POLITECNICO

MILANO 1863

Robotics

Simultaneous Localization and Mapping

Matteo Matteucci
matteo.matteucci@polimi.it

Artificial Intelligence and Robotics Lab - Politecnico di Milano

A Simplified Sense-Plan-Act Architecture

Mapping with Knwon Poses

Representations

Landmark-based

[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;...]

Grid maps or scans

[Lu \& Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige \& al., 00; Thrun, 00; Arras, 99; Haehnel, 01;...]

Occupancy from Sonar Return (the origins)

The most simple occupancy model used sonars

- A 2D Gaussian for information about occupancy
- Another 2D Gaussian for free space

Sonar sensors present several issues

- A wide sonar cone creates noisy maps
- Specular (multi-path) reflections generates unrealistic measurements

Room traverse by grid map from SONAR

Moravec 1984

2D Occupancy Grids

A simple 2D representation for maps

- Each cell is assumed independent
- Probability of a cell of being occupied estimated using Bayes theorem

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P(B \mid \sim A) P(\sim A)}
$$

Maps the environment as an array of cells

- Usual cell size 5 to 50 cm
- Each cells holds the probability of the cell to be occupied
- Useful to combine different sensor scans and different sensor modalities

Occupancy Grid Cell Update

Let $\operatorname{occ}(i, j)$ mean cell $C_{i j}$ is occupied, we have

- Probability: $\mathrm{P}(o c c(i, j))$ has range $[0,1]$
- Odds: o(occ $(i, j))$ has range $[0, \infty]$

$$
\mathrm{o}(o c c(i, j))=\mathrm{P}(o c c(i, j)) / \mathrm{P}(\neg o c c(i, j))
$$

- Log odds: $\log o(o c c(i, j))$ has range $[-\infty, \infty]$

Each cell $C_{i j}$ holds the value $\log \mathrm{o}(o c c(i, j)), C_{i j}=0$ corresponds to $\mathrm{P}(o c c(i, j))=0.5$
Cells are updated recursively by applying the Bayes theorem

- $A=\operatorname{occ}(i, j)$
- $B=$ measure (i, j)

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Mapping with Raw Odometry (assuming known poses)

Scan Matching

Correct odometry by maximizing the likelihood of pose t based on the estimates of pose and map at time t-1.

$$
\hat{x}_{t}=\underset{x_{t}}{\arg \max }\left\{p\left(z_{t} \mid x_{t}, \hat{m}^{[t-1]}\right) \cdot p\left(x_{t} \mid u_{t-1}, \hat{x}_{t-1}\right)\right\}
$$

$\left.\hat{m}^{[t]}\right]$ Then compute the map $\hat{m}^{[t]}$ according to "mapping with known poses" based on the new pose and current observations.

Iterate alternating the two steps of localization and mapping ...

Scan Matching Example

Scan Matching

Correct odometry by maximizing the likelihood of pose t based on the estimates of pose and map at time $t-1$.

$\hat{m}^{[t]}\left[\right.$ The compute the map $\hat{m}^{[t]}$ according to "mapping with known poses" based on the new pose and current observations.

Iterate alternating the two steps of localization and mapping ...

Simultaneous Localization and Mapping

Dynamic Bayesian Networks and (Full) SLAM

Smoothing : $p\left(\Gamma_{1: t}, l_{1}, \ldots, l_{N} \mid Z_{1: t}, U_{1: t}\right)$

Dynamic Bayesian Networks and (Online) SLAM

Filtering : $\quad p\left(\Gamma_{t}, l_{1}, \ldots, l_{N} \mid Z_{1: t}, U_{1: t}\right)=\iiint_{1: t-1} p\left(\Gamma_{1: t}, l_{1}, \ldots, l_{N} \mid Z_{1: t}, U_{1: t}\right)$

SLAM: Simultaneous Localization and Mapping

Full SLAM: $\quad p\left(x_{1: t}, m \mid z_{1: t}, u_{1: t}\right)$

Online SLAM: $p\left(x_{t}, m \mid z_{1: t}, u_{1: t}\right)=\iint \ldots \int p\left(x_{1: t}, m \mid z_{1: t}, u_{1: t}\right) d x_{1} d x_{2} \ldots d x_{t-1}$

SLAM: Simultaneous Localization and Mapping

Full SLAM: $\quad p\left(x_{1: t}, m \mid z_{1: t}, u_{1: t}\right)$
Online SLAM: $1 \begin{aligned} & \text { Extended Kalman Filter (EKF) SLAM } \\ & \text { - Uses a linearized Gaussian probability distribution } \\ & \text { Solves the Online SLAM problem } \\ & \text { FastSLAM } \\ & \text { - Uses a sampled particle filter distribution model } \\ & 0 \quad \text { Solves the Full SLAM problem }\end{aligned}$

(E)KF-SLAM

Map with N landmarks:(3+2N)-dimensional Gaussian

(E)KF-SLAM

Map with N landmarks:(3+2N)-dimensional Gaussian

> Pose and map features

Bayes Filter: The Algorithm

$$
\operatorname{Bel}\left(x_{t}\right)=\eta P\left(z_{t} \mid x_{t}\right) \int P\left(x_{t} \mid u_{t}, x_{t-1}\right) \operatorname{Bel}\left(x_{t-1}\right) d x_{t-1}
$$

Algorithm Bayes_filter($\operatorname{Bel}(x), d)$:

If d is a perceptual data item z then
For all x do

$$
\operatorname{Bel}^{\prime}(x)=P(z \mid x) \operatorname{Bel}(x)
$$

correction

Else if d is an action data item u then
For all x do

prediction

$$
\operatorname{Bel}^{\prime}(x)=\int P\left(x \mid u, x^{\prime}\right) \operatorname{Bel}\left(x^{\prime}\right) d x^{\prime}
$$

Return Bel'(x)

Kalman Filter Algorithm

Algorithm Kalman_filter $\left(\mu_{t-1}, \Sigma_{t-1}, u_{t}, z_{t}\right)$:

Prediction: $\bar{\mu}_{t}=A_{t} \mu_{t-1}+B_{t} u_{t}$

$$
\bar{\Sigma}_{t}=A_{t} \Sigma_{t-1} A_{t}^{T}+R_{t}
$$

Correction: $K_{t}=\bar{\Sigma}_{t} C_{t}^{T}\left(C_{t} \bar{\Sigma}_{t} C_{t}^{T}+Q_{t}\right)^{-1}$

$$
\mu_{t}=\bar{\mu}_{t}+K_{t}\left(z_{t}-C_{t} \bar{\mu}_{t}\right)
$$

$$
\Sigma_{t}=\left(I-K_{t} C_{t}\right) \bar{\Sigma}_{t}
$$

Return μ_{t}, Σ_{t}

Classical Solution - The EKF

Approximate the SLAM posterior with a high-dimensional Gaussian

Blue path = true path Red path = estimated path Black path = odometry

Map
Correlation matrix

Map

Correlation matrix

Map

Correlation matrix

Properties of KF-SLAM (Linear Case)

Theorem: The determinant of any sub-matrix of the map covariance matrix decreases monotonically as successive observations are made.

Theorem: In the limit the landmark estimates become fully correlated
[Dissanayake et al., 2001]

Are we happy about this?

- Quadratic in the number of landmarks: $O\left(n^{2}\right)$
- Convergence results for the linear case
- Can diverge if nonlinearities are large!
- Have been applied successfully in large-scale environments.
- Approximations reduce the computational complexity.

Monocular SLAM Origins ... ■ ■
■

Monocular SLAM Origins ...

Real-Time Camera Tracking in Unknown Scenes

Larger size environments ...

Federated Information Sharing SLAM - Vision Only

BLUE: predicted points - CYAN: updated points - MAGENTA: predicted rays - RED: updated rays

Beyond EKF-SLAM

EKF-SLAM works pretty well but ...

- EKF-SLAM employs linearized models of nonlinear motion and observation models and so inherits many caveats.
- Computational effort is demand because computation grows quadratically with the number of landmarks.
Possible solutions
- Local submaps [Leonard \& al 99, Bosse \& al 02, Newman \& al 03]
- Sparse links (correlations) [Lu \& Milios 97, Guivant \& Nebot 01]
- Sparse extended information filters [Frese et al. 01, Thrun et al. 02]
- Rao-Blackwellisation (FastSLAM) [Murphy 99, Montemerlo et al. 02, ...]
- Represents nonlinear process and non-Gaussian uncertainty
- Rao-Blackwellized method reduces computation Our Full SLAM solution

The FastSLAM Idea (Full SLAM)

In the general case we have

$$
p\left(x_{t}, m \mid z_{t}\right) \neq P\left(x_{t} \mid z_{t}\right) P\left(m \mid z_{t}\right)
$$

However if we consider the full trajectory X_{t} rather than the single pose x_{t}

$$
p\left(X_{t}, m \mid z_{t}\right)=P\left(X_{t} \mid z_{t}\right) P\left(m \mid X_{t}, z_{t}\right)
$$

In FastSLAM, the trajectory X_{t} is represented by particles $X_{t}(i)$ while the map is represented by a factorization called Rao-Blackwellized Filter

- $P\left(X_{t} \mid z_{t}\right)$ through particles
- $P\left(m \mid X_{t}, z_{t}\right)$ using an EKF

FastSLAM Formulation

Decouple map of features from pose ...

- Each particle represents a robot trajectory
- Feature measurements are correlated thought the robot trajectory
- If the robot trajectory is known all of the features would be uncorrelated
- Treat each pose particle as if it is the true trajectory, processing all of the feature measurements independently

Factored Posterior: Rao-Blackwellization

$$
\begin{aligned}
& p\left(x_{1: t}, l_{1: m} \mid z_{1: t}, u_{0: t-1}\right) \\
& \quad=p\left(x_{1: t} \mid z_{1: t}, u_{0: t-1}\right) \cdot p\left(l_{1: m} \mid x_{1: t}, z_{1: t}\right)
\end{aligned}
$$

$$
=p\left(x_{1: t} \mid z_{1: t}, u_{0: t-1}\right) \cdot \prod_{i=1}^{M} p\left(l_{i} \mid x_{1: t}, z_{1: t}\right)
$$

Robot path posterior (localization problem)

Dimension of state space is reduced by factorization making particle filtering possible

$$
\begin{aligned}
& p\left(x_{1: t}, l_{1: m} \mid z_{1: t}, u_{0: t-1}\right)= \\
& p\left(x_{1: t} \mid z_{1: t}, u_{0: t-1}\right) \cdot \prod_{i=1}^{M} p\left(l_{i} \mid x_{1: t}, z_{1: t}\right)
\end{aligned}
$$

FastSLAM in Practice

Rao-Blackwellized particle filtering based on landmarks [Montemerlo et al., 2002]

- Each particle is a trajectory (last pose + reference to previous)
- Each landmark is represented by a $2 x 2$ Extended Kalman Filter (EKF)
- Each particle therefore has to maintain M EKFs

FastSLAM - Action Update

Particle \#2

FastSLAM - Sensor Update

FastSLAM - Sensor Update

FastSLAM Complexity

Update robot particles based on control $u_{t-1} \quad O(N) \begin{gathered}\text { Constant time } \\ \text { per particle }\end{gathered}$
Incorporate observation z_{t} into Kalman filters $O(N \cdot \log (M))$) $\begin{gathered}\text { Log time } \\ \text { per particle }\end{gathered}$ Resample particle set $\mathrm{O}(\mathrm{N} \cdot \log (\mathrm{M})) \begin{gathered}\text { pog time } \\ \text { perticle }\end{gathered}$
$\mathrm{O}(\mathrm{N} \cdot \log (\mathrm{M}))$
Log time per particle

N = Number of particles
M = Number of map features

Fast-SLAM Example

