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Supervised Learning
– Bayes Classifiers –
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Maximum Likelihood vs. Maximum A Posteriory

According to the probability we want to maximize
• MLE (Maximum Likelihood Estimator):

Ŷ = argmax
vi

P (X1, X2, . . . , Xm|Y = vi)

• MAP (Maximum A Posteriori Estimator):

Ŷ = argmax
vi

P (Y = vi|X1, X2, . . . , Xm)
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Maximum Likelihood vs. Maximum A Posteriory

According to the probability we want to maximize
• MLE (Maximum Likelihood Estimator):

Ŷ = argmax
vi

P (X1, X2, . . . , Xm|Y = vi)

• MAP (Maximum A Posteriori Estimator):

Ŷ = argmax
vi

P (Y = vi|X1, X2, . . . , Xm)

We can compute the second by applying the Bayes Theorem:

P (Y = vi|X1, X2, . . . , Xm) =
P (X1, X2, . . . , Xm|Y = vi)P (Y = vi)

P (X1, X2, . . . , Xm)

=
P (X1, X2, . . . , Xm|Y = vi)P (Y = vi)

∑nY

j=0 P (X1, X2, . . . , Xm|Y = vj)P (Y = vj)
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Bayes Classifiers Unleashed

Using the MAP estimation, we get the Bayes Classifier:
• Learn the distribution over inputs for each value Y

◦ This gives P (X1, X2, . . . , Xm|Y = vi)

• Estimate P (Y = vi) as fraction of records with Y = vi

• For a new prediction:

Ŷ = argmax
vi

P (Y = vi|X1, X2, . . . , Xm)

= argmax
vi

P (X1, X2, . . . , Xm|Y = vi)P (Y = vi)
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Bayes Classifiers Unleashed

Using the MAP estimation, we get the Bayes Classifier:
• Learn the distribution over inputs for each value Y

◦ This gives P (X1, X2, . . . , Xm|Y = vi)

• Estimate P (Y = vi) as fraction of records with Y = vi

• For a new prediction:

Ŷ = argmax
vi

P (Y = vi|X1, X2, . . . , Xm)

= argmax
vi

P (X1, X2, . . . , Xm|Y = vi)P (Y = vi)

You can plug any density estimator to get your flavor of Bayes Classifier:
• Joint Density Estimator
• Naïve Density Estimator
• . . .
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Unsupervised Learning
– Density Estimation –

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 5/22



The Joint Distribution

Given two random variables X and Y , the joint distribution of X and Y is
the distribution of X and Y together: P (X,Y ).
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The Joint Distribution

Given two random variables X and Y , the joint distribution of X and Y is
the distribution of X and Y together: P (X,Y ).

How to make a joint distribution of M variables:

1. Make a truth table listing all combination of values

2. For each combination state/compute how probable it is

3. Check that all probabilities sum up to 1
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The Joint Distribution

Given two random variables X and Y , the joint distribution of X and Y is
the distribution of X and Y together: P (X,Y ).

How to make a joint distribution of M variables:

1. Make a truth table listing all combination of values

2. For each combination state/compute how probable it is

3. Check that all probabilities sum up to 1

Example with 3 boolean variables A, B and C.
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Using the Joint Distribution (I)

Compute probability for logic expression : P (E) =
∑

Row∼E P (Row).
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Using the Joint Distribution (I)

Compute probability for logic expression : P (E) =
∑

Row∼E P (Row).

• P (A) = 0.05 + 0.10 + 0.25 + 0.10 = 0.5

• P (A ∧B) = 0.25 + 0.10 = 0.35

• P (Ā ∨ C) = 0.30 + 0.05 + 0.10 + 0.05 + 0.05 + 0.25 = 0.8
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Using the Joint Distribution (I)

Compute probability for logic expression : P (E) =
∑

Row∼E P (Row).

• P (A) = 0.05 + 0.10 + 0.25 + 0.10 = 0.5

• P (A ∧B) = 0.25 + 0.10 = 0.35

• P (Ā ∨ C) = 0.30 + 0.05 + 0.10 + 0.05 + 0.05 + 0.25 = 0.8

Can’t we do something more useful?

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 7/22



Using the Joint Distribution (II)

Use it for making inference : P (E1|E2) =
P (E1∧E2)

P (E2)
=

∑
Row∼E1∧E2

P (Row)
∑

Row∼E2
P (Row) .
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Using the Joint Distribution (II)

Use it for making inference : P (E1|E2) =
P (E1∧E2)

P (E2)
=

∑
Row∼E1∧E2

P (Row)
∑

Row∼E2
P (Row) .

• P (A|B) = (0.25 + 0.10)/(0.10 + 0.05 + 0.25 + 0.10) = 0.35/0.50 = 0.70

• P (C|A ∧B) = (0.10)/(0.25 + 0.10) = 0.10/0.35 = 0.285

• P (Ā|C) = (0.05+0.05)/(0.05+0.05+0.10+0.10) = 0.10/0.30 = 0.333
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Using the Joint Distribution (II)

Use it for making inference : P (E1|E2) =
P (E1∧E2)

P (E2)
=

∑
Row∼E1∧E2

P (Row)
∑

Row∼E2
P (Row) .

• P (A|B) = (0.25 + 0.10)/(0.10 + 0.05 + 0.25 + 0.10) = 0.35/0.50 = 0.70

• P (C|A ∧B) = (0.10)/(0.25 + 0.10) = 0.10/0.35 = 0.285

• P (Ā|C) = (0.05+0.05)/(0.05+0.05+0.10+0.10) = 0.10/0.30 = 0.333

Where do we get the Joint Density from?
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The Joint Distribution Estimator

A Density Estimator learns a mapping from a set of attributes to a probability
distribution over the attributes space
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The Joint Distribution Estimator

A Density Estimator learns a mapping from a set of attributes to a probability
distribution over the attributes space

Our Joint Distribution learner is our first example of something called
Density Estimation

• Build a Joint Distribution table for your attributes in which the
probabilities are unspecified

• The fill in each row with

P̂ (row) =
records matching row

total number of records
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The Joint Distribution Estimator

A Density Estimator learns a mapping from a set of attributes to a probability
distribution over the attributes space

Our Joint Distribution learner is our first example of something called
Density Estimation

• Build a Joint Distribution table for your attributes in which the
probabilities are unspecified

• The fill in each row with

P̂ (row) =
records matching row

total number of records

We will come back to its formal definition at the end of this lecture don’t
worry, but now . . .

How can we evaluate it?
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Evaluating a Density Estimator

We can use likelihood for evaluating density estimation:
• Given a record x, a density estimator M tells you how likely it is

P̂ (x|M)
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Evaluating a Density Estimator

We can use likelihood for evaluating density estimation:
• Given a record x, a density estimator M tells you how likely it is

P̂ (x|M)

• Given a dataset with R records, a density estimator can tell you how
likely the dataset is under the assumption that all records were
independently generated from it

P̂ (dataset) = P̂ (x1 ∧ x2 ∧ . . . ∧ xR|M) =

R
∏

k=1

P̂ (xk|M)
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Evaluating a Density Estimator

We can use likelihood for evaluating density estimation:
• Given a record x, a density estimator M tells you how likely it is

P̂ (x|M)

• Given a dataset with R records, a density estimator can tell you how
likely the dataset is under the assumption that all records were
independently generated from it

P̂ (dataset) = P̂ (x1 ∧ x2 ∧ . . . ∧ xR|M) =

R
∏

k=1

P̂ (xk|M)

Since likelihood can get too small we usually use log-likelihood :

log P̂ (dataset) = log
∏R

k=1 P̂ (xk|M) =
∑R

k=1 log P̂ (xk|M)
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Joint Distribution Summary

Now we have a way to learn a Joint Density estimator from data
• Joint Density estimators can do many good things

◦ Can sort the records by probability, and thus spot weird records
(e.g., anomaly/outliers detection)

◦ Can do inference: P (E1|E2) (e.g., Automatic Doctor, Help Desk)
◦ Can be used for Bayes Classifiers (see later)
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Joint Distribution Summary

Now we have a way to learn a Joint Density estimator from data
• Joint Density estimators can do many good things

◦ Can sort the records by probability, and thus spot weird records
(e.g., anomaly/outliers detection)

◦ Can do inference: P (E1|E2) (e.g., Automatic Doctor, Help Desk)
◦ Can be used for Bayes Classifiers (see later)

• Joint Density estimators can badly overfit!
◦ Joint Estimator just mirrors the training data
◦ Suppose you see a new dataset , its likelihood is going to be:

log P̂ (new dataset|M) =
∑R

k=1 log P̂ (xk|M) = −∞

if ∃k : P̂ (xk|M) = 0
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Joint Distribution Summary

Now we have a way to learn a Joint Density estimator from data
• Joint Density estimators can do many good things

◦ Can sort the records by probability, and thus spot weird records
(e.g., anomaly/outliers detection)

◦ Can do inference: P (E1|E2) (e.g., Automatic Doctor, Help Desk)
◦ Can be used for Bayes Classifiers (see later)

• Joint Density estimators can badly overfit!
◦ Joint Estimator just mirrors the training data
◦ Suppose you see a new dataset , its likelihood is going to be:

log P̂ (new dataset|M) =
∑R

k=1 log P̂ (xk|M) = −∞

if ∃k : P̂ (xk|M) = 0

We need something which generalizes! → Naïve Density Estimator
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Naı̈ve Density Estimator

The naïve model assumes that each attribute is distributed independently
of any of the other attributes.

• Let x[i] denote the ith field of record x.
• The Naïve Density Estimator says that:

x[i] ⊥ {x[1],x[2], . . . ,x[i− 1],x[i+ 1], . . . ,x[M ]}
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Naı̈ve Density Estimator

The naïve model assumes that each attribute is distributed independently
of any of the other attributes.

• Let x[i] denote the ith field of record x.
• The Naïve Density Estimator says that:

x[i] ⊥ {x[1],x[2], . . . ,x[i− 1],x[i+ 1], . . . ,x[M ]}

It is important to recall every time we use a Naïve Density that:
• Attributes are equally important
• Knowing the value of one attribute says nothing about the value of

another
• Independence assumption is almost never correct . . .
• . . . this scheme works well in practice!
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Naı̈ve Density Estimator: An Example

From a Naïve Distribution you can compute the Joint Distribution:

• Suppose A,B,C,D independently distributed, P (A ∧ B̄ ∧ C ∧ D̄) =?
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Naı̈ve Density Estimator: An Example

From a Naïve Distribution you can compute the Joint Distribution:

• Suppose A,B,C,D independently distributed, P (A ∧ B̄ ∧ C ∧ D̄) =?

P (A ∧ B̄ ∧ C ∧ D̄) = P (A|B̄ ∧ C ∧ D̄)P (B̄ ∧ C ∧ D̄)

= P (A)P (B̄ ∧ C ∧ D̄)

= P (A)P (B̄|C ∧ D̄)P (C ∧ D̄)

= P (A)P (B̄)P (C ∧ D̄)

= P (A)P (B̄)P (C|D̄)P (D̄) = P (A)P (B̄)P (C)P (D̄)
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Naı̈ve Density Estimator: An Example

From a Naïve Distribution you can compute the Joint Distribution:

• Suppose A,B,C,D independently distributed, P (A ∧ B̄ ∧ C ∧ D̄) =?

P (A ∧ B̄ ∧ C ∧ D̄) = P (A|B̄ ∧ C ∧ D̄)P (B̄ ∧ C ∧ D̄)

= P (A)P (B̄ ∧ C ∧ D̄)

= P (A)P (B̄|C ∧ D̄)P (C ∧ D̄)

= P (A)P (B̄)P (C ∧ D̄)

= P (A)P (B̄)P (C|D̄)P (D̄) = P (A)P (B̄)P (C)P (D̄)

Example: suppose to randomly shake a green dice and a red dice
• Dataset 1: A = red value, B = green value
• Dataset 2: A = red value, B = sum of values
• Dataset 3: A = sum of values, B = difference of values

Which of these datasets violates the naïve assumption?
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Learning a Naı̈ve Density Estimator

Suppose x[1],x[2], . . . ,x[M ] are independently distributed

• Once we have the Naïve Distribution, we can construct any row of the
implied Joint Distribution on demand

P (x[1] = u1,x[2] = u2, . . . ,x[M ] = uM ) =

M
∏

k=1

P (x[k] = uk)

• We can do any inference!
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Learning a Naı̈ve Density Estimator

Suppose x[1],x[2], . . . ,x[M ] are independently distributed

• Once we have the Naïve Distribution, we can construct any row of the
implied Joint Distribution on demand

P (x[1] = u1,x[2] = u2, . . . ,x[M ] = uM ) =

M
∏

k=1

P (x[k] = uk)

• We can do any inference!

But how do we learn a Naïve Density Estimator?

P̂ (x[i] = u) =
number of record for which x[i] = u

total number of records
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Learning a Naı̈ve Density Estimator

Suppose x[1],x[2], . . . ,x[M ] are independently distributed

• Once we have the Naïve Distribution, we can construct any row of the
implied Joint Distribution on demand

P (x[1] = u1,x[2] = u2, . . . ,x[M ] = uM ) =

M
∏

k=1

P (x[k] = uk)

• We can do any inference!

But how do we learn a Naïve Density Estimator?

P̂ (x[i] = u) =
number of record for which x[i] = u

total number of records

Please wait a few minute, I’ll get the reason for this too!!
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Joint Density vs. Naı̈ve Density

What we got so far? Let’s try to summarize things up:
• Joint Distribution Estimator

◦ Can model anything
◦ Given 100 records and more than 6 Boolean attributes will

perform poorly
◦ Can easily overfit the data

Matteo Matteucci c©Lecture Notes on Machine Learning – p. 15/22



Joint Density vs. Naı̈ve Density

What we got so far? Let’s try to summarize things up:
• Joint Distribution Estimator

◦ Can model anything
◦ Given 100 records and more than 6 Boolean attributes will

perform poorly
◦ Can easily overfit the data

• Naïve Distribution Estimator
◦ Can model only very boring distributions
◦ Given 100 records and 10,000 multivalued attributes will be fine
◦ Quite robust to overfitting
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Joint Density vs. Naı̈ve Density

What we got so far? Let’s try to summarize things up:
• Joint Distribution Estimator

◦ Can model anything
◦ Given 100 records and more than 6 Boolean attributes will

perform poorly
◦ Can easily overfit the data

• Naïve Distribution Estimator
◦ Can model only very boring distributions
◦ Given 100 records and 10,000 multivalued attributes will be fine
◦ Quite robust to overfitting

So far we have two simple density estimators, in other lectures we’ll see
vastly more impressive ones (Mixture Models, Bayesian Networks, . . . ).
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Joint Density vs. Naı̈ve Density

What we got so far? Let’s try to summarize things up:
• Joint Distribution Estimator

◦ Can model anything
◦ Given 100 records and more than 6 Boolean attributes will

perform poorly
◦ Can easily overfit the data

• Naïve Distribution Estimator
◦ Can model only very boring distributions
◦ Given 100 records and 10,000 multivalued attributes will be fine
◦ Quite robust to overfitting

So far we have two simple density estimators, in other lectures we’ll see
vastly more impressive ones (Mixture Models, Bayesian Networks, . . . ).

But first, why should we care about density estimation?
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Joint Density Bayes Classifier

In the case of the Joint Density Bayes Classifier

Ŷ = argmax
vi

P (X1, X2, . . . , Xm|Y = vi)P (Y = vi)

This degenerates to a very simple rule:

Ŷ = most common Y among records having X1 = u1, X2 = u2, . . . , Xm = um
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Joint Density Bayes Classifier

In the case of the Joint Density Bayes Classifier

Ŷ = argmax
vi

P (X1, X2, . . . , Xm|Y = vi)P (Y = vi)

This degenerates to a very simple rule:

Ŷ = most common Y among records having X1 = u1, X2 = u2, . . . , Xm = um

Important Note:

If no records have the exact set of inputs X1 = u1, X2 = u2, . . . , Xm = um,
then P (X1, X2, . . . , Xm|Y = vi) = 0 for all values of Y .

In that case we just have to guess Y ’s value!
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Naı̈ve Bayes Classifier

In the case of the Naïve Bayes Classifier

Ŷ = argmax
vi

P (X1, X2, . . . , Xm|Y = vi)P (Y = vi)

Can be simplified in:

Ŷ = argmax
vi

P (Y = vi)

m
∏

j=0

P (Xj = uj |Y = vi)
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Naı̈ve Bayes Classifier

In the case of the Naïve Bayes Classifier

Ŷ = argmax
vi

P (X1, X2, . . . , Xm|Y = vi)P (Y = vi)

Can be simplified in:

Ŷ = argmax
vi

P (Y = vi)

m
∏

j=0

P (Xj = uj |Y = vi)

Technical Hint:
When we have 10,000 input attributes the product will underflow in floating

point math, so we should use logs:

Ŷ = argmax
vi



logP (Y = vi) +

m
∑

j=0

logP (Xj = uj |Y = vi)





Matteo Matteucci c©Lecture Notes on Machine Learning – p. 17/22



The Example: “Is this a nice day to play golf?”

Outlook Temp Humid. Windy Play

sunny 85 85 false No

sunny 80 90 true No

overcast 83 78 false Yes

rain 70 96 false Yes

rain 68 80 false Yes

rain 65 70 true No

overcast 64 65 true Yes

sunny 72 95 false No

sunny 69 70 false Yes

rain 75 80 false Yes

sunny 75 70 true Yes

overcast 72 90 true Yes

overcast 81 75 false Yes

rain 71 80 true No
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The Example: “Is this a nice day to play golf?”

Outlook Temp Humid. Windy Play

sunny 85 85 false No

sunny 80 90 true No

overcast 83 78 false Yes

rain 70 96 false Yes

rain 68 80 false Yes

rain 65 70 true No

overcast 64 65 true Yes

sunny 72 95 false No

sunny 69 70 false Yes

rain 75 80 false Yes

sunny 75 70 true Yes

overcast 72 90 true Yes

overcast 81 75 false Yes

rain 71 80 true No

Attribute Value Play Don’t

Outlook sunny 2 (2/9) 3 (3/5)

overcast 4 (4/9) 0 (0)

rain 3 (3/9) 2 (2/5)

Temp. hight 2 (2/9) 2 (2/5)

mild 4 (4/9) 2 (2/5)

cool 3 (3/9) 1 (1/5)

Humid. high 3 (3/9) 4 (4/5)

normal 6 (6/9) 1 (1/5)

Windy true 3 (3/9) 3 (3/5)

false 6 (6/9) 2 (2/5)
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The Example: “Is this a nice day to play golf?”

Outlook Temp Humid. Windy Play

sunny 85 85 false No

sunny 80 90 true No

overcast 83 78 false Yes

rain 70 96 false Yes

rain 68 80 false Yes

rain 65 70 true No

overcast 64 65 true Yes

sunny 72 95 false No

sunny 69 70 false Yes

rain 75 80 false Yes

sunny 75 70 true Yes

overcast 72 90 true Yes

overcast 81 75 false Yes

rain 71 80 true No

Attribute Value Play Don’t

Outlook sunny 2 (2/9) 3 (3/5)

overcast 4 (4/9) 0 (0)

rain 3 (3/9) 2 (2/5)

Temp. hight 2 (2/9) 2 (2/5)

mild 4 (4/9) 2 (2/5)

cool 3 (3/9) 1 (1/5)

Humid. high 3 (3/9) 4 (4/5)

normal 6 (6/9) 1 (1/5)

Windy true 3 (3/9) 3 (3/5)

false 6 (6/9) 2 (2/5)

• Play = 9 (9/14)
• Don’t Play = 5 (5/14)
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The Example: “A brand new day”

You wake up and gain some new Evidence about the day:

Outlook Temp Humid. Windy Play

sunny cool high true ???
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The Example: “A brand new day”

You wake up and gain some new Evidence about the day:

Outlook Temp Humid. Windy Play

sunny cool high true ???

Should you play golf or not? Let’s ask it to our Naïve Bayes Classifier!

P (Evidence|yes) = P (sunny|yes)P (cool|yes)P (high|yes)P (true|yes)

= 2/9 · 3/9 · 3/9 · 3/9 = 0.00823

P (Evidence|no) = P (sunny|no)P (cool|no)P (high|no)P (true|no)

= 3/5 · 1/5 · 4/5 · 3/5 = 0.0576

P (Play = yes|Evidence) =
P (Evidence|yes)P (yes)

∑

class P (Evidence|class)P (class)
= 0.205

P (Play = no|Evidence) =
P (Evidence|no)P (no)

∑

class P (Evidence|class)P (class)
= 0.795
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Missing Values (still “A brand new day”)

You wake up and gain some new “partial” Evidence about the day:

Outlook Temp Humid. Windy Play

??? cool high true ???
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Missing Values (still “A brand new day”)

You wake up and gain some new “partial” Evidence about the day:

Outlook Temp Humid. Windy Play

??? cool high true ???

P (Evidence|yes) =
∑

o

P (overlook|yes)P (cool|yes)P (high|yes)P (true|yes)

= 3/9 · 3/9 · 3/9 = 0.037

P (Evidence|no) =
∑

o

P (overlook|yes)P (cool|no)P (high|no)P (true|no)

= 1/5 · 4/5 · 3/5 = 0.096

P (yes|Evidence) =
P (Evidence|yes)P (yes)

∑

class P (Evidence|class)P (class)
= 0.41

P (no|Evidence) =
P (Evidence|no)P (no)

∑

class P (Evidence|class)P (class)
= 0.59
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The “Zero Frequency” Problem

What if an attribute value doesn’t occur with every class value (e.g.
Outlook = overcast for class no)?

• Probability will be zero!
• No matter how likely the other values are, also a-posteriori probability

will be zero!

P (Outlook = overcast|no) = 0 → P (no|Evidence) = 0
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The “Zero Frequency” Problem

What if an attribute value doesn’t occur with every class value (e.g.
Outlook = overcast for class no)?

• Probability will be zero!
• No matter how likely the other values are, also a-posteriori probability

will be zero!

P (Outlook = overcast|no) = 0 → P (no|Evidence) = 0

The solution is related to something called “smoothing prior”:
• Add 1 to the count for every attribute value-class combination
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Outlook = overcast for class no)?

• Probability will be zero!
• No matter how likely the other values are, also a-posteriori probability

will be zero!

P (Outlook = overcast|no) = 0 → P (no|Evidence) = 0

The solution is related to something called “smoothing prior”:
• Add 1 to the count for every attribute value-class combination

This simple approach (Laplace estimator) solves the problem
and stabilize probability estimates!
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The “Zero Frequency” Problem

What if an attribute value doesn’t occur with every class value (e.g.
Outlook = overcast for class no)?

• Probability will be zero!
• No matter how likely the other values are, also a-posteriori probability

will be zero!

P (Outlook = overcast|no) = 0 → P (no|Evidence) = 0

The solution is related to something called “smoothing prior”:
• Add 1 to the count for every attribute value-class combination

This simple approach (Laplace estimator) solves the problem
and stabilize probability estimates!

We can do also fancy things!
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M-Estimate Probability

We can use M-estimate probability to estimate P (Attribute|Class):

P (A|C) =
nA +mp

n+m

• nA number of examples with class C and attribute A

• n number of examples with class C

• p = 1/k whre k are the possible values of attribute A

• m is a costant value
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M-Estimate Probability

We can use M-estimate probability to estimate P (Attribute|Class):

P (A|C) =
nA +mp

n+m

• nA number of examples with class C and attribute A

• n number of examples with class C

• p = 1/k whre k are the possible values of attribute A

• m is a costant value

Example: For the Outlook attribute we get:

sunny= 2+m/3
9+m , overcast= 4+m/3

9+m , rain= 3+m/3
9+m .
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M-Estimate Probability

We can use M-estimate probability to estimate P (Attribute|Class):

P (A|C) =
nA +mp

n+m

• nA number of examples with class C and attribute A

• n number of examples with class C

• p = 1/k whre k are the possible values of attribute A

• m is a costant value

Example: For the Outlook attribute we get:

sunny= 2+m/3
9+m , overcast= 4+m/3

9+m , rain= 3+m/3
9+m .

We can also use weights p1, p2, . . . , pk summing up to 1!
sunny= 2+m∗p1

9+m , overcast= 4+m∗p2

9+m , rain= 3+m∗p3

9+m .
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