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Probabilistic Reasoning for Time Series

To describe an ever changing world we can use a series of random 

variables describing the world state at any time instant!

 It represents a sequence of states: X1, X2, X3, …

 The transition from Xt-1 to Xt depends only on Xt-1

P(Xt|Xt-1, Xt-2, …, X1,X0)=P(Xt|Xt-1) (Markov Property)

 When transition probabilities are the same a any t, 

we are facing a stationary process.

 A Bayesian Network that forms a chain!

X2 X3 X4X1 …

(Let’s skip basic stuff and go to hidden models)
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• Given Xt the value of a system characteristic at time t described as a (state) 

random variable, we have:

 Discrete Stochastic Process: describes the a relationship between the 

stochastic description of a system (X0, X1, X2, …) at some discrete time 

steps.  

 A Continuous Stochastic Process is a stochastic process where the state 

can be observed at any time.

• A Discrete Stochastic Process is a (first order) Markov Chain when we 

have thet  t = 1, 2, 3, … and for all n states it holds:

• P(Xt+1=it+1|Xt=it, Xt-1=it-1,…,X1=i1,X0=i0)=P(Xt+1=it+1|Xt=it)

• Whenever the probability of an event is independent from time the Markov 

Chain is Stationary: P(Xt+1=j|Xt=i)=pij

Stochastic Processes and Markov Chains
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Markov Chain Description

• A Markov Chain can be described using a Transition Matrix where pij

describes the probability of getting into state j starting from state i:

• This transition matrix can be described also using a directed graph
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• Given a Markov Chain in state i at time m we can compute states probability 

after n time steps:  

P(Xm+n=j|Xm=i)=P(Xn=j|X0=i)=Pij(n)

• If we take n=2 we have 

Pij(2) =∑k pik · pkj Scalar product of row i and column j

• In general Pij(n) = ij-th element of P
n.

• The probability of being in a given state j at time n without knowing the 

exact state of Markov Chain at time 0 is thus:

∑i qi · Pij(n) = q · (column j of P
n
)

• where:

qi = state i probability at time 0

Computing Probabilities
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The Cola Example (I)

• Suppose our company produces two brands of Cola (i.e., Cola1, and Cola2) 

and there are no other Colas on the market. A person buying Cola1 will 

buy Cola1 again with probability 0.9. A persona buying Cola2 will buy Cola2 

again with probability 0.8. 

 Someone has bought Cola2, what’s the probability he/she will buy 

Cola1 after 2 times?

 Someone has bought Cola1, what’s the probability he/she will buy 

Cola1 again after 3 times?

 Suppose at some time 60% of clients bought Cola1 and 40% Cola2. 

After three purchases what’s the percentage of people buying Cola1?

Cola1

Cola2

Cola1

Cola2

0.100.90

0.800.20
P =
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• Someone has bought Cola2, what’s the probability he/she will buy Cola1 

after 2 times?

• P(X2=1|X0=2)=P21(2)

• Someone has bought Cola1, what’s the probability he/she will buy Cola1 

again after 3 times?

• P(X3=1|X0=1)=P11(3)

0.34

0.100.90

0.800.20

0.100.90

0.800.20

0.170.83

0.66
P2= =

The Cola Example (II)

0.100.90

0.800.20

0.2190.781

0.5620.438
P3= =

0.170.83

0.660.34
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• Suppose at some time 60% of clients bought Cola1 and 40% Cola2. After 

three purchases what’s the percentage of people buying Cola1?

p=∑i qi · Pij(3) = q · (column 1 of P
3
)

• Note: What we have discussed so far is the first-order Markov Chain. 

More generally, in kth-order Markov Chain, each state transition depends on 

previous k states.

The Cola Example (III)

0.64380.781

0.438

p= =0.400.60

What’s the size of transition probability matrix?

X1 X2 X3X0 …
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A Bunch of Definitions 

• Given a Markov Chain we define:

 State j is reachable from i if it exist a path from i to j

 States i and j communicate if i is reachable from j and viceversa

 A set of states S in a Markov Chain is closed if no state outside S is 

reachable from a state in S

 A state i is an absorbing state if pii=1

 A state i is transient if exists j reachable from i, but i is not reachable 

from j

 A state that is not transient is defined as recurrent

 A state i is periodic with period k>1 if k is the biggest number that 

divides the length of all path from i to i

 A state that is not periodic is said a-periodic

• If all states in a Markov Chain are recurrent, a-periodic, and communicate with 

each other, it is said to be Ergothic
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• A simple example of Ergothic Markov Chain is the following:

• Do the following transitions represent Ergothic Markov Chains?

Examples of Ergothic Markov Chains

1 320.3
0.7

0.5

0.25

0.5

0.75
0.3   0.7    0

0.5    0     0.5

0   0.25  0.75
P =

1/4   1/2    1/4

2/3    1/3     0

0      2/3   1/3
P =

1/2   1/2    0     0

1/2   1/2    0     0

0      0    2/3  1/3

0      0    1/4  3/4

P =

1 320.25
0.5

0.66

0.66

0.33

0.33

0.25

1 320.5
0.5

0.5

0.660.5
0.25

4 0.75

0.33
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• Being P the transition matrix of an Ergothic Markov Chain with n states we 

have that 

lim Pij(n) = j

• With  = [1 2 3 … n]= P being the Steady State Distribution

• The Cola Example:

n +

Steady State Distribution

n P11(n) P12(n) P21(n) P22(n)

1 .90 .10 .20 .80

2 .83 .17 .34 .66

3 .78 .22 .44 .56

5 .72 .28 .56 .44

10 .68 .32 .65 .35

20 .67 .33 .67 .33

30 .67 .33 .67 .33

40 .67 .33 .67 .33STEADY STATE

0.9   0.1

0.2   0.8P =

0.67   0.33

0.67   0.33
 =



Matteo Matteucci - Information Retrieval and Data Mining

Transitory Behavior

• The behavior of a Markov Chain before getting to the Steady State id 

defined transitory

• We can compute the expected number of transition to reach state j being in 

state i for an Ergothic Markov Chain:

mij = pij(1)+ ∑kjpik· (1+mkj)= 1+∑kjpik· mkj

• The Cola Example:

 How many bottle on average a Cola1 buyer will have before switching 

to Cola2?

m12=1+∑kjp1k· mk2=1+0.9·m12 m12=10

 What about viceversa?

m21=1+∑kjp2k· mk1=1+0.8·m21 m21=5

TRANSITORYP
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• We have and absorbing Markov Chain if there exist one or more absorbing 

states and all the other are transient. 

• For an absorbing Markov Chain we can write the transition matrix as:

• where:

 Q is the transition matrix for transient states

 R is the trantion matrix from transient to absorbing states

• What kind of inference we could make with this model?

 How long it will take to get in an absorbing state given that we start 

from a transient one?

 Starting from a transient state, how long does it takes to get to an 

absorbing one?

Dealing with Absorbing States

Q R
P =

0 I
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• How long I remain in a transient state given that we start 

from a transient one?

 Being in a transient state i the average time spent in a transient state j is 

the ij-th element of (I-Q)-1

• Starting from a transient state, how long does it takes to get to 

an absorbing one?

 Being in transient state i the probability to get into an absorbing state j is 

the ij-th element of (I-Q)-1·R

• Example: in a company there are 3 levels: junior, senior, partner. You can 

leave the company as partner or not

 How long does a junior remains

in the company?

 What’s the probability for a junior

to leave the company as partner?

Inference in Absorbing Markov Chains

0.80 0.15 0 0.05 0

0 0.70 0.20 0.10 0

0 0 0.95 0 0.05

0 0 0 1 0

0 0 0 0 1

P =

J       S      P LN      LP



Matteo Matteucci - Information Retrieval and Data Mining

The Company Example

• How long does a junior remains in the company?

 He/she will stay as Junior: m11 = 5

 He/she will stay as Senior: m12 = 2.5

 He/She will stay as Partner: m13 = 10

• What’s the probability for a junior to leave the company as partner?

 He/She will end up in state LP: m12 = 0.5

(I-Q)-1=
5   2.5   10

0   3.3  13.3

0    0     20

17.5 years!

(I-Q)-1· R =

0.5  0.5

0.3  0.7

0     1
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• Suppose we are a gambler and we start from a 3$ capital, with probability 

p=1/3 we can win 1$ and with probability 1-p=2/3 we loose 1$. We fail if 

out capital get to 0 and we win if our capital becomes 5.

• We can describe our capital as a Markov Chain being Xt our capital:

 Possible states: 0, 1, 2, 3, 4, 5

 Transition probability: p(Xt+1=Xt+1)=1/3, p(Xt+1=Xt-1)=2/3

• What kind of reasoning can we apply to this model?

 What’s the probability of sequence 3, 4, 3, 2, 3, 2, 1, 0?

 What’s the probability of success for the gambler?

 What’s the average number of bets the gambler will make?

Exercise: Gambler’s Ruin

X1=? X2=? X3=?X0=3 …
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Why Should I Care All This Crazy Math?

“Nice, but unless I want to gamble why should I care? I’m a computer engineer what 

this has to do with practical intelligent systems?”

• What do you this is the greatest revolution 

(or revolutionary company) on the web in 

the last decade?

• Assume a link from page A to page B is a recommendation of page B by the 

author of A (we say B is successor of A). 

 Quality of a page is related to its in-degree. 

 The of a page is related to the quality of pages linking to it

• This recursively defines the PageRank of a page [Brin & Page ‘98]

For a (better) detailed description feel free to read:

http://www-db.stanford.edu/~backrub/google.html

http://www.iprcom.com/papers/pagerank/

http://www-db.stanford.edu/~backrub/google.html
http://www.iprcom.com/papers/pagerank/
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Google’s PageRank 

• Suppose the web is an Ergothic Markov Chain (I know this is a big 

assumption). Consider browsing as an infinite random walk (surfing):

 Initially the surfer is at a random page

 At each step, the surfer proceeds 

• to a randomly chosen web page with probability d

• to a randomly chosen successor of the current page with probability 1-d

• The PageRank of a page is the fraction of steps the surfer spends on it in the 

limit.

A

B

C

D

E

F
G
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Definition of PageRank

• PageRank = the steady state probability for this Markov Chain  

 n is the total number of nodes in the graph

 d is the probability of a random jump

PageRank(C) = d/n+(1-d)(1/4 PageRan(A) +1/3 PageRank(B))

• Summarizes the “web opinion” about the page importance

 Query-independent 

 It can be faked … read the provided links if you are curious!
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Hidden Markov Models (HMM)

• We may not observe directly the states. The we get another 

Bayesian Network named as Hidden Markov Model (HMM).

• An HMM is described by a quintuple <S,E,P,A,B>

 S : {s1,…,sN } are the values for the hidden states

 E : {e1,…,eT } are the values for the observations

 P: probability distribution of the initial state

 A: transition probability matrix 

 B: emission probability matrix 

For a deeper description feel free to read:

http://www.cs.ubc.ca/~murphyk/Bayes/rabiner.pdf

Xt+1XtXt-1

et+1etet-1e1

XT

eT

X1
… …

http://www.cs.ubc.ca/~murphyk/Bayes/rabiner.pdf
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An Example: The Audio Spectrum

• Audio Spectrum of the song for the Prothonotary Warbler 

• Audio Spectrum of the song for the Chestnut-sided Warbler

• What can we ask to an HMM?

 What bird is this? Time Series Classification

 How will the song continue? Time Series Prediction

 Is this bird sick? Outlier Detection

 What phases does this song have? Time Series Segmentation

Observations

State

Observations

State
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• What can we ask to this HMM?

 Will the stock go up or down? Time Series Prediction

 What type stock is this (eg, risky)? Time Series Classification

 Is the behavior abnormal (eg, BF)? Outlier Detection

Another Time Series Problem

Intel

Cisco
GE

MS
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Music Analysis

• What can we ask to this HMM?

 Can we compose more of that? Time Series Prediction

 Is this Beethoven or Bach? Time Series Classification

 Can we segment it into themes? Time Series Segmentation
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Weather: A Markov Chain Model

• States: {Ssunny, Srainy, Ssnowy}

• State transition probabilities:

• Initial state distribution: 

q = (0.7  0.25  0.05)

• Given:

• What is the probability of this series? 

P(s)= P(Ssunny)P(Srainy|Ssunny)P(Srainy|Srainy)P(Srainy|Srainy)P(Ssnowy|Srainy)

P(Ssnowy|Ssnowy)=0.7·0.15·0.6·0.6·0.02·0.2=0.0001512

Sunny Rainy

Snowy

80%

15%

5%

60%

2%

38%

20%

75% 5%P =
0.80  0.15  0.05

0.38  0.60  0.02

0.75  0.05  0.20
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Weather: An Hidden Markov Models

65%

5%

30%

60%

10%

30%

50%

0% 50%

Sunny Rainy

Snowy

80%

15%

5%

60%

2%

38%

20%

75% 5%
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Ingredients and Fundamental Questions

• States: {Ssunny, Srainy, Ssnowy}

• Observations: {Oshorts, Ocoat, Oumbrella}

• State transition probabilities:

• Observation probabilities:

• Initial state distribution: P = (0.7  0.25  0.05)

• Given:                              …

 What is the probability of this series?

 What is the underlying sequence of state?

 How can I learn my HMM parameters?

A =
0.80  0.15  0.05

0.38  0.60  0.02

0.75  0.05  0.20

B =
0.60  0.30  0.10

0.05  0.30  0.65

0.00  0.50  0.50
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Computing Forward Probability

• We define the Forward Probability as the probability of actual 

state and observations

P(Xt=si, e1:t)

• Why compute forward probability?

 Probability of observations: P(e1:t).

 Prediction: P(Xt+1=si | e1:t)=?

P(Xt=si, e1:t) = P(Xt=si,e1:t-1,et)

= j P(Xt-1=sj,Xt=si,e1:t-1,et)

= j P(et|Xt=si,Xt-1=sj,e1:t-1)P(Xt=si,Xt-1=sj,e1:t-1)

= j P(et|Xt=si)P(Xt=si|Xt-1=sj,e1:t-1)P(Xt-1=sj,e1:t-1)

= j P(et|Xt=si)P(Xt=si|Xt-1=sj)P(Xt-1=sj, e1:t-1)

i(t) = P(Xt=si, e1:t) 

= jP(Xt=si|Xt-1=sj)P(et|Xt=si)j(t-1)

= j Aij Biet j(t-1)

Same form, 

use recursion
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The Viterbi Algorithm

• From observations, compute the most likely hidden state sequence: 

argmax P(x1:t|e1:t) = argmax P(x1:t, e1:t)/P(e1:t)

= argmax P(x1:t, e1:t)

• By applying the Bayesian Network factorization

P(x1:t, e1:t) = P(X0) i=1,t P(Xi|Xi-1) P(ei|Xi)

• The solution we are looking for is the one that minimizes 

-logP(x1:t, e1:t)=–logP(X0) +i=1,t(–logP(Xi|Xi-1)–logP(ei|Xi))

• Given a HMM construct a graph that consists 1+t*N nodes:

 One initial node and N node at time i where jth represents Xi=sj.

 The link between the nodes Xi-1=sj and Xi=sk is associated with the 

length –log(P(Xi=sk| Xi-1=sj)P(ei|Xi=sk))

• The problem becomes that of finding the shortest path from X0=s0 to one 

of the nodes Xt=st.
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Baum-Welch Algorithm

• The previous two kinds of computation needs parameters =(P, A, B). 

Where do the probabilities come from? 

• Solution: Baum-Welch Algorithm (special case of EM)

 Unsupervised learning from observations

 Find argmax P(e1:t)

• Given an observation sequence, find out which transition probability and 

emission probability table assigns the highest probability to the observations:

1. Start with an initial set of parameters 0 (possibly arbitrary)

2. Compute pseudo counts: how many times the transition from

Xi-i=sj to Xi=sk occurred?

3. Use the pseudo counts to obtain a better set of parameters 1

4. Iterate until P1(e1:t) is not bigger than P(e1:t)
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Pseudo Counts and Backward Probability

• Given the observation sequence e1:T, 

 pseudo count of state si at time t is the probability P(Xt=si|e1:T)

P(Xt=si|e1:T) = P(Xt=si, e1:t, et+1:T)/P(e1:T)

= P(et+1:T| Xt=si, e1:t)P(Xt=si, e1:t)/P(e1:T)

= P(et+1:T| Xt=si)P(Xt=si|e1:t)P(e1:t)/P(e1:T)

= i(t) βi(t)/P(et+1:T|e1:t)

 pseudo counts of the link from Xt=si to Xt+1=sj is the probability 

P(Xt=si,Xt+1=sj|e1:T)=P(Xt=si,Xt+1=sj,e1:t,et+1,et+2:T)/P(e1:T)

= P(Xt=si,e1:t)P(Xt+1=sj|Xt=si)P(et+1|Xt+1=sj)

P(et+2:T|Xt+1=sj)/P(e1:T)

=P(Xt=si,e1:t)AijBjet+1P(et+2:T|Xt+1=sj)/P(e1:T)

= i(t) Aij Bjet βj(t+1)/P(e1:T)

• Being βj(t)=P(et+1,…,eT|Xt=sj) we can compute it backward

 βj(T)=1;

 βj(t)= j Aij Bjet βj(t+1).
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HMM Parameters Update

• We can efficiently compute forward and backward probability for all the 

states in the Hidden Markov Model

• To update our estimate of HMM parameters

 count(i): the total pseudo count of state si.

 count(i,j): the total pseudo count of transition from si to sj.

 Add P(Xt=si,Xt+1=sj|e1:T) to count(i,j)

 Add P(Xt=si|e1:T) to count(i)

 Add P(Xt=si|e1:T) to count(i,et)

 Updated Aij= count(i,j)/count(i)

 Updated Bjet=count(j,et)/count(j)

t-1 t t+1 t+2

i(t) bj(t+1)

aijbjet

Xt+1=sjXt=si
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Summary on HMM

• HMMs are generative probabilistic models for time series with hidden 

information (state). 

• There a few issues remaining:

 Zero probability problem

• Training sequence: AAABBBAAA

• Test sequence: AAABBBCAAA

 Finding “right” number of states, right structure

 Numerical instabilities

• Beside these problems they are extremely practical, best known methods in 

speech recognition, computer vision, robotics, …

You’d be surprised by the relationships between HMM 

and Kalman Filtering or Kalman Smoothing!


