
ROS INTRODUCTION
ROBOTICS

goo.gl/DBwhhC
ROS: ROBOT OPERATING SYSTEM

ROS main features:

Distributed framework

Reuse code

Language independent

Easy testing on Real Robot & Simulation

Scaling

ROS Components

File system tools

Building tools

Packages

Monitoring and GUIs

Data Logging

goo.gl/DBwhhC

This instruction are for:

Ubuntu 16.04.2 (suggested)

and Ubuntu 15.10 only

INSTALLATION

goo.gl/DBwhhC
INSTALLATION

Initial setup for sources and keys for downloading the packages

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release
-sc) main" > /etc/apt/sources.list.d/ros-latest.list‘

sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80 --
recv-key 421C365BD9FF1F717815A3895523BAEEB01FA116

goo.gl/DBwhhC
INSTALLATION

Update the packaged index

sudo apt-get update

Choose between the four pre-packaged ROS installation

Desktop-Full Install: sudo apt-get install ros-kinetic-desktop-full

Desktop Install: sudo apt-get install ros-kinetic-desktop

ROS-Base: sudo apt-get install ros-kinetic-ros-base

goo.gl/DBwhhC
INSTALL

How to install single packages:

sudo apt-get install ros-kinetic-PACKAGE

Example

sudo apt-get install ros-kinetic-slam-gmapping

To find the exact name of a package you can use the usual aptitude search:

apt-cache search ros-kinetic

goo.gl/DBwhhC
INITIALIZATION AND SETUP

rosdep enables you to easily install system dependencies and it’s required by some ROS packages

sudo rosdep init

rosdep update

To use catkin (the compiling environment of ROS) you need to define the location of your ROS

installation.

In each new terminal type:

source /opt/ros/kinetic/setup.bash

Or put it inside your .bashrc

echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc

source ~/.bashrc

goo.gl/DBwhhC
SUGGESTED TOOL

rosinstall is a frequently used command-line tool in ROS that is distributed separately. It enables

you to easily download many source trees for ROS packages with one command.

To install this tool on Ubuntu, run:

sudo apt-get install python-rosinstall

goo.gl/DBwhhC
ROS STRUCTURE: COMPUTATIONAL GRAPH

Computation
graph

Nodes

Master

Topics

ServicesMessages

Parameter
server

Bags

The Computation Graph is the peer-

to-peer network of ROS processes

that are processing data together.

goo.gl/DBwhhC
NODES

Executable unit of ROS:

Scripts for Python

Compiled source code for C++

Process that performs computation

Nodes exchange information via the graph

Meant to operate at fine-grained scale

A robot system is composed by various

nodes

rosrun package_name node_name

rosrun turtlesim turtlesim_node

goo.gl/DBwhhC
MASTER

Provides naming and registration services

Essential for nodes interactions

One master for each system, even on

distributed architectures

Enables individual ROS nodes to locate

one another

One of the functionalities provided by

roscore

goo.gl/DBwhhC
MASTER

Provides naming and registration services

Essential for nodes interactions

One master for each system, even on

distributed architectures

Enables individual ROS nodes to locate

one another

One of the functionalities provided by

roscore

goo.gl/DBwhhC
MASTER

Provides naming and registration services

Essential for nodes interactions

One master for each system, even on

distributed architectures

Enables individual ROS nodes to locate

one another

One of the functionalities provided by

roscore

goo.gl/DBwhhC
TOPICS

Named channels for communication

Implement the publish/subscribe paradigm

No guarantee of delivery

Have a specific message type

Multiple nodes can publish messages on a topic

Multiple nodes can read messages from a topic

talker

listener

/chat

goo.gl/DBwhhC
TOPICS

Named channels for communication

Implement the publish/subscribe paradigm

No guarantee of delivery

Have a specific message type

Multiple nodes can publish messages on a topic

Multiple nodes can read messages from a topic

talker

lst_1

/chat

lst_2

goo.gl/DBwhhC
TOPICS

Named channels for communication

Implement the publish/subscribe paradigm

No guarantee of delivery

Have a specific message type

Multiple nodes can publish messages on a topic

Multiple nodes can read messages from a topic listener

/chat

tlk_1 tlk_2

goo.gl/DBwhhC
MESSAGES

Messages are exchanged on topics

They define the type of the topic

Various already available messages

It is possible to define new messages using a

simple language

Existing message types can be used in new

messages together with base types

std_msgs/Header.mgs

uint32 seq
time stamp
string frame_id

std_msgs/String.msg

string data

sensor_msgs/Joy.msg

std_msgs/Header header

float32[] axes

int32[] buttons

goo.gl/DBwhhC
MESSAGES

Messages are exchanged on topics

They define the type of the topic

Various already available messages

It is possible to define new messages using a

simple language

Existing message types can be used in new

messages together with base types

Quick recap:

14 base types

32 std_msgs

29 geometry_msgs

26 sensor_msgs

...and more

goo.gl/DBwhhC
SERVICES

Work like remote function calls

Implement the client/server paradigm

Code waits for service call to complete

Guarantee of execution

Use of message structures

example/AddTwoInt.srv

int64 A

int64 B

int64 Sum

goo.gl/DBwhhC
PARAMETER SERVER

Shared, multivariable dictionary that is

accessible via network

Nodes use this server to store and

retrieve parameters at runtime

Not designed for performance, not for

data exchange

Connected to the master, one of the

functionalities provided by roscore

rosparam [set|get] name value

rosparm set use_sim_time True

rosparam get use_sim_time

True

goo.gl/DBwhhC
PARAMETER SERVER

Shared, multivariable dictionary that is

accessible via network

Nodes use this server to store and

retrieve parameters at runtime

Not designed for performance, not for

data exchange

Connected to the master, one of the

functionalities provided by roscore

Available types:

32-bit integers

Booleans

Strings

Doubles

ISO8601 dates

Lists

Base64-encoded binary data

goo.gl/DBwhhC
BAGS

File format (*.bag) for storing and playing

back messages

Primary mechanism for data logging

Can record anything exchanged on the

ROS graph (messages, services,

parameters, actions)

Important tool for analyzing, storing,

visualizing data and testing algorithms.

rosbag record –a

rosbag record /topic1 /topic2

rosbag play ~/bags/fancy_log.bag

rqt_bag ~/bags/fancy_log.bag

goo.gl/DBwhhC
ROSCORE

roscore is a collection of nodes and programs that are pre-requisites of a ROS-

based system

Must be running in order for ROS nodes to communicate

Launched using the roscore command.

Elements of roscore:

a ROS Master

a ROS Parameter Server

a rosout logging node

goo.gl/DBwhhC
ROS FILE SYSTEM

File system
level

Meta
packages

Packages

Package
manifest

Messages

Service

Code

Others

goo.gl/DBwhhC
ROS FILE SYSTEM

File system
level

Meta
packages

Packages

Package
manifest

Messages

Service

Code

Others
Usually you skip this one

goo.gl/DBwhhC
PACKAGES AND METAPACKAGES

PACKAGES

Atomic element of ROS file system

Used as a reference for most ROS commands

Contains nodes, messages and services

package.xml used to describe the package

Mandatory container

METAPACKAGES

Aggregation of logical related elements

Not used when navigating the ROS file system

Contains other packages

package.xml used to describe the package

Not required

goo.gl/DBwhhC
STRUCTURE OF A PACKAGE

Folder structure:

/src, /include, /scripts (coding)

/launch (launch files)

/config (configuration files)

Required files:

CMakeList.txt: Build rules for catkin

package.xml: Metadata for ROS

