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Mapping with Knwon Poses
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Representations

Landmark-based

[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;…]

Grid maps or scans

[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & al., 00; Thrun, 00; Arras, 99; Haehnel, 01;…]

We’ll mostly 

focus on these
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Occupancy from Sonar Return (the origins)

The most simple occupancy model used sonars  

• A 2D Gaussian for information about occupancy

• Another 2D Gaussian for free space

Sonar sensors present several issues

• A wide sonar cone creates noisy maps 

• Specular (multi-path) reflections generates unrealistic measurements

Moravec 1984
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2D Occupancy Grids

A simple 2D representation for maps

• Each cell is assumed independent 

• Probability of a cell of being occupied

estimated using Bayes theorem

Maps the environment as an array of cells

• Usual cell size 5 to 50cm

• Each cells holds the probability of 

the cell to be occupied

• Useful to combine different sensor scans

and different sensor modalities

𝑃 𝐴 𝐵 =
𝑃 𝐵 𝐴 𝑃(𝐴)

𝑃 𝐵 𝐴 𝑃 𝐴 + 𝑃 𝐵 ~𝐴 𝑃(~𝐴)
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Occupancy Grid Cell Update

Let 𝑜𝑐𝑐(𝑖, 𝑗) mean cell 𝐶𝑖𝑗 is occupied, we have

• Probability: P(𝑜𝑐𝑐(𝑖, 𝑗)) has range [0, 1]

• Odds: o(𝑜𝑐𝑐(𝑖, 𝑗)) has range 0,∞

• Log odds: log o(𝑜𝑐𝑐(𝑖, 𝑗)) has range [−∞,∞]

Each cell 𝐶𝑖𝑗 holds the value log o(𝑜𝑐𝑐(𝑖, 𝑗)), 𝐶𝑖𝑗 = 0 corresponds to P 𝑜𝑐𝑐 𝑖, 𝑗 = 0.5

Cells are updated recursively by applying the Bayes theorem

• 𝐴 = 𝑜𝑐𝑐(𝑖, 𝑗)

• 𝐵 = 𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑖, 𝑗)

o 𝑜𝑐𝑐 𝑖, 𝑗 = P(𝑜𝑐𝑐(𝑖, 𝑗))/P(¬𝑜𝑐𝑐(𝑖, 𝑗))
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Mapping with Raw Odometry (assuming known poses)
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Scan Matching

Correct odometry by maximizing the likelihood of pose t based on the estimates of pose 
and map at time t-1.

Then compute the map        according to “mapping with known poses” based on the 
new pose and current observations.

Iterate alternating the two steps of localization and mapping …
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Scan Matching Example
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Scan Matching

Correct odometry by maximizing the likelihood of pose t based on the estimates of pose 
and map at time t-1.

The compute the map        according to “mapping with known poses” based on the new 
pose and current observations.

Iterate alternating the two steps of localization and mapping …
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Does not keep track of the 

uncertainty in the process



14

Simultaneous Localization and Mapping
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Dynamic Bayesian Networks and (Full) SLAM
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Dynamic Bayesian Networks and (Online) SLAM
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SLAM: Simultaneous Localization and Mapping

Full SLAM:

Online SLAM:

),|,( :1:1:1 ttt uzmxp

121:1:1:1:1:1 ...),|,(),|,( −  = ttttttt dxdxdxuzmxpuzmxp 

Simultaneous estimate 

of path and map

Simultaneous estimate of 

most recent pose and map

Integrals computed 

one at the time
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SLAM: Simultaneous Localization and Mapping

Full SLAM:

Online SLAM:

),|,( :1:1:1 ttt uzmxp

121:1:1:1:1:1 ...),|,(),|,( −  = ttttttt dxdxdxuzmxpuzmxp 

Simultaneous estimate 

of path and map

Simultaneous estimate of 

most recent pose and map

Integrals computed 

one at the time

Two famous examples!

Extended Kalman Filter (EKF) SLAM

• Uses a linearized Gaussian probability distribution

• Solves the Online SLAM problem

FastSLAM

• Uses a sampled particle filter distribution model

• Solves the Full SLAM problem
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(E)KF-SLAM

Map with N landmarks:(3+2N)-dimensional Gaussian
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(E)KF-SLAM

Map with N landmarks:(3+2N)-dimensional Gaussian
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Bayes Filter: The Algorithm 

Algorithm Bayes_filter( Bel(x), d ):

If d is a perceptual data item z then

For all x do

Else if d is an action data item u then

For all x do

Return Bel’(x)

)()|()(' xBelxzPxBel =

')'()',|()(' dxxBelxuxPxBel =

111 )(),|()|()( −−−= tttttttt dxxBelxuxPxzPxBel 

prediction

correction
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Kalman Filter Algorithm 

Algorithm Kalman_filter(µt-1, Σ t-1, ut, zt):

Prediction:

Correction:

Return µt, Σ t `
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Not much different from 

standard EKF ... but the 

state dimention increases!!
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Classical Solution – The EKF

Approximate the SLAM posterior with a high-dimensional Gaussian 

Blue path = true path   Red path = estimated path   Black path = odometry
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EKF-SLAM

Map              Correlation matrix
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EKF-SLAM

Map              Correlation matrix
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EKF-SLAM

Map              Correlation matrix

Landmark positions 

uncorrelated with the robot 

orientation ...
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Properties of KF-SLAM (Linear Case)

Theorem: The determinant of any sub-matrix of the map covariance matrix decreases 

monotonically as successive observations are made.

Theorem: In the limit the landmark estimates become fully correlated

Are we happy about this?

• Quadratic in the number of landmarks: O(n2) 

• Convergence results for the linear case 

• Can diverge if nonlinearities are large!

• Have been applied successfully in large-scale environments.

• Approximations reduce the computational complexity. 

[Dissanayake et al., 2001]
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Monocular SLAM Origins …
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Monocular SLAM Origins …
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Larger size environments …
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Beyond EKF-SLAM

EKF-SLAM works pretty well but ...

• EKF-SLAM employs linearized models of nonlinear motion and observation 

models and so inherits many caveats.

• Computational effort is demand because computation grows quadratically

with the number of landmarks. 

Possible solutions

• Local submaps [Leonard & al 99, Bosse & al 02, Newman & al 03]

• Sparse links (correlations) [Lu & Milios 97, Guivant & Nebot 01]

• Sparse extended information filters [Frese et al. 01, Thrun et al. 02]

• Rao-Blackwellisation (FastSLAM) [Murphy 99, Montemerlo et al. 02, ...]

• Represents nonlinear process and non-Gaussian uncertainty

• Rao-Blackwellized method reduces computation Our Full SLAM 

solution
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The FastSLAM Idea (Full SLAM)

In the general case we have

However if we consider the full  trajectory 𝑋𝑡 rather than the single pose 𝑥𝑡

In FastSLAM, the trajectory 𝑋𝑡 is represented by particles 𝑋𝑡(𝑖) while the map is 

represented by a factorization called Rao-Blackwellized Filter

• through particles

• using an EKF

( , | ) ( | ) ( | )t t t t tp x m z P x z P m z

( , | ) ( | ) ( | , )t t t t t tp X m z P X z P m X z=

( ) ( )( | , ) ( | , )
M

i i

t t j t t

j

P m X z P m X z=( | , )t tP m X z

( | )t tP X z

posesmap
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FastSLAM Formulation

Decouple map of features from pose ...

• Each particle represents a robot trajectory

• Feature measurements are correlated thought the robot trajectory

• If the robot trajectory is known all of the features would be uncorrelated

• Treat each pose particle as if it is the true trajectory, processing all of the feature 

measurements independently

SLAM posterior
Robot path posterior Landmark positions

poses map observations & movements
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Factored Posterior: Rao-Blackwellization

Dimension of state space is reduced by factorization making particle filtering possible

Robot path posterior 

(localization problem)
Conditionally independent 

landmark positions
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Landmark 1 Landmark 2 Landmark M…x, y, 

Landmark 1 Landmark 2 Landmark M…x, y, Particle

#1

Landmark 1 Landmark 2 Landmark M…x, y, Particle

#2

Particle

N

…

FastSLAM in Practice

Rao-Blackwellized particle filtering based on landmarks [Montemerlo et al., 2002]

• Each particle is a trajectory (last pose + reference to previous) 

• Each landmark is represented by a 2x2  Extended Kalman Filter (EKF)

• Each particle therefore has to maintain M EKFs
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FastSLAM – Action Update

Particle #1

Particle #2

Particle #3

Landmark #1

Filter

Landmark #2

Filter
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FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Landmark #1

Filter

Landmark #2

Filter
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FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Weight = 0.8

Weight = 0.4

Weight = 0.1
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FastSLAM  Complexity

Update robot particles based on control ut-1

Incorporate observation zt into Kalman filters

Resample particle set

N = Number of particles

M = Number of map features

O(N)
Constant time

per particle

O(N•log(M)) Log time

per particle

O(N•log(M)) Log time

per particle

O(N•log(M))
Log time per particle
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Fast-SLAM Example


