
Robotics

Matteo Matteucci
matteo.matteucci@polimi.it

Artificial Intelligence and Robotics Lab - Politecnico di Milano

Simultaneous Localization and Mapping

2

Sensors

Where am I?

A Simplified Sense-Plan-Act Architecture

Trajectory Planning

Lower Frequency

Trajectory

Trajectory Following

(and Obstacle Avoidance)

Motion Commands
Current

Position

Goal Position
Map

High Frequency

Localization

Mapping

Matteo Matteucci – matteo.matteucci@polimi.it
3

Mapping with Knwon Poses

4

Representations

Landmark-based

[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;…]

Grid maps or scans

[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & al., 00; Thrun, 00; Arras, 99; Haehnel, 01;…]

We’ll mostly

focus on these

5

Occupancy from Sonar Return (the origins)

The most simple occupancy model used sonars

• A 2D Gaussian for information about occupancy

• Another 2D Gaussian for free space

Sonar sensors present several issues

• A wide sonar cone creates noisy maps

• Specular (multi-path) reflections generates unrealistic measurements

Moravec 1984

6

2D Occupancy Grids

A simple 2D representation for maps

• Each cell is assumed independent

• Probability of a cell of being occupied

estimated using Bayes theorem

Maps the environment as an array of cells

• Usual cell size 5 to 50cm

• Each cells holds the probability of

the cell to be occupied

• Useful to combine different sensor scans

and different sensor modalities

𝑃 𝐴 𝐵 =
𝑃 𝐵 𝐴 𝑃(𝐴)

𝑃 𝐵 𝐴 𝑃 𝐴 + 𝑃 𝐵 ~𝐴 𝑃(~𝐴)

7

Occupancy Grid Cell Update

Let 𝑜𝑐𝑐(𝑖, 𝑗) mean cell 𝐶𝑖𝑗 is occupied, we have

• Probability: P(𝑜𝑐𝑐(𝑖, 𝑗)) has range [0, 1]

• Odds: o(𝑜𝑐𝑐(𝑖, 𝑗)) has range 0,∞

• Log odds: log o(𝑜𝑐𝑐(𝑖, 𝑗)) has range [−∞,∞]

Each cell 𝐶𝑖𝑗 holds the value log o(𝑜𝑐𝑐(𝑖, 𝑗)), 𝐶𝑖𝑗 = 0 corresponds to P 𝑜𝑐𝑐 𝑖, 𝑗 = 0.5

Cells are updated recursively by applying the Bayes theorem

• 𝐴 = 𝑜𝑐𝑐(𝑖, 𝑗)

• 𝐵 = 𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑖, 𝑗)

o 𝑜𝑐𝑐 𝑖, 𝑗 = P(𝑜𝑐𝑐(𝑖, 𝑗))/P(¬𝑜𝑐𝑐(𝑖, 𝑗))

10

Mapping with Raw Odometry (assuming known poses)

11

Scan Matching

Correct odometry by maximizing the likelihood of pose t based on the estimates of pose
and map at time t-1.

Then compute the map according to “mapping with known poses” based on the
new pose and current observations.

Iterate alternating the two steps of localization and mapping …

)ˆ,|()ˆ ,|(maxargˆ
11

]1[

−−

− = ttt

t

tt
x

t xuxpmxzpx
t

robot motioncurrent measurement

map constructed so far

][ˆ tm][ˆ tm

][ˆ tx

12

Scan Matching Example

13

Scan Matching

Correct odometry by maximizing the likelihood of pose t based on the estimates of pose
and map at time t-1.

The compute the map according to “mapping with known poses” based on the new
pose and current observations.

Iterate alternating the two steps of localization and mapping …

)ˆ,|()ˆ ,|(maxargˆ
11

]1[

−−

− = ttt

t

tt
x

t xuxpmxzpx
t

robot motioncurrent measurement

map constructed so far

][ˆ tm][ˆ tm

][ˆ tx

Does not keep track of the

uncertainty in the process

14

Simultaneous Localization and Mapping

15

Dynamic Bayesian Networks and (Full) SLAM

L1

G1

z1

G2

u2

),|,,,(:Smoothing :1:11:1 ttNt UZllp G

map

z2

L2 L3

z3 z4

L4

G3

u2

L5

z6 z7

L6

z5

trajectory

Full SLAM

16

Dynamic Bayesian Networks and (Online) SLAM

−

G=G
1:1

:1:11:1:1:11),|,,,(),|,,,(:Filtering
t

ttNtttNt UZllpUZllp

L1

G1

z1

G2

u2

map

z2

L2 L3

z3 z4

L4

G3

u2

L5

z6 z7

L6

z5

pose

Online SLAM

17

SLAM: Simultaneous Localization and Mapping

Full SLAM:

Online SLAM:

),|,(:1:1:1 ttt uzmxp

121:1:1:1:1:1 ...),|,(),|,(− = ttttttt dxdxdxuzmxpuzmxp

Simultaneous estimate

of path and map

Simultaneous estimate of

most recent pose and map

Integrals computed

one at the time

18

SLAM: Simultaneous Localization and Mapping

Full SLAM:

Online SLAM:

),|,(:1:1:1 ttt uzmxp

121:1:1:1:1:1 ...),|,(),|,(− = ttttttt dxdxdxuzmxpuzmxp

Simultaneous estimate

of path and map

Simultaneous estimate of

most recent pose and map

Integrals computed

one at the time

Two famous examples!

Extended Kalman Filter (EKF) SLAM

• Uses a linearized Gaussian probability distribution

• Solves the Online SLAM problem

FastSLAM

• Uses a sampled particle filter distribution model

• Solves the Full SLAM problem

19

(E)KF-SLAM

Map with N landmarks:(3+2N)-dimensional Gaussian

=

2

2

2

2

2

2

2

1

21

2221222

1211111

21

21

21

,),(

NNNNNN

N

N

N

N

N

llllllylxl

llllllylxl

llllllylxl

lllyx

ylylylyyxy

xlxlxlxxyx

N

tt

l

l

l

y

x

mxBel

tttttt uBxAx ++= −1

()ttttttttt RuBxAxNxuxp ,;),|(11 += −−

The map is part of

the state

Pose estimate

20

(E)KF-SLAM

Map with N landmarks:(3+2N)-dimensional Gaussian

=

2

2

2

2

2

2

2

1

21

2221222

1211111

21

21

21

,),(

NNNNNN

N

N

N

N

N

llllllylxl

llllllylxl

llllllylxl

lllyx

ylylylyyxy

xlxlxlxxyx

N

tt

l

l

l

y

x

mxBel

tttt xCz +=

()tttttt QxCzNxzp ,;)|(=

The map is part of

the state

Pose and map features

correlate (and

mesurements correct both)

Pose estimate

21

Bayes Filter: The Algorithm

Algorithm Bayes_filter(Bel(x), d):

If d is a perceptual data item z then

For all x do

Else if d is an action data item u then

For all x do

Return Bel’(x)

)()|()(' xBelxzPxBel =

')'()',|()(' dxxBelxuxPxBel =

111)(),|()|()(−−−= tttttttt dxxBelxuxPxzPxBel

prediction

correction

22

Kalman Filter Algorithm

Algorithm Kalman_filter(µt-1, Σ t-1, ut, zt):

Prediction:

Correction:

Return µt, Σ t `

ttttt uBA += −1

t

T

tttt RAA += −1

1)(−+= t

T

ttt

T

ttt QCCCK

)(tttttt CzK −+=

tttt CKI −=)(

=

2

2

2

2

2

2

2

1

21

2221222

1211111

21

21

21

,),(

NNNNNN

N

N

N

N

N

llllllylxl

llllllylxl

llllllylxl

lllyx

ylylylyyxy

xlxlxlxxyx

N

tt

l

l

l

y

x

mxBel

Not much different from

standard EKF ... but the

state dimention increases!!

23

Classical Solution – The EKF

Approximate the SLAM posterior with a high-dimensional Gaussian

Blue path = true path Red path = estimated path Black path = odometry

24

EKF-SLAM

Map Correlation matrix

25

EKF-SLAM

Map Correlation matrix

26

EKF-SLAM

Map Correlation matrix

Landmark positions

uncorrelated with the robot

orientation ...

27

Properties of KF-SLAM (Linear Case)

Theorem: The determinant of any sub-matrix of the map covariance matrix decreases

monotonically as successive observations are made.

Theorem: In the limit the landmark estimates become fully correlated

Are we happy about this?

• Quadratic in the number of landmarks: O(n2)

• Convergence results for the linear case

• Can diverge if nonlinearities are large!

• Have been applied successfully in large-scale environments.

• Approximations reduce the computational complexity.

[Dissanayake et al., 2001]

28

Monocular SLAM Origins …

29

Monocular SLAM Origins …

30

Larger size environments …

31

Beyond EKF-SLAM

EKF-SLAM works pretty well but ...

• EKF-SLAM employs linearized models of nonlinear motion and observation

models and so inherits many caveats.

• Computational effort is demand because computation grows quadratically

with the number of landmarks.

Possible solutions

• Local submaps [Leonard & al 99, Bosse & al 02, Newman & al 03]

• Sparse links (correlations) [Lu & Milios 97, Guivant & Nebot 01]

• Sparse extended information filters [Frese et al. 01, Thrun et al. 02]

• Rao-Blackwellisation (FastSLAM) [Murphy 99, Montemerlo et al. 02, ...]

• Represents nonlinear process and non-Gaussian uncertainty

• Rao-Blackwellized method reduces computation Our Full SLAM

solution

32

The FastSLAM Idea (Full SLAM)

In the general case we have

However if we consider the full trajectory 𝑋𝑡 rather than the single pose 𝑥𝑡

In FastSLAM, the trajectory 𝑋𝑡 is represented by particles 𝑋𝑡(𝑖) while the map is

represented by a factorization called Rao-Blackwellized Filter

• through particles

• using an EKF

(, |) (|) (|)t t t t tp x m z P x z P m z

(, |) (|) (| ,)t t t t t tp X m z P X z P m X z=

() ()(| ,) (| ,)
M

i i

t t j t t

j

P m X z P m X z=(| ,)t tP m X z

(|)t tP X z

posesmap

33

FastSLAM Formulation

Decouple map of features from pose ...

• Each particle represents a robot trajectory

• Feature measurements are correlated thought the robot trajectory

• If the robot trajectory is known all of the features would be uncorrelated

• Treat each pose particle as if it is the true trajectory, processing all of the feature

measurements independently

SLAM posterior
Robot path posterior Landmark positions

poses map observations & movements

34

Factored Posterior: Rao-Blackwellization

Dimension of state space is reduced by factorization making particle filtering possible

Robot path posterior

(localization problem)
Conditionally independent

landmark positions

35

Landmark 1 Landmark 2 Landmark M…x, y,

Landmark 1 Landmark 2 Landmark M…x, y, Particle

#1

Landmark 1 Landmark 2 Landmark M…x, y, Particle

#2

Particle

N

…

FastSLAM in Practice

Rao-Blackwellized particle filtering based on landmarks [Montemerlo et al., 2002]

• Each particle is a trajectory (last pose + reference to previous)

• Each landmark is represented by a 2x2 Extended Kalman Filter (EKF)

• Each particle therefore has to maintain M EKFs

36

FastSLAM – Action Update

Particle #1

Particle #2

Particle #3

Landmark #1

Filter

Landmark #2

Filter

37

FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Landmark #1

Filter

Landmark #2

Filter

38

FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Weight = 0.8

Weight = 0.4

Weight = 0.1

39

FastSLAM Complexity

Update robot particles based on control ut-1

Incorporate observation zt into Kalman filters

Resample particle set

N = Number of particles

M = Number of map features

O(N)
Constant time

per particle

O(N•log(M)) Log time

per particle

O(N•log(M)) Log time

per particle

O(N•log(M))
Log time per particle

40

Fast-SLAM Example

