

Robotics

Simultaneous Localization and Mapping

Matteo Matteucci matteo.matteucci@polimi.it

Artificial Intelligence and Robotics Lab - Politecnico di Milano

A Simplified Sense-Plan-Act Architecture

Representations

Landmark-based

[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;...]

[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & al., 00; Thrun, 00; Arras, 99; Haehnel, 01;...]

Occupancy from Sonar Return (the origins)

The most simple occupancy model used sonars

- A 2D Gaussian for information about occupancy
- Another 2D Gaussian for free space

Sonar sensors present several issues

A wide sonar cone creates noisy maps

• Specular (multi-path) reflections generates unrealistic measurements

2D Occupancy Grids

A simple 2D representation for maps

- Each cell is assumed independent
- Probability of a cell of being occupied estimated using Bayes theorem

 $P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|\sim A)P(\sim A)}$

Maps the environment as an array of cells

- Usual cell size 5 to 50cm
- Each cells holds the probability of the cell to be occupied
- Useful to combine different sensor scans and different sensor modalities

Occupancy Grid Cell Update

Let occ(i, j) mean cell C_{ij} is occupied, we have

- Probability: P(occ(i, j)) has range [0, 1]
- Odds: o(occ(i, j)) has range $[0, \infty]$

 $o(occ(i,j)) = P(occ(i,j))/P(\neg occ(i,j))$

• Log odds: $\log o(occ(i, j))$ has range $[-\infty, \infty]$

Each cell C_{ij} holds the value log o(occ(i,j)), $C_{ij} = 0$ corresponds to P(occ(i,j)) = 0.5

Cells are updated recursively by applying the Bayes theorem

- A = occ(i, j)
- B = measure(i, j)

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Mapping with Raw Odometry (assuming known poses)

POLITECNICO MILANO 1863

Scan Matching

Correct odometry by maximizing the likelihood of pose *t* based on the estimates of pose and map at time *t-1*.

$$\hat{x}_{t} = \arg \max_{x_{t}} \left\{ p(z_{t} \mid x_{t}, \hat{m}^{[t-1]}) \cdot p(x_{t} \mid u_{t-1}, \hat{x}_{t-1}) \right\}$$
current measurement robot motion
map constructed so far

 $\hat{m}^{[t]}$ Then compute the map $\hat{m}^{[t]}$ according to "mapping with known poses" based on the new pose and current observations.

Iterate alternating the two steps of localization and mapping ...

Scan Matching Example

Scan Matching

Correct odometry by maximizing the likelihood of pose *t* based on the estimates of pose and map at time *t-1*.

$$\hat{x}_{t} = \arg \max \left\{ p(z_{t} \mid x_{t}, \hat{m}^{[t-1]}) \cdot p(x_{t} \mid u_{t-1}, \hat{x}_{t-1}) \right\}$$
Current mean loss not keep track of the uncertainty in the process notion notion

 $\hat{m}^{[t]}$ The compute the map $\hat{m}^{[t]}$ according to "mapping with known poses" based on the new pose and current observations.

Iterate alternating the two steps of localization and mapping ...

Simultaneous Localization and Mapping

Dynamic Bayesian Networks and (Full) SLAM

Smoothing : $p(\Gamma_{1:t}, l_1, ..., l_N | Z_{1:t}, U_{1:t})$

Dynamic Bayesian Networks and (Online) SLAM

POLITECNICO MILANO 1863

SLAM: Simultaneous Localization and Mapping

SLAM: Simultaneous Localization and Mapping

Map with N landmarks:(3+2N)-dimensional Gaussian

(E)KF-SLAM

Bayes Filter: The Algorithm

$$Bel(x_t) = \eta P(z_t | x_t) \int P(x_t | u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

Algorithm Bayes_filter(*Bel(x), d*):

```
If d is a perceptual data item z then

For all x do

Bel'(x) = P(z | x)Bel(x) correction

Else if d is an action data item u then

For all x do

Bel'(x) = \int P(x | u, x') Bel(x') dx'

Return Bel'(x)
```


Kalman Filter Algorithm

Algorithm Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$): Not much different from standard EKF ... but the Prediction: $\mu_t = A_t \mu_{t-1} + B_t u_t$ state dimention increases!! $\overline{\Sigma}_t = A_t \Sigma_{t-1} A_t^T + R_t$ $\begin{pmatrix} x \\ y \\ \theta \end{pmatrix} \begin{pmatrix} \sigma_x^2 & \sigma_{xy} & \sigma_{x\theta} \\ \sigma_{xy} & \sigma_y^2 & \sigma_{y\theta} \\ \sigma_{x\theta} & \sigma_{y\theta} & \sigma_{\theta}^2 \end{pmatrix} \begin{pmatrix} \sigma_{xl_1} & \sigma_{xl_2} & \cdots & \sigma_{xl_N} \\ \sigma_{yl_1} & \sigma_{yl_2} & \cdots & \sigma_{yl_N} \\ \sigma_{\theta l_1} & \sigma_{\theta l_2} & \cdots & \sigma_{\theta l_N} \end{pmatrix}$ Correction: $K_t = \overline{\Sigma}_t C_t^T (C_t \overline{\Sigma}_t C_t^T + Q_t)^{-1}$ $\mu_t = \overline{\mu}_t + K_t (z_t - C_t \overline{\mu}_t)$ $\Sigma_t = (I - K_t C_t) \Sigma_t$ $\begin{bmatrix} l_1 \\ l_2 \\ \vdots \\ l_N \end{bmatrix}, \begin{bmatrix} \sigma_{xl_1} & \sigma_{yl_1} & \sigma_{\theta l_1} \\ \sigma_{xl_2} & \sigma_{yl_2} & \sigma_{\theta l_2} \\ \vdots & \vdots & \vdots \\ \sigma_{xl_N} & \sigma_{yl_N} & \sigma_{\theta l_N} \end{bmatrix}, \begin{bmatrix} \sigma_{l_1}^2 & \sigma_{l_1l_2} \\ \sigma_{l_1l_2} & \sigma_{l_2}^2 \\ \sigma_{l_2l_N} \\ \sigma_{l_N} \end{bmatrix}$ $Bel(x_t, m_t) =$ Return μ_t, Σ_t

Classical Solution – The EKF

Approximate the SLAM posterior with a high-dimensional Gaussian

EKF-SLAM

Co

Мар

Correlation matrix

EKF-SLAM

Мар

Correlation matrix

EKF-SLAM

Мар

Correlation matrix

POLITECNICO MILANO 1863

Properties of KF-SLAM (Linear Case)

Theorem: The determinant of any sub-matrix of the map covariance matrix decreases monotonically as successive observations are made.

Theorem: In the limit the landmark estimates become fully correlated

[Dissanayake et al., 2001]

Are we happy about this?

- Quadratic in the number of landmarks: O(n²)
- Convergence results for the linear case
- Can diverge if nonlinearities are large!
- Have been applied successfully in large-scale environments.
- Approximations reduce the computational complexity.

Monocular SLAM Origins ...

Monocular SLAM Origins ...

POLITECNICO MILANO 1863

Larger size environments ...

Beyond EKF-SLAM

EKF-SLAM works pretty well but ...

- EKF-SLAM employs linearized models of nonlinear motion and observation models and so inherits many caveats.
- Computational effort is demand because computation grows quadratically with the number of landmarks.

Possible solutions

- Local submaps [Leonard & al 99, Bosse & al 02, Newman & al 03]
- Sparse links (correlations) [Lu & Milios 97, Guivant & Nebot 01]
- Sparse extended information filters [Frese et al. 01, Thrun et al. 02]
- Rao-Blackwellisation (FastSLAM) [Murphy 99, Montemerlo et al. 02, ...]
 - Represents nonlinear process and non-Gaussian uncertainty
 - Rao-Blackwellized method reduces computation

Our Full SLAM

solution

The FastSLAM Idea (Full SLAM)

In the general case we have

$$p(x_t, m \mid z_t) \neq P(x_t \mid z_t) P(m \mid z_t)$$

However if we consider the full trajectory X_t rather than the single pose x_t

$$p(X_t, m | z_t) = P(X_t | z_t) P(m | X_t, z_t)$$

In FastSLAM, the trajectory X_t is represented by particles $X_t(i)$ while the map is represented by a factorization called Rao-Blackwellized Filter

- $P(X_t | z_t)$ through particles
- $P(m | X_t, z_t)$ using an EKF

$$P(m \mid X_t^{(i)}, z_t) = \prod_{j}^{M} P(m_j \mid X_t^{(i)}, z_t)$$
map poses

FastSLAM Formulation

Decouple map of features from pose ...

- Each particle represents a robot trajectory
- Feature measurements are correlated thought the robot trajectory
- If the robot trajectory is known all of the features would be uncorrelated
- Treat each pose particle as if it is the true trajectory, processing all of the feature measurements independently

poses map

$$p(x_{1:t}, l_{1:m} | z_{1:t}, u_{0:t-1}) =$$

 $p(x_{1:t} | z_{1:t}, u_{0:t-1}) \cdot p(l_{1:m} | x_{1:t}, z_{1:t})$
SLAM posterior Robot path posterior Landmark positions

Factored Posterior: Rao-Blackwellization

Dimension of state space is reduced by factorization making particle filtering possible

$$p(x_{1:t}, l_{1:m} \mid z_{1:t}, u_{0:t-1}) = p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot \prod_{i=1}^{M} p(l_i \mid x_{1:t}, z_{1:t})$$

FastSLAM in Practice

Rao-Blackwellized particle filtering based on landmarks [Montemerlo et al., 2002]

- Each particle is a trajectory (last pose + reference to previous)
- Each landmark is represented by a 2x2 Extended Kalman Filter (EKF)
- Each particle therefore has to maintain M EKFs

FastSLAM – Action Update

FastSLAM – Sensor Update

FastSLAM – Sensor Update

FastSLAM Complexity

Update robot particles based on control u_{t-1}

O(N) Constant time per particle

Incorporate observation z_t into Kalman filters

O(N•log(M)) Log time per particle

Resample particle set O(N•log(M)) Log time per particle

O(N•log(M)) Log time per particle

N = *Number* of *particles M* = *Number* of *map* features

Fast-SLAM Example

