of 45

Consequence of the schema theorem

Short schemata, of low order, whose fitness is higher than the average

fitness of teh population have a number of samples evaluated that grows

exponentially, given that they are less damaged by crossover and mutation

Convergency

Given that many schemata are evaluated at the same time, we can say that

Genetic Algorithms exploit implicit parallelism

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 43 of 45

When should we use genetic algorithms?

• large, non-unimodal, non-smooth search space

• a global optimum is not strictly required, but a sub-optimal

solution found in a short time is acceptableIl problema non

richiede un ottimo globale, ma si accontenta di un sub-ottimo

trovato rapidamente

• fitness function is noisy

If…

• the search space is small => exaustive search

• the search space is unimodal => steepest ascent (e.g.,

gradient)

• The search space is known => heuristics

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 44 of 45

Some general modeling criteria

• Shorter strings are easier to learn

• The chromosome should describe completely the solution

• Binary representation gives the highest possibility to develop building
blocks

• Aim at supporting the presence of significant building blocks

Introduction to Genetic Algorithms © A. Bonarini (andrea.bonarini@polimi.it) - 45 of 45

Rules of thumb

These “rules of thumb” are often results of empiric studies performed on
binary encoding only, but they usually work fine . . .

• Crossover rate should be high, generally about 80% − 95% (however
some results show that for some problems crossover rate about 60% is
the best.)

• Mutation rate should be very low. Good rates could be about 0.5% − 1%
per allele

• Very big population size usually does not improve performance (in the
sense of speed of finding solution). Good population size is about 20 − 30,
however sometimes sizes 50 − 100 are reported as the best

• Basic roulette wheel selection can be used, but sometimes rank or
tournament selection can be better. Elitism should be used for sure if you
do not use other method for saving the best found solution

